Путеводитель для влюбленных в математику Шейнерман Эдвард
Таким образом, по правилу первых двух приоритетов побеждает С.
• Метод Борда. Если мы руководствуемся правилом большинства, то не учитываем, кого каждый избиратель ставил на второе место. В правиле первых двух приоритетов второй приоритет имеет тот же вес, что и первый. Метод Борда – компромисс между ними[225].
Он заключается в том, что первый приоритет избирателя приносит кандидату 2 очка, второй приоритет – 1 очко, третий приоритет – ни одного очка. Дальше мы складываем очки. Побеждает тот кандидат, у кого их окажется больше.
Давайте проанализируем, как работает метод Борда в случае рассмотренного выше профиля предпочтений:
– кандидат A имеет первый приоритет у шести избирателей и второй – у одного, таким образом, он набирает 6 2 + 1 1 = 13 очков;
– кандидат B имеет первый приоритет у пяти избирателей и второй – у четырех, таким образом, он набирает 5 2 + 4 1 = 14 очков;
– кандидат C имеет первый приоритет у двух избирателей и второй – у восьми, таким образом, он набирает 2 2 + 8 1 = 12 очков.
В соответствии с методом Борда победителем станет кандидат B.
Нарисуем сводную таблицу победителей для одного и того же профиля предпочтений при использовании трех разных методов:
Результат обескураживает. Сложно обвинить какой-либо из трех методов в нелепости (в отличие от правила нечетности или правила меньшинства). Все три подхода удовлетворяют критериям честности: им свойственны нейтральность учета избирателей, нейтральность учета кандидатов и монотонность, потому нельзя отбраковать хотя бы один из них на этом основании. Может быть, мы найдем еще какой-нибудь критерий честности, чтобы выбрать «наилучший» метод?
Последний критерий справедливости, который я рассмотрю в этой главе, называется независимость от посторонних альтернатив. Он носит более изощренный характер, чем другие критерии, поэтому я начну с простого примера.
Вообразите, что ваша подружка выбирает десерт после ужина в ресторане. В меню указаны три варианта: торт, пирог и мороженое. Девушка заказывает мороженое. Официант, приняв ее заказ, говорит вам: «О, похоже, у нас закончились пироги». Тут девушка отвечает: «В таком случае я закажу торт!»
Что за чушь? Если она предпочитает мороженое (а не торт и не пирог), нет никакой разницы, остались ли в ресторане пироги. Но перемена выбора вашей подружки связана именно с фактом отсутствия пирогов, это не совпадение. Есть искушение заподозрить, все ли у нее в порядке с головой!
Мы ожидаем, что методы принятия решений будут разумными. Допустим, некий метод провозглашает кандидата X победителем на основании определенного профиля предпочтений. Допустим также, что другой кандидат, Y, снимает свою кандидатуру (и ни один избиратель не меняет своего мнения). В таком случае X должен остаться победителем. Если метод удовлетворяет такому условию, это и есть независимость от посторонних альтернатив.
Подумаем в том же ключе о правиле большинства. Для рассмотренного выше профиля предпочтений этот метод провозглашает победителем A. Теперь представим, что C снимает кандидатуру. Профиль предпочтений меняется следующим образом:
На сей раз победителем становится кандидат B! Таким образом, правило большинства не удовлетворяет критерию независимости от посторонних альтернатив.
Может быть, правило первых двух приоритетов лучше? На основе того же профиля предпочтений победителем становится C. Что произойдет, если A сойдет с дистанции? Останется всего два кандидата! Тут мы заходим в тупик. Вот вам головоломка: попробуйте составить такой профиль предпочтений при голосовании за четырех кандидатов (A, B, C, D), чтобы правило первых двух приоритетов провозглашало победителем A, но если бы из гонки выбыл D, победителем стал бы B. Ответ я дам в конце главы.
Наконец, протестируем метод Борда. Он провозглашает победителем B, но если C выбывает, победителем становится A.
Ни один из трех методов не удовлетворяет критерию независимости от посторонних альтернатив.
Спокойствие, только спокойствие! Есть множество других методов. Разумеется, какие-нибудь из них удовлетворяют критерию независимости от посторонних альтернатив. Например, правило диктатора (если кандидат A имеет первый приоритет у избирателя № 1, он останется победителем, кто бы из других кандидатов ни выбыл из игры). Разумеется, правило диктатора – не лучший метод, потому что не удовлетворяет одному из основных критериев – нейтральности учета избирателей.
Возникает вопрос: какой из справедливых методов голосования удовлетворяет критерию независимости от посторонних альтернатив? Ответ был найден Кеннетом Эрроу[226] в 1950 году: увы, но такого метода нет.
Теорема невозможности Эрроу носит несколько технический характер, но ее смысл заключается в том, что при наличии более чем двух кандидатов ни один метод не удовлетворяет базовому критерию независимости от посторонних альтернатив[227].
Как нам теперь быть? Если все методы «несправедливы», каким из них нам руководствоваться? Или просто нужно отбросить критерий независимости от посторонних альтернатив? Нанесет ли это большой вред?
Проблема методов, не удовлетворяющих последнему критерию, заключается в том, что они поощряют избирателей голосовать иначе, чем они планировали изначально, если какой-нибудь кандидат портит шансы вероятного победителя. Например, вам по душе кандидаты A и B, но вы питаете отвращение к кандидату C. Вы склоняетесь к тому, чтобы голосовать за A, но внезапно узнаете из выпуска новостей, что шансы A на победу невелики. За кого вы будете голосовать? При подсчете голосов по правилу большинства (и при использовании некоторых других методов) неразумно голосовать за A, хотя изначально вы планировали поступить именно так. Если вы проголосуете за A, то отнимете один голос у B.
Если A не выбывает из игры, а избиратели, чьи изначальные приоритеты совпадают с вашими, не меняют своего решения и все-таки голосуют за A, это отнимает голоса у B и обеспечивает победу C. Но если A по тем или иным причинам выбывает из игры, вы голосуете за B, и его шансы на победу возрастают.
Если метод принятия решений удовлетворяет критерию независимости от посторонних альтернатив, такой дилеммы не возникает. Вы можете голосовать, как и планировали, потому что выбор в пользу A не обесценит вашего голосования.
Глава 23
Парадокс Ньюкома
Человеческое поведение предсказуемо. В самом деле: многие социальные науки, от экономики до культурной антропологии, строятся на том факте, что мы можем видеть закономерности в человеческой деятельности и предсказывать поступки людей (пусть даже с разными степенями уверенности).
В этой главе я расскажу о парадоксе Ньюкома[228]. Он касается предсказания человеческого поведения и приводит к умопомрачительным выводам[229].
Парадокс Ньюкома подразумевает игру на деньги, где участвуют два человека: Предсказатель и Игрок, который должен выбрать между двумя вариантами. Перед началом игры Предсказатель угадывает, какое решение примет его оппонент. Давайте придадим всему этому личностный оттенок: я предлагаю вам примерить роль Игрока на себя.
Перед вами два ящика: № 1 и № 2, оба непрозрачные, что внутри – не видно. Я гарантирую, что в ящике № 1 лежит 1000 долларв. А вот ситуация с ящиком № 2 смутная: либо там 1 000 000 долларов, либо ничего.
Чуть позже я объясню, от чего зависит, пуст или полон второй ящик, но сперва расскажу о ваших возможностях. Вам предстоит выбрать один из двух вариантов действий:
– забрать содержимое того и другого ящика;
– забрать содержимое ящика № 2.
Разумеется, деньги останутся у вас.
Однако первый ход – не за Игроком. Перед тем как вы примете решение, Предсказатель попытается предугадать ваш выбор. Представим, что это невероятно одаренный психолог, годами втихомолку наблюдавший за вами; он читает в вашем сердце, знает, когда и от чего вас бросает в пот, и на основе всего этого прекрасно понимает, что вы предпочтете. Формально говоря, Предсказатель прав в 95 % случаев[230].
Теперь я объясню, по какому принципу Предсказатель распределяет купюры. Как уже было сказано, в ящике № 1 всегда лежит 1000 долларов. Содержимое ящика № 2 зависит от того, как Предсказатель видит ваши действия. Если он думает, что вы заграбастаете оба ящика (на что вы имеете полное право), он оставляет ящик № 2 пустым. Если же он предполагает, что вы возьмете только ящик № 2, он кладет туда 1 000 000 долларов. Занесем эту логику действий в таблицу[231]:
Подытожим.
1. Первый ход за Предсказателем:
– если он думает, что Игрок выберет только ящик № 2, он кладет туда 1 000 000 долларов;
– если Предсказатель считает, что Игрок возьмет оба ящика, то ящик № 2 остается пустым.
2. Второй ход за Игроком, то есть за вами. У вас два варианта:
– взять только ящик № 2;
– взять оба ящика.
Когда вы берете один ящик или два, все деньги, которые там лежали, достаются вам!
Вот вопрос для анализа:
Переформулируем вопрос (на первый взгляд кажется, что разницы нет никакой): как вы поступите в такой ситуации? Люди могут рассуждать так:
– Я возьму только второй ящик, я не хочу показаться жадным.
– Я возьму оба ящика. Так мне в любом случае что-то достанется.
Мысли разумные, но это не ответ на наш вопрос. Здесь нет стратегии, позволяющей выиграть побольше денег. А мы хотим узнать именно это. Как поступить, чтобы выиграть максимальную сумму денег?
Вот еще один ответ, и, поскольку он тоже по-своему разумен, я в последнюю минуту немного поменяю правила игры, чтобы данная стратегия стала невыгодной.
– Я просто сыграю в орлянку.
Такая стратегия ставит нам палки в колеса, потому что Предсказатель психолог, а не маг, он не в силах предсказать, как выпадет монетка. Поэтому введем дополнительное правило: решение должно быть личным выбором Игрока. Вам запрещено с кем-либо консультироваться, вам запрещено играть в орлянку и предпринимать еще что-либо, влияющее на ваш личный выбор.
Итак, каким должен быть ваш выбор, чтобы вы заработали больше денег?
Хорошая новость состоит в том, что правильный ответ существует. Но есть и плохая новость: правильный ответ – не единственный. Посмотрим, почему это так.
Вне всякого сомнения, забрать два ящика в любом случае на тысячу долларов лучше, чем просто взять ящик № 2. Предсказатель ходит первым. Поскольку он редко ошибается, вы не знаете, как он поступит. Если вы возьмете ящик № 2, вам достанется только то, что в нем лежит. Но если вы возьмете оба ящика, вам достанется и то, что находится в ящике № 2, и еще 1000 долларов. Вне всякого сомнения, так вы получите больше денег[232].
Вот наглядное представление о ваших возможностях в зависимости от того, пуст или полон ящик № 2:
Теперь все кристально ясно. Что бы там себе ни думал Предсказатель, в любом случае выгоднее брать оба ящика.
Вы ждете своей очереди. Несколько ваших друзей уже сделали выбор. Кое-кто из них руководствовался изложенной только что логикой и забрал оба ящика. Другие решили даже под давлением железобетонной логики взять только ящик № 2. И что они получили в итоге?
Рациональные игроки забрали свою тысячу, а вот азартные теперь миллионеры! В одном случае Предсказатель просчитался, но в целом он всегда оказывался прав.
А теперь ваш ход.
Если вы согласны с логикой предыдущих абзацев, вы возьмете оба ящика. Действительно, какой смысл оставлять на столе тысячу долларов? Предсказатель наверняка угадает ваш выбор (потому что знает, что вы за человек) и оставит ящик № 2 пустым. Это плохо: да, вы получите утешительный приз (1000 долларов), но так и не станете миллионером.
С другой стороны, ход ваших мыслей может быть следующим: «Предсказатель знает свое дело. Если я решу взять только ящик № 2, есть все шансы, что он заранее поймет это». И в самом деле: в таком случае вы с огромной вероятностью разбогатеете!
Иными словами, игрок, забирающий только ящик № 2, получает больше денег, чем «рациональный» игрок, забирающий оба ящика. Ошеломляющий вывод: выбрать ящик № 2 означает скорее всего получить больший выигрыш, в то время как выбрать оба ящика означает скорее всего ограничиться утешительным призом.
Выбрать ящик № 2 – наилучший путь к богатству!
Эти аргументы можно перевести на язык математики. Довольно просто вычислить, с какой вероятностью приносит деньги та или иная стратегия. Скоро мы вернемся к противостоянию Предсказателя и Игрока, но сначала для наглядности разберем очевидный пример: лотерею «Выбери три цифры».
Игроки покупают билеты стоимостью 1 доллар. Каждый билет дает возможность выбрать три цифры. Тем же вечером выигрышное трехзначное число генерируется случайным образом. Каждый билет с этим числом приносит 500 долларов.
Вопрос: какой ожидаемый выигрыш в лотерее «Выбери три цифры»?
Грубо говоря, никакой. Вероятность того, что мы в точности угадаем заветное число, равна одной тысячной, или 0,01 %. Почти всегда (но все-таки «почти») билет проигрывает.
Но когда об ожидаемом выигрыше говорят на математическом языке, подразумевается средний выигрыш. Как его вычислить?
С вероятностью 0,999 выигрыш по одному билету равен 0 долларов и с вероятностью 0,001 равен 500 долларам. В целом это дает:
0 0,999 + 500 0,001 = 0,5 доллара.
То есть средний выигрыш равен всего 50 центам.
Вот другой способ прийти к этому числу. Представим, что лотерейщики продали миллион билетов. Каждый билет стоит 1 доллар. Таким образом, выручка составляет миллион долларов. Сколько им придется заплатить?
Заветное число – трехзначное, поэтому резонно предположить, что выиграет где-то один билет на тысячу. Всего будет около 1000 выигрышных билетов, каждый сделает лотерейщиков беднее на 500 долларов. Таким образом, они потеряют в среднем 50 центов с каждого билета.
Применим этот метод анализа к игре Ньюкома. Игрок может взять оба ящика или только ящик № 2. Каков средний выигрыш в каждой ситуации?
• Если вы берете ящик № 2, в 95 % случаев Предсказатель угадывает это и кладет туда 1 000 000 долларов. В 5 % случаев он ошибается, и ящик остается пустым. Таким образом, средний выигрыш равен 1 000 000 0,95 + 0 0,05 = 950 000 долларов.
• Если вы берете оба ящика, в 95 % случаев ящик № 2 оказывается пуст, а в 5 % случаев там лежит 1 000 000 долларов. В любом случае Игрок получает 1000 долларов из первого ящика. Таким образом, средний выигрыш составляет 1000 0,95 + 1 001 000 0,5 = 51 000 долларов.
Теперь все ясно. Лучший способ заработать деньги – выбрать только ящик № 2.
Мы пришли к двум неоспоримым выводам. Первый: лучше взять оба ящика (зачем оставлять деньги на столе?). Второй: лучше взять ящик № 2 (есть все шансы стать миллионером). Как такое возможно? Верно должно быть либо то, либо другое.
N, которое, как выяснилось, (a) делится на некое простое число и (b) не делится ни на какое простое число. Разумеется, это невозможно. Если мы пришли к противоречию, значит, мы исходили из ложной посылки. Так оно и было: мы предположили, что количество простых чисел конечно, и пришли к двум прямо противоположным выводам. Если вывод абсурден, то изначальное предположение было ошибочным. Неверно, что простые числа можно пересчитать: это приводит к бессмыслице. Таким образом, простых чисел бесконечно много.
Что касается парадокса Ньюкома, мы сделали два неявных допущения.
Первое допущение – относительно Игрока. Может ли он сделать независимый выбор? Обладают ли человеческие существа свободной волей? Разумеется, нельзя (и мы даже не будем пытаться) в точности разрешить эту старую как мир философскую проблему[233].
Второе – относительно Предсказателя. Действительно ли он способен предвидеть поступки другого человека? Ясно, что в целом поведение людей может быть предсказано с большой долей уверенности. Но в нашей игре Предсказатель пытается предугадать выбор одного-единственного индивидуума, а ведь это весьма зыбкая материя. Точность 95 % неправдоподобно высока.
Однако вот что интересно: противоречие не исчезает, даже если Предсказатель прав в 51 % случаев! Аргумент «не оставляйте деньги на столе» по-прежнему не работает. Вот расчет среднего выигрыша:
• Если вы берете только ящик № 2, средний выигрыш составляет 1 000 000 0,51 + 0 0,49 = 510 000 долларов.
• Если вы берете оба ящика, средний выигрыш составляет 1 000 0,51 + 1 001 000 0,49 = $491 000 долларов.
Даже если Предсказатель предугадывает ваше решение с точностью 51 %, вам лучше выбрать только ящик № 2! Разница в средних выигрышах на сей раз невелика, поэтому расчеты не вызывают особых эмоций, но выигрышная стратегия остается прежней[234].
Итак, вот два допущения, приводящих к парадоксу:
– Игрок обладает свободой воли;
– Предсказатель предугадывает решение Игрока с высокой точностью.
Иными словами, свобода выбора и уверенное предсказание будущего несовместимы.
Вообразим, что в роли Игрока – компьютерная программа, а в роли Предсказателя – мы, человеческие существа. По правилам, Игроку запрещено играть в орлянку; таким образом, компьютер не должен совершать случайного выбора[235].
У компьютера есть все те же две возможности: выбрать оба ящика или только ящик № 2. Как он поступит?
Мы можем с легкостью предсказать выбор компьютера. Нам нужно всего лишь сделать копию компьютерной программы, запустить на другом компьютере и следить за ее действиями. Наше предсказание будет идеальным (если компьютер не заглючит). Когда игра начнется, мы убедимся в безошибочности предсказания. Практически без исключений выбор двух ящиков принесет компьютеру тысячу долларов, а выбор ящика № 2 принесет миллион долларов.
Если нас попросят разработать программу для парадокса Ньюкома, наше решение будет кристально ясно. Вот вся программа:
print («Я беру только ящик № 2»)
Мы запускаем программу, компьютер каждый раз получает миллион долларов, и мы счастливы.
Нет никакого резона выбирать оба ящика. Действия компьютера полностью предсказуемы (потому что мы имеем дело с машиной, а не с человеком), и выбор двух ящиков всякий раз будет приносить всего лишь 1000 долларов.
Почему противоречие возникает, когда в роли Игрока оказывается человек, и пропадает, когда в роли Игрока выступает компьютер? Парадокс Ньюкома подразумевает свободу воли: никакой Предсказатель не в силах в точности предвидеть наши действия.
Что читать дальше?
На русском языке
1. Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. – М.: Мир, 1965.
2. Харди Г. Г. Апология математика. – Ижевск: НИЦ «Регулярная и хаотическая динамика», 2000.
На английском языке
1. Peter Beckmann. A History of . St. Martin’s Press, third edition, 1976.
Edward B. Burger and Michael Starbird. The Heart of Mathematics: An Invitation to Effective Thinking. Wiley, third edition, 2009.
2. Underwood Dudley. A Budget of Trisections. Springer, 1987.
3. Richard P. Feynman, Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics. Addison-Wesley Publishing Company, 1963.
4. Martin Gardner. Free will revisited, with a mind-bending prediction paradox Newcomb. Scientific American, 229, July 1973.
5. G. H. Hardy. Mathematician’s Apology. Cambridge University Press, 1940
6. H. E. Huntley. The Divine Proportion. Dover, 1970.
7. Nicholas D. Kazarinoff. Ruler and the Round: Classic Problems in Geometric Constructions. Dover, third edition, 2003.
8. Mario Livio. The Golden Ratio: The Story of PHI, the World’s Most Astonishing Number. Broadway, 2003.
9. Paul Lockhart. A Mathematician’s Lament: How School Cheats Us Out of Our Most Fascinating and Imaginative Art Form. Bellevue Literary Press, 2009.
10. Eli Maor. e: The Story of a Number. Princeton University Press, 2009.
11. Paul J. Nahin. An Imaginary Tale: The Story of Princeton University Press, 2010.
12. James R. Newman. The World of Mathematics. Simon & Schuster, 1956. This four-volume collection is also available from Dover.
13. Mark Nigrini. Benford’s Law: Applications for Forensic Accounting, Auditing, and Fraud Detection. Wiley, 2012.
14. E. Arthur Robinson and Daniel H. Ullman. A Mathematical Look at Politics. CRC Press, 2010.
15. Edward R. Scheinerman. Mathematics: A Discrete Introduction. Brooks/Cole, third edition, 2012.
16. Eric W. Weisstein. Mathworld – a Wolfram web resource, http://mathworld.wolfram.com/.
На французском языке
M. L. Wantzel. Recherches sur les moyens de reconnatre si un Problme de Gomtrie peut se rsoudre avec la rgle et le compass. Journal de Mathmatiques Pures et Appliques., 1 (2): 366–372, 1837.