Путеводитель для влюбленных в математику Шейнерман Эдвард

Мы просто решили поиграть и сами придумали правила. Хорошо, теперь давайте поразмышляем. Посмотрим, на что годно это число i. Мы знаем, что i i = –1. А как насчет i + i? Если следовать привычным арифметическим правилам, то получится другое мнимое число: 2i. А что, если возвести это число в квадрат? Попробуем!

(2i) = (2i) (2i) = 2 i 2 i = 2 2 i i = 4 (i i) = 4 (–1) = –4.

Другими словами, число 2i представляет собой квадратный корень из числа –4.

Теперь возведем в квадрат и посмотрим, что получится:

Таким образом, представляет собой квадратный корень из числа –2. Когда мы приютили мнимое число i в семье всех чисел, мы заполучили не просто а в придачу еще и квадратные корни из всех отрицательных действительных чисел! Любое число вида b i, где b – это действительное число, называют мнимым числом.

Если сложить два мнимых числа, например 2i и 4i, мы получим другое мнимое число: 6i. Если мы перемножим два мнимых числа, например 3i и –2i, то получим действительное число:

3i (–2i) = 3 (–2) i i = (–6) (–1) = 6.

Комплексные числа

Чтобы мнимые числа прижились в семье всех чисел, нужно научиться складывать, вычитать, умножать и делить мнимые и действительные числа вместе. Мы будем работать с множеством комплексных чисел. Это расширение множества действительных чисел, включающее все числа вида a + bi, где a и b – действительные числа, например 3 + 4i.

Само число i комплексное, потому что может быть представлено в виде 0 + 1i. Точно так же действительные числа могут быть представлены в виде –7 + 0i.

Складывать комплексные числа несложно, мы просто приводим подобные слагаемые:

(3 + 2i) + (4 – 3i) = (3 + 4) + (2 – 3) i = 7 – i.

Более педантично мы можем записать это так: 7 + (–1) i.

Вычитание ничуть не сложнее:

(3 + 2i) – (4 – 3i) = (3 – 4) + (2 – (–3)) i = –1 + 5i.

Очевидно, что сумма или разность двух комплексных чисел – тоже комплексное число. На языке алгебры мы можем продублировать эту фразу так (числа a, b, c, d здесь – действительные):

(a + bi) + (c + di) = (a + c) + (b + d) i;

(a + bi) – (c + di) = (a – c) + (b – d) i.

Умножение комплексных чисел дается несколько труднее. Попробуем перемножить наших друзей 3 + 2i и 4 – 3i:

(3 + 2i) (4 – 3i) = 3 (4 – 3i) + 2i (4 – 3i) = (3 4 – 3 3i) + (2i 4 – 2i 3i) = (12 – 9i) + (8i + 6) = 18 – i.

На алгебраическом языке произведение двух комплексных чисел выражает формула:

(a + bi) (c + di) = (ac – bd) + (ad + bc) i.

Очевидно, что при перемножении двух комплексных чисел мы получаем комплексное число.

Из всех арифметических операций деление комплексных чисел сложнее всего. Оно приводит нас к выражению (a + bi) / (c + di), поэтому сначала нам придется поговорить о взаимно обратных числах. Число x называют взаимно обратным числу y, если xy = 1. Например, дробь 1/2 взаимно обратна числу 2.

Какое комплексное число взаимно обратно 1 + 2i? Нам нужно такое число a + bi, что (1 + 2i) (a + bi) = 1. Докажем, что этому требованию удовлетворяет число

Общая формула для комплексного числа, обратного числу a + bi, выглядит следующим образом:

В этом легко убедиться: достаточно умножить (A) на a + bi, аккуратно произвести все необходимые арифметические действия – и получить в итоге единицу.

Заметим, что оба знаменателя в (A) равны a + b. Если вдруг эта сумма окажется равной нулю, формула потеряет смысл, потому что деление на ноль запрещено. Но такое возможно лишь в том случае, если a = 0 и b = 0. Другими словами, все комплексные числа имеют взаимно обратные, кроме числа 0 + 0i. Это подтверждает ожидания: ноль – единственное действительное число, не имеющее взаимно обратного, и среди комплексных чисел дело обстоит так же. Но обратное по отношению к любому ненулевому комплексному числу – тоже комплексное число.

Расправившись со взаимно обратными числами, мы можем наконец перейти к делению. Деление числа X на число Y дает такой же результат, как умножение числа X на число, взаимно обратное Y. Следовательно, частное двух комплексных чисел (если делитель не равен нулю) – комплексное число.

Отсюда можно сделать вывод: основные арифметические действия – сложение, вычитание, умножение и деление – прекрасно справляются с комплексными числами. Мы можем проделать эти операции над парой любых комплексных чисел (исключение составляет деление на ноль) и получить комплексное число.

Сейчас мы снова попытаемся извлечь квадратный корень. Сперва именно эта задача загнала нас в тупик. Действительные числа, так сказать, неполноценны: из каких-то квадратный корень извлекается, а из каких-то – нет. И вот мы дополняем действительные числа мнимыми, придумав новое число Мы заново осваиваем арифметические операции, и система действительных чисел разрастается до системы комплексных чисел[58]. Но как решить вопрос с квадратным корнем? Чему равен Нам что, опять нужно изобрести какое-то несуществующее число и создать монструозное множество «сверхкомплексных» чисел?

К счастью, множество комплексных чисел уже содержит все квадратные корни из комплексных чисел. Посмотрим, как извлечь корень из мнимой единицы, не создавая новых сущностей.

Нам нужно найти такое комплексное число a + bi, что (a + bi) = i. Начнем с перемножения (a + bi) и (a + bi):

(a + bi) (a + bi) = (a – b) + (2ab) i.

Теперь нам нужно приравнять это выражение к i = 0 + 1 i. В результате мы получим: a – b = 0 и 2ab = 1.

Первое условие тождественно тому, что a = b или a = –b.

Если a = b и 2ab = 1, то 2a = 1.

Таким образом,

Так как a = b, мы нашли два квадратных корня из мнимой единицы:

Проверьте, так ли это, возведя оба ответа в квадрат.

Если a = –b, решение будет таким же.

Итак, затратив некоторые усилия, мы показали, что извлечение квадратного корня из комплексного числа дает комплексное число, поэтому придумывать новые числа для извлечения корней не нужно.

Основная теорема алгебры

А как насчет кубических корней? Кубический корень из числа c – это такое число x, что x = c. Вопрос: входит ли множество корней из комплексных чисел во множество комплексных чисел или нам нужно изобретать еще какие-нибудь новые числа[59]?

Уравнение x = c может быть записано иначе: x – c = 0. Сформулируем вопрос в общем виде: всякое ли полиномиальное уравнение[60] имеет решение среди комплексных чисел? Скажем, есть ли такое комплексное число x, что

3x + (2 – i) x + (4 + i) x + x – 2i = 0?

Принципиально важный факт в теории комплексных чисел состоит в том, что любое полиномиальное уравнение имеет комплексное решение! Об этом говорит основная теорема алгебры. На математическом языке данный тезис можно переформулировать так: поле комплексных чисел[61] алгебраически замкнуто.

Вот как звучит это важнейшее утверждение в строгой форме.

Теорема (основная теорема алгебры). Пусть d – положительное целое число и c0, c1, c2, …, cd – комплексные числа, причем cd 0. Тогда существует такое комплексное число z, что

cdzd + cd – 1zd – 1 + … + c2z + c1z + c0 = 0.

Поле действительных чисел незамкнуто, потому что среди действительных чисел не всегда можно найти решение полиномиального уравнения с действительными коэффициентами (например, среди действительных чисел нет такого числа a, что a a + 1 = 0. Доказательство общей теоремы алгебры состоит в том, что решение приведенного выше полиномиального уравнение находят в общем виде.

Глава 6

Что такое ?

Число завораживает человечество на протяжении многих поколений. Оно проникло в массовую культуру (например, стало названием фильма[62] и маркой одеколона[63]). Школьники отмечают День и соревнуются, кто запомнит больше знаков числа после запятой[64].

Пи – шестнадцатая буква греческого алфавита. В математике ею обозначают отношение длины окружности к ее диаметру. Длина окружности в раз длиннее диаметра, или C = d. Можно записать иначе: C = 2r, где r – радиус окружности.

Площадь окружности можно вычислить по формуле S = r.

С помощью числа можно определить и площадь сферы – 4r, а также объем шара –

Эти геометрические формулы не сообщают нам величину числа . Начнем с того, что больше 3. Нарисуем круг с радиусом 1, впишем в него равносторонний шестиугольник, а затем поделим его на равносторонние треугольники.

Очевидно, что стороны всех треугольников равны 1. Периметр шестиугольника равен 6. Длина окружности несколько больше, чем периметр шестиугольника. Таким образом, 2 > 6, следовательно, > 3. На рисунке мы видим, что разница между периметрами двух фигур невелика. Значит, немногим больше 3.

Дальше мы можем поступить наоборот – описать правильный шестиугольник вокруг окружности радиусом 1. Вновь поделим шестиугольник на шесть равных треугольников. Длина любой стороны каждого треугольника будет равна (вы с легкостью поймете, почему это так, применив теорему Пифагора, о которой идет речь в главе 14; объяснение вы найдете в конце главы).

Таким образом, периметр большого шестиугльника равен Периметр окружности немного меньше. Следовательно,

Дальше мы можем снова и снова вписывать в окружность и описывать вокруг нее правильные многоугольники со все большим количеством сторон. Когда мы дойдем до правильного 100-угольника, точность наших вычислений значительно повысится:

3,1410759… < < 3,1426266…

В пределе, увеличивая число сторон вписанных и описанных правильных многоугольников до бесконечности, мы будем получать все более точное значение интересующего нас числа:

= 3,141592653589793238462643383279502884…

Так чему же в точности равно число ? В главе 4 мы уже выяснили, что число иррационально, то есть не может быть выражено через отношение двух целых чисел. Так же обстоит дело и с числом . Школьников часто просят запомнить, что но это лишь приблизительное значение[65].

Число не так-то просто представить в виде ряда, но вот пара попыток:

В обоих случаях необходимо вести счет до бесконечности, но это не в наших силах. Мы можем остановиться после некоторого количества шагов и найти приблизительное значение интересующего нас числа.

Ни та ни другая формула на практике не используются. Когда мы доведем расчеты по формуле (A) до получится, что 3,134. Когда мы доведем расчеты по формуле (B) до получится, что 3,13159.

Число можно вычислить быстрее и точнее с помощью гораздо более изощренных алгоритмов. Для науки и инженерного дела достаточно знать где-то 30 знаков после запятой. Исключительно ради забавы и спортивного интереса математики и программисты вычислили число с точностью больше триллиона знаков после запятой.

Трансцендентность

Числа и  – иррациональные, но мы можем сделать более сильное утверждение: число  – трансцендентно.

Рациональные числа выражаются через соотношение целых чисел; скажем, 5/2, – 2/3, 7/1. Иными словами, это решения уравнений вида ax + b = 0, где a и b – целые числа. Например, 5/2 – это решение уравнения 2x – 5 = 0.

Число не входит во множество рациональных чисел (см. главу 4) и не является решением линейного уравнения вида ax + b = 0, где a и b – целые числа. Зато оно является решением квадратного уравнения x – 2 = 0.

А что насчет ? Оно иррационально и, конечно, тоже не является решением линейного уравнения с коэффициентами среди целых чисел. Может быть, оно является решением какого-нибудь квадратного уравнения с коэффициентами среди целых чисел: ax + bx + c = 0? Придется вас разочаровать, это не так. А может, стоит повысить степень? Кубическое уравнение ax + bx + cx + d = 0? Снова нет. Биквадратное? Уравнение пятой степени? Сотой? Миллионной?..

На самом деле число не является решением полиномиального уравнения любой степени с целочисленными коэффициентами. Другими словами, нет такого уравнения

anx + an–1x–1 + … + a2x + a1x + a0 = 0

(где любое ak представляло бы собой целое число), куда можно было бы подставить вместо x, чтобы все сошлось. Это и означает, что число трансцендентное.

Взаимно простые числа

Странным образом число встречается в областях математики, не имеющих ничего общего ни с кругами в частности, ни с геометрией в целом. Например, число мистически входит в формулу Стирлинга для вычисления приблизительного значения факториалов (см. главу 10). А сейчас мы узнаем, как наше заветное число связано с важным свойством очередного вида целых чисел – взаимно простых.

Два положительных целых числа называют взаимно простыми, если их единственный общий делитель равен 1 (при этом по отдельности они могут быть и составными).

Например, присмотримся к числам 15 и 28. У них следующие делители:

Таким образом, 15 и 28 взаимно простые.

С другой стороны, числа 21 и 35 не взаимно простые, потому что оба делятся на 7.

Сыграем в кости? Какова вероятность того, что очки, выпавшие на обоих кубиках, будут взаимно простыми?

С равной вероятностью любой из них может выпасть гранью с цифрой 1, 2, 3, 4, 5 или 6. Каким бы ни был результат на первому кубике, второй выпадет по-своему независимо от него. Там тоже 6 вариантов. Всего это дает 36 комбинаций:

Все эти варианты равновероятны. С помощью таблицы мы можем вычислить, скажем, вероятность того, что сумма чисел на гранях двух кубиков будет равна 7. Это произойдет в шести случаях: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2) и (6, 1). Таким образом, вероятность такого события равна

Вернемся к нашему вопросу: какова вероятность того, что два числа, выпавшие на разных кубиках, – взаимно простые? Давайте нарисуем новую таблицу и поставим звездочку везде, где пары чисел взаимно простые, например 5 и 2 или 2 и 5, но не 4 и 6.

Мы видим, что нам подходит 23 варианта. Таким образом, вероятность равна

Теперь поиграем в двадцатигранные кости[66]! Какова вероятность того, что они выпадут гранями со взаимно простыми числами? Нам придется построить таблицу побольше! В ней будет 20 строк, 20 столбцов и 400 клеток.

Если мы педантично пересчитаем все звездочки, то придем к выводу, что вероятность составляет

Поговорим про общий случай. Какова вероятность того, что два произвольных числа от 1 до N – взаимно простые? Здесь нам уже понадобится компьютер. Рассмотрим все комбинации – (1, 1), (1, 2), (1, 3) и т. д. до (N, N) – и посчитаем, как много пар взаимно простых чисел нам повстречается. Всего придется перебрать N вариантов[67]. У нас получатся такие результаты:

Чем дальше мы уходим в бесконечность, тем ближе вероятность к 0,6079. И откуда же взялось это число? Чудесным образом предел нашего ряда оказался равен:

Число встречается не только в геометрии, оно вращается в разнообразных кругах!

Глава 7

e

Леонард Эйлер[68]

Когда твоим именем называют число, это ли не величайшая честь для математика? Швейцарец Леонард Эйлер жил в XVIII веке, и в главе 7 мы поговорим о числе Эйлера[69]. Его обозначают буквой e.

Число Эйлера можно задать разными способами[70], но стандартным считается следующий:

Этот ряд уходит в бесконечность. Восклицательными знаками обозначен факториал. Для положительного целого числа n факториал считают по такой формуле:

n! = n (n – 1) (n – 2) (n – 3) … 2 1.

Например, 4! = 4 3 2 1 = 24. Факториал нуля равен 1. Вы можете узнать о факториале больше в главе 10.

Достаточно сделать всего несколько шагов по приведенному выше алгоритму, чтобы вычислить e/em> c хорошей точностью. Когда мы дойдем до 1/10! сумма будет равна

Это довольно близко к более точному значению 2,718281828459045…

Число Эйлера повсеместно встречается в разных областях математики. Далее я покажу вам три совершенно разные задачи, для решения которых нужно e.

«Прибыльное» число

Банк выдает депозитный сертификат на десять лет. Когда этот срок истекает, вклад удваивается. Если ваш вклад составляет 1000 долларов, через десять лет вы получите 2000 долларов. Рост ваших инвестиций составляет 100 %. Не исключено, что для банка выгоднее выплачивать 10 % ежегодно, а не 100 % спустя десять лет.

Банк может выдать еще более привлекательный сертификат, позволяющий вам получать прибыль ежегодно и снова класть ее на депозит. Посмотрим, как это отразится на ваших финансах.

Начнем с 1000 долларов. В конце года вы получите 100 долларов. Теперь у вас 1100 долларов. На следующий год ваша прибыль возрастет. Банк выдаст вам уже не 100 долларов, а 10 % от 1100, то есть 110 долларов. Теперь у вас 1210 долларов. На третий год банк выдаст 10 % от этой суммы. Посмотрим, какую прибыль вы будете получать год от года и насколько станет увеличиваться ваш вклад:

Вначале у вас было A долларов. В первый год прибыль составила 10 %. В конце года вы получили 1,1 A. На второй год 1,1 1,1 A. Несложно увидеть, что в конце десятого года у вас на руках окажется

Это близко к нашим недавним расчетам[71]. Таким образом, новый депозитный сертификат оказывается существенно выгоднее – денег становится больше не в 2, а почти в 2,6 раза.

А что произойдет, если банк начнет выдавать прибыль раз в три месяца, а не ежегодно? Если за год выручка составляет 10 %, то за три месяца набегает 2,5 %. В первом квартале ваша доход составит 0,025 1000 = 25 долларов. Общая сумма будет равна 1,025 1000 = 1025 долларов. В конце второго квартала вы получите уже 0,025 1,025 = 25,63 доллара (если округлить до сотых). Теперь у вас 1,025 1025 = 1050,63 доллара.

Спустя N кварталов ваша 1000 долларов увеличивается следующим образом:

Подставим N = 40 (поскольку в 10 годах 40 раз по 3 месяца) и увидим, что депозитный сертификат принес 2685,06 доллара.

В первом случае деньги удвоились. Во втором сумма выросла в 2,59 раза. В третьем – в 2,69 раза. А что произойдет, если требовать прибыль ежемесячно, сохраняя условие, что деньги можно тут же снова класть на счет? А еще лучше – ежедневно?

В случае ежемесячных выплат вы станете получать 10/12 %. Если в начале месяца у вас на руках была сумма A, в конце месяца[72] она вырастет:

Спустя N месяцев вы получите:

Если N = 120, ваша итоговая сумма составит 2707,04 доллара.

Число дней в високосном году больше, чем в обычном, но для упрощения вычислений давайте примем за данность, что длительность каждого года 365 дней. За день вы будете получать Спустя N дней общая сумма составит:

Если N = 3650, вы будете обладать суммой в 2717,91 доллара.

А что, если вам и этого мало? Что, если вы потребуете от банка платить вам ежечасно?.. ежеминутно?.. ежесекундно?

В году 31 556 926 секунд[73], так что спустя 10 лет у вас будет:

Это дает 2718,28 доллара.

Подытожим:

А зачем останавливаться на секундах? Пусть банк выплачивает вам деньги каждую миллисекунду или наносекунду. Впрочем, это не изменит общей суммы. Вы все равно получите те же 2718,28 доллара, потому что вынуждены округлять до центов.

В пределе вы достигнете непрерывных выплат. Если посчитать всю сумму в точности, банк должен будет отдать вам 1000 e долларов!

Непрерывные выплаты – пример экспоненциального роста. Пусть A – начальное число (денег, микробов и т. д.). Оно вырастает со скоростью r на протяжении периода времени t. Если новое число вырастает с той же скоростью и этот рост непрерывный, то в конце мы получим:

Aert,

где e – знакомое нам число Эйлера. В нашем примере A = 1000 (первоначальный вклад), r = 0,1 (процентная ставка), t = 10 (количество лет). В конце мы имеем 2718,28 доллара.

Процесс может быть и обратным, когда нечто непрерывно убывает[74]. Тогда в конце мы получим Aert.

Переполох со шляпами

В одном городе был театр. Его посетители на время представления сдавали шляпы в гардероб, а потом забирали обратно.

Однажды гардеробщик – то ли он выпил лишнего, то ли просто свихнулся – стал выдавать шляпы не по номеркам, а в произвольном порядке. Вопрос: какова вероятность того, что никто не получит свою шляпу?

Сформулируем вопрос точнее. В театр пришло N зрителей. Они встают в очередь за шляпами. Сумасшедший гардеробщик выдает шляпы в произвольном порядке. Таким образом, шляпы могут быть выданы N! различными вариантами[75]. Все они равновероятны. Это математическая формулировка выражения «в произвольном порядке».

Разберем случай N = 4. Укажем в таблице все варианты выдачи шляп и пометим стрелочкой те случаи, когда ни один из зрителей не получает свою шляпу.

В 9 случаях из 24 никто не получает свою шляпу. Таким образом, при N = 4 интересующая нас вероятность равна

Для N = 5 существует 5! = 120 различных вариантов вернуть шляпы. Из них 44 нам подходят: ни один человек не получит свою шляпу. Таким образом, вероятность будет равна В таблице вы можете видеть, как меняется вероятность по мере возрастания N.

Вероятность меняется и дальше, но на ничтожно малую величину.

Хорошенько подумав, мы можем вывести формулу зависимости вероятности того, что никто из N зрителей не получит свою шляпу, от числа N:

Например, при N = 4

Это согласуется с нашими предыдущими выкладками.

В пределе, когда N стремится к бесконечности, вероятность того, что никто не получит свою шляпу, равна

Этот ряд уходит в бесконечность. Обратите внимание, что эта формула похожа на формулу (A) для подсчета числа e. Сумма ряда (B) равна Мы снова встретили наше заветное число!

Уже при N = 10 сумма ряда будет равна

Это достаточно близко к следующему значению:

Среднее расстояние между двумя простыми числами

В главе 1 я доказал, что простых чисел бесконечно много. Вы увидели, что среди небольших целых положительных чисел простые числа встречаются достаточно часто, но, когда мы уходим в бесконечность, простые числа начинают попадаться все реже. Мы можем с некоторой точностью установить, насколько редко встречаются простые числа, если попытаемся найти среднее расстояние между ними[76].

Какие простые числа можно найти между 1 и 20?

2, 3, 5, 7, 11, 13, 17, 19.

Промежутки (разности) между этими числами следующие:

1, 2, 2, 4, 2, 4, 2.

Следовательно, среднее расстояние между ними равно:

Теперь посчитаем, сколько простых чисел между 1 и 1000. Всего их168: начиная с 2, 3 и 5 и заканчивая 983, 991 и 997. Среднее расстояние между соседними простыми числами в этом случае составит:

Знаменатель равен 167, так как простых чисел 168, а промежутков между ними на 1 меньше. Числитель можно посчитать довольно просто. Обратите внимание, что число 3 встречается дважды с разными знаками. Та же история с числом 5. Разумеется, это верно для всех чисел, кроме первого и последнего[77]. Таким образом, нам достаточно вычесть 2 из 997. Получается, что среднее расстояние между простыми числами от 1 до 1000 равно

Это в два с лишним раза больше, чем в случае, когда мы брали числовой ряд от 1 до 20.

Введем обозначение agap(N) для среднего расстояния между простыми числами от 1 до N. Тогда наши предыдущие расчеты могут быть записаны в таком виде:

Вычислим среднее расстояние между простыми числами от 1 до N, когда N равно 100, 1000, 10 000 и так далее до 1 000 000 000. И округлим результат до тысячных:

Легко заметить: когда N становится больше в десять раз, agap(N) возрастает примерно на 2,3.

Мы можем проиллюстрировать эту закономерность на графике. Будем отмечать число N по оси абсцисс и agap(N) по оси ординат. Масштаб по оси ординат оставим обычным, а по оси абсцисс разница между делениями пусть постоянно возрастает в 10 раз (это называется логарифмическая шкала):

Обратите внимание: звездочки выстроились почти в прямую линию. Если присмотреться, левый нижний конец нашей кривой слегка загибается вверх.

Если бы звездочки на графике в точности выстроились в линию, мы получили бы следующую формулу, включающую число Эйлера:

N = ea + 1. (C)

Здесь а=agap(N) Скажем, если N = 1012, то agap(N) 26,59. Для выполнения (C) необходимо, чтобы a 26,63, и наш результат близок к этому числу.

Чудесная формула

Три главы были посвящены трем важным числам: , i, e. Хотите верьте, хотите нет, но все они встречаются в одной формуле (которую вывел Эйлер):

ei + 1 = 0.

Формула поражает невероятным изяществом и простотой, однако как можно возводить число в мнимую степень?!

Мы знаем, как возвести e в целую положительную степень. Например, e = e e e. Отрицательная степень – это произведение дробей: Дробные степени могут быть выражены через квадратные корни, кубические корни и т. д.: Можно посчитать даже такую жутковатую величину, как

Но ei не вписывается в эти стандарты. Нам нужен иной принцип[78].

Мы знаем, что e представляет собой сумму бесконечного ряда:

Для любого x значение ex будет:

Скажем, в случае x = –1 мы получим знакомый по казусу со шляпами ряд (B):

Чтобы узнать, чему равно ei, подставим i вместо x:

Чему равны числители дробей в этой сумме?

(i) = (i) (i) = i = – .

(i) = i i i = –1 i = –i.

(i) = i = .

(i) = –i.

(i) = –.

(i) = –i.

(i) = .

Элементы ряда поочередно оказываются то действительными, то мнимыми. Сгруппируем эти две категории элементов:

Оказывается, что выражение между первыми двумя скобками представляет собой в точности cos(), то есть –1, а выражение между вторыми скобками равно sin(), то есть 0. Таким образом,

ei = cos() + i sin() = –1 + 0i = –1.

Теперь мы понимаем, как возникла чудесная формула Эйлера.

Глава 8

«В бесконечность и дальше!» – таков был лозунг Базза Лайтера, бесстрашного космического рейнджера из мультфильма «История игрушек». Эта фраза вызывает смех, ибо абсурдна: куда уж дальше бесконечности? Если что-то бесконечно велико, то может ли существовать что-то большее? Такие вопросы кажутся безумными, и математики до поры до времени предпочитали их не задавать. Но в конце XIX века Георг Кантор[79] набрался смелости и стал искать ответ[80]. Интуиция подсказывает, что нет ничего больше бесконечности.

Оказывается, здесь интуиция нас подводит.

Множества

В математике все сложное объяснимо через простое. Если быть достаточно скрупулезным, то комплексные числа можно определить с помощью действительных, действительные – с помощью рациональных, рациональные – с помощью целых и т. д. Все здание математики покоится на фундаментальной концепции множества.

Множество – это просто набор объектов. Например, {1, 2, 5} – множество, состоящее из трех чисел[81]. Оно совпадает с множеством {1, 5, 2}, потому что порядок чисел в данном случае не важен. Кроме того, объект либо входит, либо не входит во множество. Входить во множество два раза нельзя. Множество {1, 1, 2, 5} совпадает с множеством {1, 2, 5}, второе появление числа 1 избыточно.

Если элемент входит в некоторое множество, математики используют значок . Например, выражение 2 {1, 2, 5} следует понимать так: «Число 2 входит во множество, состоящие из чисел 1, 2, 5». Перечеркнутый значок показывает, что элемент не входит во множество; например: 3 {1, 2, 5}.

Число элементов, входящих во множество A, мы обозначаем |A|. Например, |{1, 2, 5}| = 3. Число |A| называют мощностью множества A.

Мощность такого рода множеств, как {1, 2, 5}, конечна. Однако мощность множества (все целые числа) бесконечна, как и мощность множества (все действительные числа).

Как сравнить размеры двух множеств? Простейший способ – пересчитать их элементы. Например, и у множества {1, 2, 5}, и у множества {3, 8, 11} мощность равна 3, стало быть, они равновелики.

Другой способ установить, что мощность множеств совпадает, – построить взаимно однозначное соответствие между их элементами[82]. Иными словами, нам не обязательно перебирать все элементы, достаточно ввести правило, по которому мы сопоставляем элемент из одного множества с каким-либо элементом из второго. Вот взаимно однозначное соответствие между множествами {1, 2, 5} и {3, 8, 11}:

1  3,

2 8,

5 11.

Впрочем, когда элементов мало, поиски взаимно однозначного соответствия обременительны и не приносят большой пользы.

Разберем более запутанный пример. Представьте себе, что в некоторый клуб входит семь человек (для удобства будем называть их по номерам: 1, 2, 3, …, 7).

Клубу разрешили послать трех членов на ежегодную национальную конференцию. Есть много способов выбрать трех человек из семи. Пусть A – множество всех возможных групп по три человека:

A = {123, 124, 125, …, 567}.

Здесь мы под «123» подразумеваем, что на конференцию поедут члены клуба под номерами 1, 2 и 3.

На следующий го членов клуба оповещают, что они могут отправить на конференцию четырех человек. Пусть B – множество всех групп по четыре человека:

B = {1234, 1235, 1236, …, 4567}.

Итак, A – множество групп по три человека, B – множество групп по четыре человека.

Совпадают ли их мощности?

Если внимательно пересчитать все элементы, выяснится, что мощности этих множеств совпадают. Но выписывать все возможности одну за одной – нудная и не застрахованная от ошибок работа[83].

Страницы: «« 12345678 »»

Читать бесплатно другие книги:

Долгожданное продолжение культового романа «Имя ветра»! Юный Квоут делает первые шаги на тропе героя...
Успешная и эффективная работа в ресторанном бизнесе зависит от множества показателей. Опыт работы ав...
Пыль. Книга вторая. Продолжение истории о Городе. К чему приведет обработка горожан Пылью? Почему лю...
Многие начинающие фотографы считают, что съемка окружающего мира проще всего. Весь необходимый матер...
Революционная книга, которая еще до публикации получила десятки тысяч приверженцев. Автор описывает ...
«15 минут, чтобы похудеть!» – самый ожидаемый дебютный 30-дневный фитнес-план от Зузки, который гара...