Путеводитель для влюбленных в математику Шейнерман Эдвард

С помощью великолепной формулы Эйлера и незамысловатых алгебраических выкладок мы доказали, что не существует других правильных многогранников, кроме пяти платоновых тел!

Архимедовы тела

Грани правильного многогранника должны быть одинаковыми правильными многоугольниками, но если мы ослабим это условие, обнаружится новая разновидность многогранников. Пусть грани будут по-прежнему правильными многоугольниками, но не обязательно одинакового типа. Вместо этого введем условие симметрии: многогранник должен выглядеть одинаково, какую вершину ни возьми. Будем называть такие многогранники полуправильными.

Например, мы можем изготовить призму из двух равносторонних треугольников и четырех квадратов. Вершины призмы ничем не отличаются друг от друга: в каждой сходятся два квадрата и один треугольник.

Мы можем изготовить и другие призмы. Например, соединить два правильных пятиугольника, лежащих в параллельных плоскостях, четырьмя квадратами.

Таким образом, семейство полуправильных многогранников оказывается бесконечно большим.

Есть и другое бесконечное семейство. Возьмем два правилных n-угольника (например, два пятиугольника), лежащих в параллельных плоскостях, но слегка повернутых друг относительно друга. Соединим их вершины зигзагом и получим хоровод треугольников. Если мы правильно рассчитаем расстояние между двумя основаниями, треугольники будут равносторонними. Многогранники, построенные таким образом, называют антипризмами.

Одно из платоновых тел – призма, еще одно – антипризма. Догадываетесь, какие именно? Ответ будет в конце главы.

Призмы, антипризмы и платоновы тела – не единственные полуправильные многогранники. Ко всему прочему есть тринадцать архимедовых тел[176]. Вы легко найдете в интернете, как все они выглядят; сейчас же мы поговорим всего лишь об одном из них.

Если срезать угол икосаэдра, сечение будет иметь форму правильного пятиугольника, потому что в каждой вершине встречаются пять треугольников. Если мы срежем все 12 углов, 20 треугольных граней превратятся в шестиугольники. Если делать срезы аккуратно, стороны шестиугольников окажутся равны между собой. В итоге мы получим усеченный икосаэдр. Если мы сошьем из кожи усеченный икосаэдр, раскрасим шестиугольники белым, а пятиугольники черным и закачаем внутрь воздух, то получится футбольный мяч!

Глава 17

Фракталы

Фигуры, о которых нам рассказывали на уроках геометрии в школе, просты и понятны. Их границы четко очерчены. Все отрезки прямые, а окружности ровные. Из космоса Земля похожа на гладкую-прегладкую жемчужину, но вблизи все оказывается несколько сложнее. Крутые горные вершины возвышаются над волнистыми песчаными дюнами и бушующим океаном. Реки извиваются, леса заполнены ветвистыми деревьями. Если мы закажем художнику изобразить поверхность Земли с помощью прямых линий и дуг окружности, получится дичайший абстракционизм.

Геометрические фигуры, порожденные природой, имеют неровные границы, плохо выражаемые с помощью уравнений. Какова форма облака или пламени костра? «Начала» Евклида становятся бесполезны. Совершенно иные фигуры наполняют наш смутный изменчивый мир.

Треугольник Серпинского[177]

Начнем с рецепта.

Нам понадобится кусок теста и несколько чрезвычайно острых ножей. Кроме того, придется нанять побольше поваров.

Аккуратно вырежем из теста равносторонний треугольник.

Шеф-повар должен безошибочно вырезать (и выбросить) треугольник, вершины которого лежат в серединах сторон большого треугольника. Процесс изображен на рисунке.

Остаются три равносторонних треугольника. Они соприкасаются вершинами. Их площади в четыре раза меньше сторон большого треугольника.

Дальше шеф-повар вызывает трех помощников и велит им проделать такую же процедуру с треугольниками поменьше. Получится девять треугольников в 16 раз меньше большого.

Разумеется, помощники шеф-повара сами метят в шеф-повара. Каждый вызывает трех своих помощников и просит их проделать эту процедуру с маленькими треугольниками.

Процесс продолжается и продолжается. Каждый, кто участвует в нем, вызывает трех своих помощников и велит рассечь треугольники по тому же принципу. И вот что получается:

Бессчетные подручные орудуют ножами[178]. Их становится все больше и больше, их число стремится к бесконечности. В конце концов – когда бы ни наступил этот конец – мы получим треугольник Серпинского[179].

Треугольник Серпинского, как и всякий фрактал, обладает двумя особенностями: он самоподобен и имеет дробную размерность.

Легко понять, что такое самоподобие. Треугольник Серпинского состоит из трех маленьких копий самого себя, а каждая из этих копий состоит из трех других копий. Когда вы вооружитесь мощнейшим микроскопом, обнаружится, что мельчайшие треугольники собраны из собственных копий. Все составные части подобны друг другу.

Но что такое дробная размерность?

Между измерениями

Объекты в евклидовой геометрии можно рассортировать по количеству измерений.

Отрезки, дуги окружностей, границы квадратов и все такое прочее имеет одно измерение. У них есть длина, но нет толщины. Винтовая линия тоже одномерна, хотя закручивается в трехмерном пространстве.

Четырехугольники, пятиугольники, шестиугольники (на сей раз мы учитываем области внутри), круги и другие фигуры подобного рода имеют два измерения: у них есть площадь, но нет объема. Поверхность цилиндра имеет два измерения, хоти и не лежит на ровной плоскости.

Шары, кубы и другие фигуры того же класса имеют три измерения: у них есть объем.

А как насчет треугольника Серпинского? Мы начали с обычного равностороннего треугольника; видимо, у треугольника Серпинского два измерения. Но как узнать его площадь?

Для простоты будем считать, что площадь исходного треугольного куска теста равна 1 условной единице площади (например, одному квадратному сантиметру). Шеф-повар рассек треугольник на четыре одинаковых куска. Площадь выброшенного куска равна 1/4 изначальной площади; таким образом, на первом шаге площадь нашей фигуры равна 3/4 квадратного сантиметра.

Три помощника шеф-повара вырезали еще 1/4 площади, осталось 3/4 от 3/4 площади самого большого треугольника. Помощники помощников шеф-повара вырезали еще 1/4… Иными словами, на этапе n остается начальной площади.

После 16 этапов около 99 % площади исчезнет. Если устремить n к бесконечности, вся площадь уничтожится; останутся лишь границы треугольников, у которых нет никакой площади.

Получается, у треугольника Серпинского одно измерение? Если так, то попробуем вычислить его длину.

Начнем сразу с пустого треугольника. Дальше добавляются три отрезка, соединяющих середины сторон треугольника. Повторим эту процедуру с тремя треугольниками по краям, не трогая треугольник по центру. Мы будем множить треугольники снова и снова следующим образом:

Для удобства расчетов будем считать, что длина стороны большого треугольника равна 1 условной единице[180]. Таким образом, сумма длин его сторон составляет 3.

Новый треугольник внутри большого добавляет три отрезка, длина каждого равна 1/2. То есть на первом этапе общая длина возрастает на 3/2.

На втором этапе появляется еще девять отрезков (по три внутри каждого из трех треугольников по краям). Длина каждого маленького отрезка равна 1/4, и нам нужно прибавить к общей длине еще 9/4.

На третьем этапе возникают еще 27 отрезков (по три внутри девяти треугольников). Длина каждого равна 1/8, поэтому мы прибавляем 27/8 к итоговой длине.

Следующий этап прибавляет 81/16, и т. д. На этапе n мы прибавляем Чем больше n, тем больше общая длина.

Вывод: сумма длин всех отрезков, составляющих треугольник Серпинского, бесконечна!

Треугольник Серпинского имеет нулевую площадь и бесконечную длину. Неужели у этой фигуры больше одного измерения и меньше двух? Умозаключение кажется туманным, можно выразиться поточнее. Сейчас мы покажем, что треугольник Серпинского имеет измерение 1,5849625007… Честное слово!

Подсчитываем клеточки

Количество измерений геометрической фигуры характеризует ее «толщину». Объект с одним измерением (например, отрезок) «тоньше», чем область внутри треугольника, а она, в свою очередь, «тоньше», чем шар. Посмотрим, как выразить эту расплывчатую идею «толщины» и «тонкости» на строгом математическом языке.

Идея состоит в том, чтобы начертить фигуру на миллиметровке. Мы будем рисовать одну и ту же фигуру снова и снова на бумаге со все более и более мелкой сеткой.

Проиллюстрируем эту идею с помощью незамысловатой загогулины. Изобразим одну и ту же загогулину на бумаге, размеченной клеточками 1 1, затем 1/2 1/2, затем 1/4 1/4 и т. д. Вот результат:

Мы закрасили клеточки, затронутые нашей кривой. Посчитаем их количество:

Заметим, что при уменьшении стороны клеточки вдвое мы, грубо говоря, удваиваем количество клеточек, необходимых для покрытия кривой. Почему так? Каждая клеточка покрывает часть длины кривой. Когда мы уменьшаем длину клеточки в два раза, нам нужно где-то в два раза больше клеточек. Это соотношение можно выразить уравнением:

Здесь N – количество клеточек, затронутых кривой, а g – длина стороны одной клеточки. Символ означает «пропорционально» и подразумевает неточность соотношения. Если бы наша кривая была обычным отрезком прямой линии, мы бы вывели точное уравнение. Но стоит ненамного скрутить прямую линию, и соотношение становится несовершенным.

Продолжим подсчитывать клеточки, на сей раз затронутые двумерной фигурой – кругом[181] с радиусом 1.

Будем снова и снова вычерчивать наш круг на бумаге с клеточками 1 1, 1/2 1/2, 1/4 1/4 и т. д. Всякий раз мы станем закрашивать клеточки, затронутые кругом, то есть те, что расположены внутри круга, и те, которые пересекает окружность.

На бумаге, расчерченной 1 1, разместим центр круга на перекрестье клеточек; легко заметить, что он затрагивает ровно четыре клеточки. Изобразим развитие ситуации на следующих этапах:

На втором этапе круг затрагивает все 16 клеточек, затем все клеточки, кроме 4, то есть 60. Считать дальше скучно, поэтому доверим процесс компьютеру. Вот результат:

Сразу видно, что уменьшение стороны клеточки в 2 раза приводит к увеличению числа закрашенных клеточек примерно в 4 раза. Вот точные соотношения:

Грубо говоря, число закрашенных клеточек действительно возрастает в четыре раза. Но это приближение становится не таким грубым, когда число клеточек увеличивается. Почему?

Когда площадь клеточек мала, подавляющее большинство закрашенных клеточек лежит внутри круга. Кое-какие можно увидеть на периферии, но их ничтожно мало по сравнению с другими. Когда мы уменьшаем сторону клеточки вдвое, клеточек внутри круга становится больше в четыре раза, а вот количество клеточек на периферии увеличивается на меньшее число, потому что часть из них окружность не пересекает.

Рассуждая таким образом, мы поймем, что уменьшение стороны клеточки в 10 раз приводит к росту числа закрашенных клеточек примерно в 100 раз. Внутри круга клеточек становится ровно в 100 раз больше, но применительно к границе это утверждение не совсем верно.

Мы можем выразить соотношение между количеством клеточек, затронутых кругом, и длиной стороны клеточки следующим образом:

Вот еще один способ убедиться в том, что формула (B) верна. Площадь круга равна r. Если радиус круга равен 1, его площадь равна .

Нарисуем круг на бумаге с клеточками g g и посчитаем, сколько клеточек он затронул; обозначим их количество буквой N. Каждая клеточка имеет площадь g. Общая площадь закрашенных клеточек почти совпадает с площадью круга. Таким образом,

Ng.

Следовательно, В упрощенном виде это приводит к соотношению

Мы нашли способ подсчитывать длины одномерных фигур и площади двумерных.

Соотношение (A) верно не только для нашей загогулины, но и для любого одномерного объекта. Когда мы делаем сетку мельче в 10 раз, количество клеточек, затронутых линией, вырастает примерно в 10 раз.

Соотношение (B) тоже выполняется не только для круга, но и для любой двумерной фигуры. Делаем сетку мельче в 10 раз – и количество клеточек, затронутых кругом, увеличивается примерно в 100 раз, потому что внутри одной большой клеточки теперь располагается 100 маленьких.

Итак:[182]

Размерность треугольника Серпинского

Мы теперь умеем уверенно отличать одномерные объекты от двумерных. Вычерчиваем объект на миллиметровке, делаем сетку все более мелкой и на каждом этапе подсчитываем затронутые им клеточки. Если выполняется соотношение (A), объект одномерный; если соотношение (B), объект двумерный.

Посмотрим, что произойдет с треугольником Серпинского на клетчатой бумаге[183]. Уместим его в клеточку 1 1. На рисунке показано, что будет при уменьшении размера клеточек до 1/2, 1/4, 1/8 и 1/16:

В первом случае затронуты все 4 клеточки. Во втором случае не затронуты 2 клеточки слева сверху и 2 клеточки справа сверху, а всего клеточек 16 штук. Вот таблица целиком:

Вопрос: когда мы уменьшаем сторону клеточки вдвое, количество клеточек, затронутых нашей фигурой, увеличивается в два раза (случай одномерного объекта) или в четыре раза (случай двумерного объекта)?

Разумеется, вся соль в том, что ни один из двух вариантов не подходит. На новом этапе количество клеточек вырастает ровно в три раза[184]. Их число растет быстрее, чем в случае одномерных объектов, но медленнее, чем в случае двумерных. Таким образом, размерность треугольника Серпинского лежит между двумя целыми величинами.

Мы можем в точности вычислить размерность треугольника Серпинского, но это потребует базовых знаний о логарифмах и некоторых алгебраических выкладок. Если вам все это в тягость, можете спокойно пропустить следующие абзацы.

Итак, цель состоит в том, чтобы найти формулу вроде (A) или (B): Число d в ней и будет количеством измерений нашей фигуры.

Если сторона клеточки равна (где k – натуральное число), то Вот проверка:

Формула дает в точности те же числа, что и в предыдущей таблице.

Задача состоит в том, чтобы найти такое число d, что Прологарифмируем обе части[185]:

Мы знаем Подстановка в предыдущую формулу дает:

Наряду с треугольником Серпинского существует ковер Серпинского. Вот этапы его построения:

Устремляясь к бесконечности, мы получим такую картинку:

Как вы думаете, какова размерность этого фрактала? Ответ вы найдете в конце главы.

Серпинский и Паскаль

Студенты на факультетах математики до потери пульса разлагают на множители полиномы, в первую очередь степени x + y. Восстановим в памяти, о чем идет речь:

Мы можем расположить коэффициенты данных полиномов в таблице. Ее называют треугольником Паскаля:

Мы расположили эти числа по квадратам, а теперь давайте раскрасим некоторые из них черным цветом. Пусть квадраты с нечетными числами станут черными, а квадраты с четными останутся белыми:

Продолжим вплоть до 64 ряда. Как вы думаете, что получится?

Разве это не великолепно?

Снежинка Коха

Я хочу завершить главу, посвященную фракталам, рассказом о неотразимой фигуре, придуманной Хельге фон Кохом[186]. Алгоритм ее построения чрезвычайно прост. Мы начинаем с прямого отрезка, делим его на три части строим равносторонний треугольник на основе среднего из трех новых отрезков. Затем мы удаляем центральный отрезок. Теперь у нас есть четыре отрезка, каждый из которых в три раза меньше исходного. Мы повторяем процедуру с каждым из этих отрезков.

Чтобы получить снежинку целиком, начнем с равностороннего треугольника и проделаем описанную процедуру с каждой из его сторон. Это выглядит следующим образом:

Устремляясь к бесконечности, мы получим снежинку Коха.

Глава 18

Гиперболическая геометрия

Постулаты Евклида

Математики помешаны на определениях. Мы требуем, чтобы все концепции базировались на кристально ясных, недвусмысленных определениях. Потому любая математическая идея основана на более простых идеях. Треугольник состоит из отрезков. Рациональные числа – это отношения целых чисел.

Спускаясь с башни математических определений, рано или поздно мы дойдем до фундамента. Для греков в основании всего лежала геометрия[187].

Евклид не пытался дать определения базовым геометрическим объектам – точке, прямой линии, плоскости[188]. Он поступил иначе: принял за данность определенные фундаментальные свойства, которыми обладают эти объекты. Тезисы Евклида называют постулатами, или аксиомами.

Чтобы дать старт геометрии, Евклид сформулировал пять основных постулатов. В грубом переводе они звучат так:

1. Если даны две точки, есть одна и только одна прямая, проходящая через эти точки.

2. Если дан отрезок, его можно неограниченно продолжать по прямой.

3. Если дана точка и отрезок, есть одна и только одна окружность с центром в данной точке и радиусом, равным данному отрезку.

4. Любые два прямых угла[189] равны между собой.

5. Если две прямые пересекают данную прямую и внутренние углы, получившиеся при пересечении, вместе меньше двух прямых углов, эти две прямые рано или поздно пересекутся (см. рисунок).

Первые четыре постулата просты, их легко понять. Но пятый вносит некоторую неразбериху. Подумаем, о чем он говорит.

Обозначим исходную прямую L0, а две другие – L1 и L2. Прямые L0 и L1, а также L0 и L2 пересекаются под некоторыми углами.

Постулат требует от нас рассмотреть ситуацию, при которой внутренние углы (лежащие по одну сторону от L0) меньше прямых. Стрелочки на рисунке указывают на углы, которые имел в виду Евклид. Они лежат по одну сторону L0 и обращены друг к другу.

Переходим к сути постулата. Если эти два угла меньше прямых, L1 и L2 вынуждены пересечься. Точки пересечения нет на рисунке, но несложно видеть, что прямые действительно неминуемо встретятся.

Приняв эти пять постулатов за данность, Евклид перешел к доказательству сонма дивных теорем.

Пятый постулат Евклида кажется неуклюжим. Его неприглядность контрастирует с изяществом и простотой первых четырех постулатов. Математика основана не только на практике, но и на эстетике, поэтому формулировка Евклида взывает к редактуре.

Мы предлагаем вашему вниманию более простой вариант.

5'. Если дана прямая и точка, не лежащая на данной прямой, есть одна-единственная прямая, проходящая через данную точку и не пересекающая ее.

Эта альтернативная версия пятого постулата Евклида известна под названием постулат о параллельных прямых[190]. Посмотрим, что он означает.

Нам даны прямая L и точка P, не лежащая на ней. Посмотрите на рисунок. Постулат 5' утверждает, что существует другая прямая, проходящая через точку P и параллельная данной (обозначена пунктирной линией), причем одна-единственная.

Математики показали, что пятый постулат Евклида и постулат о параллельных прямых эквивалентны. Это означает, что теоремы, которые мы можем доказать на основе первых четырех постулатов и постулата 5, – те же самые, что можно доказать на основе первых четырех постулатов и постулата 5'.

Несмотря на то что формулировка 5' несколько проще, чем 5, все же она не настолько изящная и блестящая, как первые четыре. Можно ли избавиться от нее? Можно ли доказать постулат о параллельных прямых как теорему и не принимать в качестве фундаментального утверждения?

Постулат о параллельных прямых накладывает два условия: во-первых, существует прямая, проходящая через точку P и не пересекающая прямую L; во-вторых, все другие прямые, проходящие через эту точку, будут пересекать L.

Естественный способ справиться с проблемой – попробовать доказательство от противного. Мы обсуждали этот метод в главе 1. Вот его логика.

(A) Чтобы доказать существование прямой, проходящей через точку P и параллельной L, предположим, что такой прямой не существует.

(B) Чтобы доказать единственность этой прямой, предположим, что существуют две или больше прямых, проходящих через P и параллельных L.

Дальше мы выстраиваем цепочку умозаключений, пока не дойдем до противоречия. Оно свидетельствует о фундаментальной ошибочности утверждения (A) или (B) – смотря что мы предположили:

• Если предположение об отсутствии вышеописанной прямой приводит к противоречию, она существует.

• Если предположение о существовании нескольких вышеописанных прямых приводит к противоречию, такая прямая единственная.

Математики бились как проклятые – и потерпели поражение. Говоря точнее, результат казался диким (треугольник с суммой углов не 180°), но противоречия в нем не было.

Ничего страшного. Математики не тешат себя надеждой, что могут справиться с любой проблемой, встающей на их пути. Мы продолжаем работать как проклятые и передаем пас следующим поколениям, уповая, что у наших преемников возникнут идеи получше.

В случае постулата о параллельных прямых идеи получше возникли, но не такого рода, как можно было ожидать[191].

Что такое прямая?

Прямая представляет собой множество точек, как и окружность или треугольник. Это множество точек обладает определенными свойствами.

Интуитивно мы понимаем, что такое прямая: она тонкая (у нее нет толщины), ровная и бесконечно продолжается в обоих направлениях. Но такое описание – еще не математическое определение. Чем прямая линия отличается от кривой? Закрепить эту идею не так-то просто.

Как мы уже отмечали, у Евклида был собственный подход к определению базовых объектов, сегодня мы воспринимаем точки и прямые иначе. У нас есть объекты под названием «точки» и множества этих объектов под названием «прямые». Если оба рода объектов удовлетворяют постулатам Евклида, получается система под названием евклидова геометрия.

Если мы изменим утверждения Евклида о фундаментальных свойствах точек и прямых, мы получим геометрию иного типа. Рассмотрим простой пример. Для начала мы сохраним первый постулат Евклида, который гласит:

1. Если даны две точки, есть одна и только одна прямая, проходящая через эти точки.

А дальше включим новый постулат, переворачивающий роли прямых и точек:

1'. Если даны две прямые, есть одна и только одна точка, принадлежащая данным двум прямым[192].

Должным образом выбранные «точки» и «прямые» могут удовлетворить тому и другому условию. Пусть у нас есть семь точек. Назовем их незамысловатым образом: 1, 2, 3, 4, 5, 6 и 7. Кроме того, у нас есть семь прямых: {1, 2, 3}, {1, 5, 6}, {1, 4, 7}, {2, 5, 7}, {2, 4, 6}, {3, 4, 5} и {3, 6, 7}.

Эти «прямые» не имеют ничего общего с «прямыми» Евклида[193]. Каждая состоит всего из трех точек!

Мы легко удостоверимся, что в этой системе из семи точек и семи прямых верны оба постулата.

• Проверим постулат 1. Возьмем любые две точки, скажем 2 и 5. Они принадлежат прямой {2, 5, 7}, и нет другой прямой, содержащей эти две точки. Вы можете самостоятельно рассмотреть все пары среди семи точек и увидеть, что всегда есть прямая, и только одна, содержащая обе точки.

• Проверим постулат 1'. Выберем любые две прямые, например {1, 4, 7} и {3, 4, 5}. Обе содержат точку 4, и это единственная общая для них точка. Вы можете рассмотреть все пары среди семи прямых и увидеть, что они всегда имеют общую точку, причем всего одну.

Странно рассуждать о геометрии без чертежей. К счастью, можно изобразить данную систему с помощью диаграммы. Семь точек помечены кружочками, а прямые представляют собой отрезки (в большинстве случаев) и окружность (в случае прямой {2, 4, 6}).

Хитрость заключается в том, что мы подобрали некие объекты, назвали их «точками», а затем по определенному принципу сформировали множества этих объектов и назвали их «прямыми». Если все объекты удовлетворяют нашим постулатам, мы по праву можем называть их точками и прямыми, даже если они не имеют ничего общего с точками и прямыми в понимании Евклида.

Евклидовы точки и линии можно определить следующим образом. Точка – пара действительных чисел (x, y). Прямая – множество точек (x, y), удовлетворяющих уравнению ax + bx + c = 0, где числа a и b не равны нулю. С помощью этих определений (и соответствующих определений окружности и угла) можно доказать, что постулаты Евклида выполняются.

Если мы воспринимаем точки как пары чисел, а прямые как решения уравнений, то оказываемся на декартовой плоскости, названной в честь математика и философа Рене Декарта.

Вся плоскость внутри круга

Мы стали своевольничать с употреблением слов «точка» и «прямая». Мы можем назвать что угодно «точкой» и сгруппировать эти точки в множества под названием «прямые», если все они удовлетворяют надлежащим постулатам. Что значит надлежащим? Для Евклида несомненными утверждениями были те пять постулатов, которые мы привели в начале главы.

Я сейчас расскажу о новых определениях «точек» и «прямых», необходимых для создания гиперболической геометрии. В этой геометрии все точки лежат внутри одной окружности. Область внутри нее мы будем называть гиперболической плоскостью[194].

Прямые на гиперболической плоскости представляют собой дуги окружностей. Это обескураживает: как дуга может быть прямой? Разве дуга не кривая? Давайте говорить «гиперболическая прямая», отличать ее от негибкой тезки.

Вот два способа построения гиперболических прямых:

• Начертите окружность, пересекающую гиперболическую плоскость под двумя прямыми углами. Часть окружности внутри гиперболической плоскости представляет собой гиперболическую прямую.

• Проведите прямую через центр гиперболической плоскости. Часть прямой внутри гиперболической плоскости тоже представляет собой гиперболическую прямую.

На чертеже вы можете видеть три прямые на гиперболической плоскости.

Гиперболическая плоскость – это область внутри обозначенной точками окружности. Две гиперболические прямые – дуги пунктирных окружностей, еще одна гиперболическая прямая – диаметр окружности, обозначенной точками. Замечу, что конечные точки дуг и диаметра не относятся к соответствующим гиперболическим прямым. (Обозначенные пунктиром окружности не входят в гиперболическую плоскость, они просто показывают, по какому принципу мы вычерчиваем гиперболические прямые – это части окружностей, пересекающих обозначенную точками окружность под прямыми углами.)

На следующем чертеже вы видите три гиперболические прямые. Две из них пересекаются, а третья параллельна и той и другой! Такое совершенно невозможно на евклидовой плоскости.

Выводы

Здесь все не так, как мы привыкли. Многие геометрические «факты» на евклидовой плоскости не работают в случае гиперболической плоскости.

Для начала: все не так с треугольниками. На евклидовой плоскости сумма углов треугольника равна 180° (мы доказали это обстоятельство в главе 13, однако опирались на постулат о параллельных прямых). На гиперболической плоскости сумма углов треугольника меньше 180°.

На евклидовой плоскости площадь треугольника может быть настолько большой, насколько мы того хотим. На гиперболической плоскости максимальная площадь треугольника не может превышать некоторой величины, и есть простая формула для подсчета площади. Если сумма углов треугольника равна s, площадь треугольника равна K (180 – s), где K – определенное число[195]. В соответствии с этой формулой два разных треугольника с равными углами имеют равную площадь. В евклидовой геометрии это не так: скажем, треугольники с углами 35°, 60° и 80° имеют одну и ту же форму (другими словами, подобны), но не обязательно совпадают по размеру. На гиперболической плоскости два треугольника с углами 35°, 60° и 80° не просто совпадают по площади – они конгруэнтны!

Квадрат – это четырехугольник, в котором все углы равны 90°. Вот интересный факт о квадратах на гиперболической плоскости: их попросту не существует! На рисунке изображена фигура на гиперболической плоскости, у которой три угла равны 90°, а четвертый меньше 90°.

Почему прямоугольников здесь нет? Подумаем о четырехугольнике R на гиперболической плоскости. Рассечем его на две части по линии, соединяющей два противоположных угла. Получатся два треугольника. Сумма углов в каждом меньше 180°, поэтому сумма углов образованного ими четырехугольника меньше 360°. Следовательно, все четыре угла не могут быть равны 90°.

Можно замостить евклидову плоскость равносторонними треугольниками или шестиугольниками[196]. Однако нельзя замостить ее правильными пятиугольниками. Почему? Углы правильного пятиугольника равны 108°. Углы при общей вершине трех правильных пятиугольников дают в сумме 324°, что меньше полного угла. Остается зазор. Четыре правильных пятиугольника не могут иметь общую вершину, в противном случае углы при ней давали бы в сумме 432°, что превышает 360°.

В то же время углы правильного n-угольника на гиперболической плоскости зависят не только от n. Мы можем построить правильный пятиугольник, все углы которого равны 90° (посмотрите на иллюстрацию).

Углы при общей вершине четырех таких пятиугольников дают в сумме ровно 360°. Таким образом, ими можно замостить всю гиперболическую плоскость, как показано на рисунке.

Все пятиугольники на рисунке совпадают по размеру и по форме. Они выглядят все меньше и меньше, приближаясь к границе, но это всего лишь особенность изображения гиперболической плоскости. На самом деле все «паркетины» на иллюстрации абсолютно идентичны. Это правильные многоугольники с пятью углами по 90° каждый, и их можно плотно пригнать друг к другу[197].

Вот еще два примера замощения гиперболической плоскости для услаждения ваших глаз.

Часть III

Неопределенность

Глава 19

Нетранзитивные игральные кости[198]

Мир одержим выстраиваием рейтингов. Мы составляем рейтинги атлетов, спортивных команд, больниц, ресторанов, фильмов, поп-музыки, студентов, коллег, городов, работы, машин, и т. д., и т. д. Нам нравится знать «самое-самое» – то, что входит в «первую десятку».

Это все чепуха, забавная чепуха, но тем не менее. Среди прочего чепуха происходит от того, насколько субъективна методология оценки. Если определенный ресторан в вашем городе признан лучшим, это не обязательно ваш любимый ресторан. Ваши предпочтения могут отличаться от суждений ресторанных критиков, а их взгляды на один и тот же вопрос зачастую прямо противоположны.

Можно выбрать объективную систему оценивания и все равно получать ничтожные результаты: например, оценивать фильмы по сумме выручки от их проката – это объективно и поддается подсчету. Можно аргументировано доказать: чем лучше фильм, тем больше людей жаждут заплатить за то, чтобы увидеть его. Но бывает такое, что фильм, сорвавший кассу, навевает на вас скуку, а малобюджетный инди-фильм[199] западает в душу. Выручка от проката обычно говорит скорее о маркетинге, а не качестве картины.

Но, предположим, мы преодолели субъективность и достигли всеобщего соглашения относительно того, как сравнивать конкурентов. Попробуем выпарить идею ранжирования до ее математической сути. Улетучится ли тогда вся чепуха?

Две игральные кости

Сыграем в простую игру. Каждый бросит кубик, и у кого выпадет больше очков, тот выиграет. Если мы возьмем два обыкновенных кубика, где грани пронумерованы от одного до шести, то нет смысла говорить, что одна чем-то лучше другой. Они одинаковые.

Теперь сменим числа на гранях. Назовем наши игральные кости A и B.

Какая из них лучше, A или B? Какую вы предпочтете?

Для того чтобы ответить на этот вопрос, рассмотрим все вероятности: как могут выпасть игральные кости? Если игральная кость A выпала числом 2 вверх, то для сравнения есть шесть вариантов того, как может выпасть игральная кость B. Если выпало число 3, вариантов для сравнения опять-таки шесть. Таким образом, есть 6 + 6 + 6 + 6 + 6 + 6 = 6 6 = 36 возможностей, и все они равновероятны. Иногда побеждает обладатель игральной кости A, иногда – обладатель игральной кости B (все числа на гранях разные, поэтому нет варианта сыграть раунд вничью). Кто выигрывает чаще?

Составим схему, включающую все 36 возможных комбинаций, где отмечено, кто выигрывает в каждом отдельном случае, A или B.

Становится очевидно, что игральная кость B лучше. В борьбе один на один B одолевает A чаще, чем наоборот. На схеме видно, что A побеждает в 15 случаях из 36, в то время как B – в 21 случае из 36.

Профессиональные игроки скажут, что шансы на победу A равны 15 против 21, а шансы на победу B равны 21 против 15. Вероятность того, что выиграет A, равна 15/36 (или 42 %), вероятность того, что выиграет B, равна 21/36 (или 58 %).

Как ни назови это преимущество, но B явно лучше A.

Соперник

Добавим еще одну игральную кость. Внимание, появился новый соперник! Пусть на грани C нанесены числа, указанные на схеме.

C рьяно вызывает на бой B. Кости кидают, и побеждает та, где выпало наибольшее число. Какая из них лучше, B или C? Как и раньше, начертим схему и посмотрим, какая игральная кость имеет больше шансов на победу.

Мы видим, что C выигрывает гораздо чаще, чем B. Вероятность победы C равна 25/36 (около 69 %), в то время как B побеждает с вероятностью 11/36 (около 31 %).

В схватке один на один C лучше B, а B лучше A.

Значит, C лучше всех, верно?

Триумф неудачника

Казалось бы, среди трех игральных костей A слабее всех, а C сильнее всех. Что будет, если C сразится с A? Разумеется, C победит?

Начертим снова схему всех возможностей:

Посмотрите! A лучше C. Игральная кость A выигрывает с вероятностью 21/36 (около 58 %), а C – с вероятностью 15/36 (около 42 %).

Мы пришли к трем ошарашивающим выводам:

– B лучше A;

– C лучше B;

– A лучше C.

Ни одну из игральных костей нельзя назвать «лучшей», и ранжировать их бессмысленно.

Сколько еще рейтингов в нашей жизни лишены смысла?

Другие примеры

Вот еще несколько игральных костей для изучения; эту задачу придумал Брэдли Эфрон, профессор статистики в Стэнфорде.

Сравним четыре игральные кости. Проработайте варианты, когда № 1 противостоит № 2, № 2 противостоит № 3, № 3 противостоит № 4, и № 4 противостоит № 1. Какая игральная кость лучше в каждой схватке? Как вы их проранжируете?

Ответы – в конце главы.

Вы играете в покер? Говоря точнее, вы играете в техасский холдем[200]? Допустим, два человека играют в техасский холдем, и вы украдкой заглянули в их «карманные» карты. Пусть у первого на руках AK, а у второго 109. У кого выше вероятность выиграть? У первого игрока карты большего достоинства, зато у второго игрока больше шансов на стрит[201] и флэш[202].

Нам необходима дополнительная информация о пяти общих картах, лежащих рубашкой вниз. В колоде осталось 48 карт из 52. Нам придется перебрать все варианты, какими могут быть перетасованы эти карты, чтобы выяснить, какие пять карт окажутся на столе и кто из двух игроков победит (или же оба сыграют вничью). Есть около двух миллионов комбинаций по 5 карт из 48 карт[203]. Нам не под силу провести все расчеты самостоятельно, поэтому прибегнем к помощи компьютера. Забейте в поисковик словосочетание «покерный калькулятор», и вы найдете уйму сайтов, где можно провести необходимые вычисления.

С помощью покерного калькулятора мы выясним, что игрок с «карманными» картами AK побеждает с вероятностью 58,6 %, игрок с «карманными» картами 109 побеждает в 41 % случаев, а 0,4 % остается на ничью.

Вывод: лучше иметь «карманные» карты AK, чем 109.

Теперь ваша очередь. С помощью покерного калькулятора сравните шансы на выигрыш двух игроков со следующими наборами «карманных» карт:

– 109 и 22.

– 22 и AK.

Дальше попробуйте построить рейтинг трех наборов «карманных» карт: AK, 109 и 22. Глава подошла к концу, поэтому вы вот-вот узнаете ответ.

Глава 20

Вероятность в медицине

Объявлено медицинское тестирование, диагностирующее наличие или отсутствие некой редкой болезни. Это чрезвычайно надежный тест. Вы принимаете решение пройти его и с ужасом получаете положительный результат. Насколько стоит беспокоиться?

Перевести беспокойство на язык цифр непросто, но в подобных ситуациях нужно сосредоточиться, потому переформулируем вопрос: насколько велика вероятность, что вы действительно подхватили это редкое заболевание?

Страницы: «« 345678910 »»

Читать бесплатно другие книги:

Долгожданное продолжение культового романа «Имя ветра»! Юный Квоут делает первые шаги на тропе героя...
Успешная и эффективная работа в ресторанном бизнесе зависит от множества показателей. Опыт работы ав...
Пыль. Книга вторая. Продолжение истории о Городе. К чему приведет обработка горожан Пылью? Почему лю...
Многие начинающие фотографы считают, что съемка окружающего мира проще всего. Весь необходимый матер...
Революционная книга, которая еще до публикации получила десятки тысяч приверженцев. Автор описывает ...
«15 минут, чтобы похудеть!» – самый ожидаемый дебютный 30-дневный фитнес-план от Зузки, который гара...