Игра в имитацию Ходжес Эндрю
Как оказалось, его брат, Дональд Макфейл, был приглашенным инженером-исследователем в Кингз-Колледже.
Идея с электрическим умножителем провалилась, но Дональд Макфейл теперь приступил к совместному с ним проекту по разработке машины дзета-функций.
Алан не был одинок в своих мыслях о механизации вычислений в 1939 году. В условиях роста новых отраслей электрической промышленности возникало множество подобных идей и инициатив. Несколько проектов уже имелись в распоряжении в Соединенных Штатах. Одним из них был «дифференциальный анализатор», который изобрел американский инженер Вэнивар Буш на отделении электротехники Массачусетского технологического института в 1930 году. Его устройство могло решать дифференциальные уравнения с восемнадцатью независимыми переменными. Похожая машина была построена в Манчестерском университете британским физиком Дугласом Хартри из деталей детского конструктора «Меккано». Вскоре за ним в 1937 году был построен еще один дифференциальный анализатор в Математической Лаборатории Кембриджского университета.
Подобная машина не могла решить проблему дзета-функции. Дифференциальные анализаторы могли воссоздавать математическую систему единственного вида. Подобным образом машина дзета-функций Тьюринга будет определена решением только одной определенной задачи. Алан подал заявку на грант Королевского общества 24 марта, в ней он просил средства для изготовления устройства и в опросном листе написал:
Аппарат не будет требовать постоянных больших затрат. Его можно будет применить в целях выполнения схожих вычислений для более широкого диапазона t, а также он может быть использован для других исследований, связанных с дзета-функцией. Я не могу представить применений, которые бы не относились к дзета-функции.
В заявке Харди и Титчмарш указывались в качестве поручителей, и в итоге Алан получил необходимые сорок фунтов. Идея Алана состояла в том, что хотя машина не могла в точности произвести требуемое вычисление, она могла локализировать точки, в которых дзета-функция приобретает значение, близкое к нулю, и эти результаты уже можно было обрабатывать путем обычного вычисления. Алан подсчитал, что такое устройство уменьшит объем работы в пятьдесят раз.
Машина предсказания приливов использовала систему веревок и шкивов, чтобы создать модель математической проблемы суммирования серии волн. Длина веревки, обмотанной вокруг шкивов, отмерялась таким образом, чтобы дойти до нужной общей суммы. Они начали с такой же идеи для суммирования дзета-функций, но затем придумали другую модель. В представляемом ими устройстве вращение системы зубчатых колес будет воссоздавать требуемые тригонометрические функции. Операция сложения будет выполняться с помощью измерения не длины, а веса.
Дональд Макфейл выполнил детальный чертеж устройства с указанием даты 17 июля 1939 года. Но Алан не оставил его одного заниматься сборкой устройства. В его комнате летом 1939 года можно было с большой вероятностью увидеть раскиданные по полу зубчатые колеса, словно части одного большого пазла. Однажды комнату в таком состоянии увидел Кеннет Харрисон, который к тому времени уже стал членом совета колледжа. Алан попытался объяснить, что он пытается сделать, но потерпел неудачу. Ведь мало кому казалось очевидным, что движение этих зубчатых колес могло что-то сказать о закономерности распределения простых чисел в их бесконечном ряду. Алан начал с того, что самостоятельно нарезал зубчатые колеса, пронося заготовки в инженерно-конструкторский отдел в своем рюкзаке, и отказался от помощи, которую ему предложил аспирант. Чамперноун помог с шлифовкой готовых колес, которые хранились в чемодане в комнате Алана, что немало удивило Боба, когда в августе он приехал к Алану из своей школы в Хейле.
Удивление Кеннета Харрисона было вызвано тем, что из разговоров с Аланом он хорошо знал, что специалист в области чистой математики работает в мире символов, а вовсе не с предметами окружающего мира. Таким образом, сам факт существования машины казался противоречием. Особенно впечатляющим это казалось по причине того, что в Англии на тот момент не существовало традиции академического машиностроения высокого уровня в академической системе, как во Франции и Германии или (как в случае Вэнивара Буша) в Соединенных Штатах. Такая попытка вторжения в мир практических применений вполне могла стать предметом снисходительных шуток. Но лично для Алана Тьюринга машина являлась доказательством того, что некоторые вопросы не могли быть решены при помощи одной лишь математики. Он работал в пределах центральных проблем классической теории чисел и сделал значительный вклад в ее развитие, но этого было недостаточно. Машина Тьюринга и ординальные логики, формализующие мыслительные процессы, исследования вопросов Витгенштейна, электрический умножитель, а теперь еще и эта цепь зубчатых колес, — все это говорило о попытке установить связь между миром логических идей и материального мира. Это была не наука, не «прикладная математика», а что-то вроде прикладной логики, у которой еще не было собственного названия.
К тому моменту он смог пролезть еще немножко дальше в структуру Кембриджского университета, поскольку в июле факультет попросила его снова провести курс лекций по основаниям математике весной 1940 года, на этот раз за полную плату в размере пятидесяти фунтов. При обычных обстоятельствах он мог вскоре занять должность лектора в университете и получить возможность навсегда остаться в Кембридже в качестве одного специалистов в области логики, теории чисел и других областей чистой математики. Но теперь все его воодушевление двигалось в другом направлении.
Курс истории тоже был готов измениться. В марте произошла немецкая оккупация Чехословакии, и в ответ на пренебрежение Мюнхенских соглашений британское правительство пообещало Польше, что Англия и Франция являются гарантами независимости Польши, и обязалось защитить восточноевропейские границы. Эт скорее казалось попыткой отпугнуть Германию, чем помочь Польше, поскольку у Британии даже не было возможности оказать помощь своему новому союзнику.
Возможно, так же могло казаться, что и Польша ничем не может помочь Великобритании. Но это было не так. Польские секретные службы в 1938 году дали понять, что они владеют некоторой информацией о машине Энигма. Диллвин Нокс был отправлен на переговоры, но вернулся с пустыми руками и жалобами о том, что поляки глупы и не владеют никакой интересной информацией. Союз с Великобританией и Францией был пересмотрен, и 24 июля британские и французские представители посетили конференцию в Варшаве и на этот раз получили желаемое.
Месяц спустя все снова изменилось, и союз между Великобританией и Польшей все больше казался бесполезным. В отношении разведывательных служб год оказался неудачным для Великобритании. В Сент-Олбансе появилась новая беспроводная станция перехвата сообщений. И все же оставалась «отчаянная нехватка приемников для беспроводного перехвата информации», несмотря на все просьбы «Правительственной школы кодирования и шифровании» с 1932 года.
Когда все газеты уже вещали о Пакте Риббентропа-Молотова, Алан отправился из Кембриджа провести неделю с Фредом Клейтоном и мальчиками, катаясь на лодке у берегов Бошема. Мальчики, которые никогда раньше не управляли судном, сочли Алана и Фреда некомпетентными и однажды перевели стрелки на их часах, чтобы они вернулись обратно вовремя. Но Фреда больше беспокоила психологическая подоплека их отдыха. И Алан только поддразнивал его, высмеивая мысль, что после нескольких семестров в Россалле мальчик останется невинным в плане сексуального опыта.
В один из дней своего плавания они сошли на берег острова Хейлинг, чтобы взглянуть на выстроенные на аэродроме самолеты Королевских военно-воздушных сил. Но мальчиков не впечатлило увиденное. Наступил вечер, начался отлив, и лодка застряла в иле. Им пришлось оставить ее и пройти вброд на остров, чтобы отправиться обратно на автобусе. Их ноги покрывал толстый слой темного ила, и Карл заметил, что они похожи на солдат в высоких черных сапогах. Именно в Бошеме однажды Кнуд Великий показал своим советникам, что даже он бессилен перед приливами и отливами. Но кто мог подумать, что этот шаркающий, бесстыдный молодой человек, погрязший по уши в грязи, поможет Британии управлять волнами?
Поскольку в 1940 году он уже не будет читать свой курс лекций и никогда уже не вернется в безопасный мир чистой математики. Чертежи Дональда Макфейла никогда не будут претворены в жизнь, и зубчатые колеса так и останутся лежать в чемодане. Поскольку началось вращение других, более мощных колес — и не только Энигмы. Сдерживающий фактор не сработал, но Гитлер просчитался в ситуации с Великобританией, правительство сдержало свои обещания и с честью вступило в войну.
Все произошло так, как предсказывала пьеса «Назад к Мафусаилу» еще в 1920 году:
А теперь, когда на города и гавани нацелены чудовищные орудия, когда гигантские самолеты готовы в любую минуту взмыть к небу и забросать противника бомбами, каждая из которых сносит целую улицу, или пустить на него боевые газы, способные мгновенно умертвить бог знает сколько людей, — теперь мы ждем, что кто-нибудь из вас, господа, выйдет на трибуну и беспомощно объявит нам, таким же беспомощным, как он сам, что снова началась война.
И все же они не были такими беспомощными, какими могли казаться. Когда Алан уже вернулся в Кембридж и сидел в своей комнате вместе с Бобом, в 11 часов утра 3 сентября премьер-министр Чемберлен выступил по радио с речью. Его друг Морис Прайс вскоре приступит к серьезному изучению практической физики цепных реакций. Алан в свою очередь посвятит себя другому секретному проекту. Он ничем не сможет помочь Польше, но поможет Алану изменить этот мир настолько, как он и не мечтал даже в самых безумных своих фантазиях.
Глава 4
Летящий над всем
(Уолт Уитмен, «Листья травы»)
- Летящий над всем, через все,
- Через Природу, Время, Пространство,
- Словно корабль, плывущий вперед,
- В полете души — не только жизнь,
- Смерть, многие смерти я пою.
На следующий день, 4 сентября, Алан явился в Правительственную школу кодов и шифров, которую эвакуировали в августе в викторианское поместье Блетчли-Парк. Сам Блетчли представлял собой скучный застроенный кирпичными домами городской округ, затерянный среди кирпичных заводов Бакингемшира. Однако он находился в геометрическом центре интеллектуальной Англии, где главная железная дорога, ведущая из Лондона на север, пересекала ветку, соединяющую Оксфорд и Кембридж. Непосредственно на северо-запад от пересечения железных дорог, на небольшом холме, увенчанном древней церковью и нависающим над глиняным карьером в долине, и стоял Блетчли Парк.
По железной дороге в Бакингемшир было эвакуировано 17000 детей из Лондона, в результате население Блетчли увеличилось на двадцать пять процентов. «Тем немногим, кто вернулся (в Лондон)», — сказал один городской советник, «было бы просто негде остановиться, и они, возможно, оказались самыми умными, вернувшись в свои халабуды». В этих обстоятельствах прибытие нескольких отобранных для работы в Правительственной школе кодов и шифров джентльменов стало бы причиной небольшой суматохи, хотя говорили, что когда профессор Эдкок впервые прибыл на станцию, один маленький мальчик закричал: «Я прочту вашу тайнопись, мистер!», приведя его в сильнейшее замешательство. Позднее местные жители жаловались на бездельников в Блетчли-Парке, говорили также, что члена парламента пришлось попросить не ставить об этом вопрос в Парламенте. Прибывшие устроились с жильем — в сердце Бакингемшира было несколько небольших гостиниц. Алана разместили в отеле «Краун Инн» в Шенли Брук-Энд, крошечной деревушке в трех милях севернее Блетчли-Парка, куда он каждый день приезжал на велосипеде. Его хозяйка, миссис Рэмшоу, громко выражала свое недовольство тем, что молодой здоровый мужчина не выполняет свой долг. Иногда он помогал ей в баре.
Первые дни в Блетчли-Парке напоминали переехавшую на новое место профессорскую, обитатели которой из-за домашних неурядиц были вынуждены обедать с коллегами, однако изо всех сил старались не жаловаться. Главным был Кинг, из стариков — Нокс, Эдкок и Бёрч, более молодые Фрэнк Лукас и Патрик Уилкинсон, а также Алан. Вероятно, опыт кейнсианского Кембриджа был полезен для Алана. В частности, у него завязались отношения с Диллвином Ноксом, которого современники Алана не считали доброжелательным или доступным человеком. GC&CS никак не нельзя было считать крупной организацией. 3 сентября Деннисон написал в министерство финансов:
«Дорогой Уилсон,
Несколько дней назад мы были вынуждены привлечь несколько человек в ранге профессора из нашего чрезвычайного списка, которым министерство согласилось платить 600 фунтов в год. Я прилагаю список уже принятых на службу джентльменов с указанием дат их прибытия».
Алан был далеко не первый. К моменту его прибытия в Блетчли с семью другими на следующий день, там уже находились девять человек «в ранге профессора» из списка Деннисона. В течение следующего года туда прибыли еще более шестидесяти специалистов со стороны.
«Чрезвычайный набор позволил вчетверо увеличить численность криптоаналитиков Службы и почти удвоить общее количество криптоаналитиков». Однако лишь трое из этих первых новобранцев были выходцами из научной среды. Кроме Алана это были У.Г.Уэлчмен и Д. Джеффриз. Гордон Уэлчмен с 1929 г. преподавал математику в Кембридже и был на шесть лет старше Алана. Он специализировался на алгебраической геометрии, области математики, широко представленной в Кембридже в те времена, но никогда не привлекавшей Алана, поэтому их пути прежде не пересекались.
В отличие от Алана, Уэлчмен до начала войны не был связан с GC&CS и поэтому ему, как новичку, Нокс поручил анализировать немецкие позывные, используемые частоты и тому подобное. Как выяснилось, это была работа огромной важности, и Уэлчмен быстро поднял «анализ траффика» на новый уровень. Это позволило идентифицировать различные системы ключей «Энигмы». Важность этого открытия заставила GC&CS по-новому оценить проблему и возможности ее решения. Однако никто не мог расшифровать сами сообщения. Существовала лишь «малочисленная группа, которую возглавляли гражданские, и она сражалась с «Энигмой» в интересах всех трех Служб». Сначала в составе группы работали Нокс, Джеффриз, Питер Туинн и Алан. Они обосновались в бывшей конюшне поместья и развивали идеи, которыми поляки поделились незадолго до начала войны.
Шифровальное дело в те времена было лишено романтического ореола. В 1939 г. работа шифровальщика, хотя и требовала мастерства, была скучной и монотонной. Однако шифрование являлось неотъемлемым атрибутом радиосвязи. Последняя использовалась в войне в воздухе, в море и на земле, и радиосообщение для одного становилось доступно всем. Поэтому сообщения необходимо было делать неузнаваемыми. Их не просто делали «секретными» как у шпионов или контрабандистов. Засекречивалась вся система коммуникации. А это означало ошибки, ограничения и многочасовую работу над каждым сообщением. Однако другого выбора не было.
Шифры, применявшиеся в 1930-х годах, основывались не на большой математической сложности, а на простых идеях суммирования и замещения. Идею «суммирования» никак нельзя было назвать новой. Еще Юлий Цезарь скрывал свои послания от галлов, прибавляя число три к каждой букве, так что буква А становилась буквой D, буква В — буквой Е и т. д. Если выразить это точнее, то такой способ суммирования математики называли модулярным суммированием или суммированием без переноса, потому что оно означало, что буква Y становилась буквой В, буква Z становилась буквой С, как если бы буквы располагались по кругу.
Две тысячи лет спустя идею модулярного суммирования фиксированного числа вряд ли можно было бы считать адекватной. Однако ничего принципиально отличного от основной идеи придумано не было. Один важный тип шифров использовал идею «модулярного суммирования», но вместо фиксированного числа применялась изменяющаяся последовательность чисел, образующая ключ, который добавлялся к сообщению.
На практике слова сообщения сначала зашифровывались в числа с помощью стандартной книги шифров. Работа шифровальщика заключалась в том, чтобы взять этот «открытый текст», допустим
6728 5630 8923, взять ключ, допустим,
9620 6745 2397 и сформировать зашифрованный текст
5348 1375 0210 с помощью модулярного суммирования.
Чтобы это можно было как-то использовать, законный получатель должен был знать ключ, чтобы вычесть его и получить «открытый текст». Таким образом, должна была существовать система, с помощью которой отправитель и получатель заранее согласовывали ключ.
Одним из способов сделать это стал принцип «одноразовости». Это была одна из немногих рациональных идей, рожденных в области криптографии в 1930-х годах, она же являлась одной из самых простых. Принцип требовал, чтобы ключ был точно в два приема, одна копия передавалась отправителю, вторая — получателю сообщения. Аргумент в пользу безопасности данной системы заключался в том, что она работала абсолютно случайным образом, как при перетасовке карт или бросании костей, и вражескому криптоаналитику было не за что зацепиться.
Предположим, что зашифрованный текст выглядит как «5673», тогда дешифровщик может подумать, что открытый текст будет «6743», а ключ — «9930», или открытый текст будет «8442», а ключ — «7231». Однако проверить эту догадку будет невозможно, также нет причин предпочесть одну догадку другой. Аргумент в пользу системы базировался на полной бессистемности выбора ключа, который мог в равной степени состоять из всех возможных цифр, в противном случае криптоаналитик имел бы причину предпочесть одну догадку другой. И в самом деле, поиск системы в абсолютном хаосе — это работа как для криптоаналитика, так и для ученого.
По британской системе были изготовлены шифровальные блокноты для одноразового использования. Помимо случайного выбора ключа, ни одна из станиц не использовалась дважды, и к блокнотам не имели доступа посторонние, поэтому система была защищена от случайных ошибок и безопасна. Однако она была построена на создании колоссального количества ключей, равного по объему максимуму того, что мог потребовать канал связи. Предположительно, выполнение этой неблагодарной задачи было возложено на женщин из Строительной секции (Construction Section) GC&CS, которую с началом войны эвакуировали не в Блетчли, а в Мэнсфилд Колледж в Оксфорде. Что касается использования системы, то и оно не доставляло большого удовольствия. Малькольм Маггеридж, который работал в секретной службе, считал ее «трудоемкой работой, в которой я всегда был слаб. Во-первых, нужно было вычитать из групп чисел в телеграмме соответствующие группы из так называемого одноразового шифровального блокнота; затем смотреть в книге шифров, что означают получившиеся группы. Любая ошибка в вычитании или, что еще хуже, в вычтенных группах, и все можно выбрасывать. Я пахал до потери пульса, ужасно путался, и если надо было начитать все сначала….»
В качестве альтернативы можно было использовать систему шифрования, основанную на идее «замещения». В простейшем виде она применялась для головоломок-криптограмм, которые решали любители «Принстонской охоты за сокровищами». По этой системе одна буква алфавита заменялась другой по заранее определенному принципу, например:
так что слово TURING превращается в VNQOPA. Такой простой или «моноалфавитный» шифр можно было легко разгадать, проверив частоту использования букв, общих слов и т. Фактически проблема при решении таких головоломок возникала лишь тогда, когда составитель включал в нее необычные слова вроде XERXES (Ксеркс), чтобы затруднить разгадку. Такая система была слишком примитивной для использования в военных целях. Однако в 1939 г. использовались системы, которые были немногим сложнее. Сложность их заключалась в применении нескольких алфавитных замещений, используемых по принципу ротации или в соответствии с другими несложными схемами. Немногие существовавшие инструкции и учебники по криптологии были, в основном, посвящены таким «полиалфавитным» шифрам.
Немного более сложной была система, в которой шло замещение не отдельных букв, а 676 возможных пар букв. Одна британская шифровальная система тех лет была основана на этом принципе. Она сочетала использование этого принципа и книги шифров. Система использовалась британским Торговым флотом.
Сначала шифровальщик должен был закодировать сообщение кодом торгового флота, например:
Следующим шагом было дополнение до четного числа строк, поэтому шифровальщик добавлял слово, не несущее никакого смысла, например,
После этого сообщение нужно было зашифровать. Шифровальщик брал первую вертикальную пару букв, т. е. VC, и искал ее соответствие в таблице буквенных пар. В таблице значилась другая буквенная пара, например, ХХ. Подобным образом шифровальщик заменял все остальные пары букв сообщения.
Добавить здесь особо нечего, за исключением того, что, как и в системе шифрования «с суммированием», процесс был бесполезен в случае, если законный получатель не знал, какая таблица замещения используется. Если, скажем, предварить передачу информацией «Таблица номер 8», то это может позволить криптоаналитику противника собрать и систематизировать сообщения, зашифрованные с использованием той же самой таблицы, и попробовать взломать шифр. Поэтому здесь также использовались некоторые способы сокрытия информации. С таблицами печатался список последовательностей из восьми букв, например, «B M T V K Z M D». Шифровальщик выбирал одну из этих последовательностей и добавлял ее к началу сообщения. Получатель, имевший такой же список, мог видеть, какая таблица используется.
Этот простой пример показывает самый общий принцип. В практической криптографии (что отличает ее от составления отдельных головоломок) часть передаваемого сообщения обычно содержит не сам текст, а инструкции по дешифровке. Такие элементы передачи, которые скрыты в ней, называются индикаторами. В системе с одноразовыми шифровальными блокнотами могут применяться индикаторы, указывающие, какую страницу блокнота следует использовать. Фактически, если все «не разжевано» в полном объеме заранее, детально, если существует малейшая вероятность двусмысленности или ошибки, что в сообщение должен быть какой-нибудь индикатор.
Это, бесспорно, пришло на ум Алану, который, по меньшей мере, с 1936 года размышлял о «самом общем виде кода или шифра». Такая смесь инструкций и данных внутри одной передачи напоминала о его «универсальной машине», которая сначала расшифровывает «номер описания» в инструкцию, а затем применяет эту инструкцию к содержанию ленты-накопителя. На самом деле, любая шифровальная система может рассматриваться как «сложный механический процесс» или машина Тьюринга, используя не просто правила сложения и замещения, но и правила того, как найти, применить и передать сам метод шифрования. Хорошая криптография базируется на создании целого свода правил, а не того или иного сообщения. И серьезный криптоанализ предполагает работу по их раскрытию, воссозданию всего механического процесса, проделанного шифровальщиками, с помощью анализа всей массы сигналов.
Возможно, шифровальная система торгового флота и не являлась последним словом с точки зрения сложности, но хорошо функционировала на обычных суда и находилась почти на пределе возможностей ручного метода. Кто угодно мог мечтать о создании более безопасной системы, но если процедура шифрования становилась слишком длинной и сложной, это приводило только к дополнительным задержкам и ошибкам. Однако если использовались шифровальные машины, которые перенимали часть «механической работы» шифровальщика, то ситуация начинала выглядеть совсем по-другому.
В этом отношении Британия и Германия вели симметричную войну, используя очень похожие машины. Фактически каждая немецкая официальная радиопередача была зашифрована с помощью машины «Энигма». Британцы использовали машину «Тайпекс», правда, не настолько широко. Она применялась в сухопутных войсках и в большей части королевских ВВС. Министерство иностранных дел и Адмиралтейство сохранили собственные ручные шифровальные системы, основанные на книгах. «Энигма» и «Тайпекс» в равной степени позволили механизировать базовые операции замещения и суммирования таким образом, что появилась возможность начать практическое применение более сложных систем. Они не делали ничего сверх того, что можно было делать с помощью таблиц в книгах шифров, но дали возможность выполнять эту работу быстрее и точнее.
В существовании таких машин не было никакого секрета. О них знали все — по меньшей мере все, кто получил в качестве школьного подарка книгу Роуза Болла «Математические развлечения и опыты» (Mathematical Recreations and Essays) издания 1938 г. В исправленной главе, написанной криптоаналитиком вооруженных сил США Абрахамом Синковым, говорилось о старых металлических решетках, шифрах Плейфера и тому подобных вещах, а также упоминалось, что «относительно недавно были проведены серьезные исследования в области изобретения машин для автоматической шифровки и расшифровки сообщений. Большая их часть использует периодические полиалфавитные системы».
«Периодический» полиалфавитный шифр использует некую последовательность алфавитных замещений и затем повторяет ее.
«Новейшие машины приводятся в действие электричеством и во многих случаях период представляет собой огромное число… Эти машинные системы намного более быстры и точны, чем ручные методы. Они могут даже объединяться с печатными и передающими устройствами таким образом, что при шифровке сохраняется запись зашифрованного сообщения и идет его передача; при дешифровке секретное сообщение принимается и переводится, все автоматически. Что касается существующих криптоаналитических методов, то шифровальные системы, полученные из некоторых из этих машин, очень близки к практической неразрешимости».
В базовой машине «Энигма» также не было никаких секретов. Она была представлена на конгрессе Международного почтового союза в 1923 г., вскоре после изобретения. Ее покупали и использовали банки. В 1935 г. британцы создали «Тайпекс», внеся некоторые изменения в конструкцию «Энигмы». Немецкие криптологи, в свою очередь, несколькими годами ранее модифицировали ее несколько другим способом, получив машину, которая, сохранив название «Энигма», оказалась намного более эффективной по сравнению с коммерческим аналогом.
Все это не означало, что немецкая «Энигма», с которой теперь должен был бороться Алан Тьюринг, намного опережала свое время или даже лучшее из того, что могли предложить технологии конца 1930-х годов. Единственной особенностью «Энигмы», которая позволяла отнести ее к двадцатому или хотя бы к концу девятнадцатого столетия, было то, что она «приводилась в действие с помощью электричества». В ней использовались электрические провода, через которые автоматически осуществлялись серии алфавитных замещений. Однако «Энигма» буде использоваться в фиксированном положении только для шифрования одной буквы, после чего самый удаленный от середины ротор повернется на одну позицию, создав новые связи между входом и выходом. Это показано на рисунке.
Рисунок. Базовая «Энигма».
Для простоты мы представили на рисунке алфавит только из восьми букв, хотя на самом деле «Энигма» работала с обычным 26-буквенным алфавитом. На рисунке показано положение машины в конкретный момент ее работы. Линии обозначают провода, по которым течет ток. Простая система выключателей на входе работает таким образом, что при нажатии клавиши (например, В) ток течет по проводу (на рисунке показан жирной линией) и зажигает лампочку на панели дисплея (в данном случае — под буквой D). Для гипотетической восьмибуквенной «Энигмы» следующее положение будет выглядеть так:
Для 26-буквенной «Энигмы» роторы имели 26 26 26 = 17576 возможных положений. Они приводились в действие как в любом арифмометре, когда средний ротор поворачивался на одно деление, когда первый ротор совершал полный оборот, а крайний в направлении внутрь поворачивался на один шаг, когда средний ротор совершал полный оборот. «Рефлектор» же не двигался. На нем были закреплены провода, соединявшие выходы крайнего внутреннего ротора.
Таким образом, «Энигма» была полиалфавитой, с периодом, равным 17576. Однако это было не «огромное число». На самом деле, для нее требовалась книга размером с арифметические таблицы для всех записанных алфавитов. Этот механизм, в действительности, не был прыжком в новую степень сложности. Роуз Болл в книге, изданной в 1922 г., предупредил (эту книгу Алан изучал в школе):
«Часто рекомендуют использовать приборы, создающих шифры, которые меняются или могут меняться постоянно и автоматически… но следует принимать в расчет риск попадания таких приборов в руки посторонних. Поскольку в равной степени хорошие шифры можно создавать без помощи механических средств, я не думаю, что их применение можно рекомендовать».
Однако то, что создано с помощью машины, с легкостью может быть уничтожено с помощью машины. Вся сложность «Энигмы», какой бы совершенной машина ни была, становится бесполезной, как только она создает шифр, который может взломать противник, получивший в свое распоряжение копию машины. Она может создавать лишь иллюзию безопасности.
Конструкция «Энигмы» вовсе не была настолько продвинутой и не соответствовала данному Синковым описанию современных разработок. Работавший на ней шифровальщик по-прежнему выполнял нудную и занимающую много времени работу, отмечая, под какой буквой загорелась лампочка, и записывая ее на бумаге. Не существовало также автоматической печати и передачи сообщений. Их надо было передавать с помощью азбуки Морзе. Медлительную машину никак нельзя было считать оружием блицкрига, по технической сложности она не превосходила электрическую лампочку.
С точки зрения криптаналитика, тем не менее, физические затраты шифровальщика и физическая конструкция машины значения не имели. Значение имело логическое описание — точно также как в машине Тьюринга. Все самое важное в «Энигме» содержалось в ее «таблице», списке ее положений и того, что она делает в каждом положении. И с точки зрения логики действие «Энигмы», в любом данном конкретном положении имело очень специфическое свойство. Это была «симметричность», обусловленная «отражающей» природой машины. Для любой «Энигмы», в любом положении, истиной являлось то, что буква А при шифровке становится буквой Е, и затем в том же положении буква Е будет зашифрована как буква А. Алфавиты замещения, получающиеся из положения «Энигмы», всегда будут своппингами.
Для гипотетической 8-буквенной машины в положении, показанном на первом рисунке, замещение будет выглядеть так:
Для машины в положении, показанном на втором рисунке, замещение будет следующим:
Это можно записать в виде своппингов: как (AE) (BD) (CG) (FH) в первом случае и как (AE) (BF) (CG) (DH) во втором случае.
У этого свойства «Энигмы» было практическое преимущество. Оно заключалось в том, что операция дешифровки была идентична операции шифровки. (В терминологии теории групп шифр был самоинверсным). Получатель сообщения должен был лишь настроить машину точно таким же образом как отправитель, и загрузить зашифрованный текст. На выходе он получал расшифровку. Поэтому не было необходимости встраивать в машину режимы «шифровки» и «расшифровки», что делало ее работу менее подверженной ошибкам и путанице. Однако в этом же крылась и важнейшая уязвимость «Энигмы» — замещения всегда были именно особого вида, при этом буква не могла быть зашифрована самой собой.
Такова была базовая структура «Энигмы». Но машины, использовавшиеся в военных целях, были гораздо сложнее. Начать с того, что три ротора не были жестко зафиксированы и могли сниматься и располагаться в любом порядке. До конца 1938 г. в машине было только три ротора, которые можно было располагать шестью способами. В этом случае машина предлагала 6 17576 = 105456 различных буквенных замещений.
Очевидно, что роторы нужно было каким-то образом помечать снаружи, чтобы можно было идентифицировать разные положения. Однако это привносило еще одну сложность. На каждом роторе располагалось кольцо с 26 буквами, так что, когда кольцо фиксировалось в определенном положении, буква отмечала положение ротора. (На самом деле букву было видно через окно в верхней части машины). Однако положение кольца относительно системы электрических проводов менялось каждый день. Возможно, провода помечались числами от 1 до 26, а положение кольца — буквами от А до Z, появлявшимися в окне. Поэтому установка кольца определяла место, где оно должно было зафиксироваться на роторе. Например, буква G оказывалась на позиции 1, буква Н — на позиции 2 и т. д.
Установка кольца в определенное положение входила в обязанности шифровальщика. Он же использовал буквы на кольце для определения положения ротора. С точки зрения криптоаналитика это означало, что даже если было бы открыто объявлено, что ротор установлен в положение К, это не не позволило бы установить то, что в Блетчли-Парке назвали бы «core-position» — фактическое физическое положение провода. Его можно было вычислить, если бы было также известно положение кольца. Однако аналитик может знать относительное физическое положение провода; таким образом, положения К и М неизбежно будут соответствовать положениям core-positions, расположенным в двух позициях одна от другой. Поэтому было известно, что если К находится в положении 9, то М будет находиться в положении 11.
Однако более важной и сложной особенностью машины было подключение коммутационной панели. Это было самое отличие военной «Энигмы» от коммерческой, и оно очень нервировало британских аналитиков. Она обладала эффектом автоматически выполнять дополнительные своппинги, как перед входом в роторы, так и после выхода из них. Технически это выполнялось втыканием штепселей, укрепленных на концах каждого провода в панель с 26 отверстиями — как на телефонном коммутаторе. Для достижения необходимого эффекта требовались искусные электрические соединения и двужильные провода. До конца 1938 г. для немецких шифровальщиков-пользователей «Энигмы» считалось обычным делом иметь всего шесть или семь пар букв, соединенных подобным способом.
Таким образом, если роторы и рефлектор базовой машины были установлены так, что замещение выглядело как
а провода коммутационной панели были установлены так, что соединяли пары
то в результате нажатия клавиши А электрический ток тек по проводу к букве Р, затем через роторы к букве N, затем по проводу — к букве Q.
Из-за симметричного использования коммутационной панели перед и после прохождением тока через роторы сохранялись самоинверсный характер базовой «Энигмы» и свойство каждой буквы никогда не шифроваться самой в себя. Если буква А зашифровывалась в букву Q, и, следовательно, при том же положении машины буква Q зашифровывалась в букву А.
Поэтому коммутационная панель не оказала влияния на этот полезный — но опасный — аспект базовой «Энигмы». Однако она же очень сильно увеличила огромное количество позиций «Энигмы». Существовало 1 305 093 289 500 способов соединения семи пар букв на коммутационной панели, для каждого из 6 17576 позиций роторов.
По-видимому, немецкие власти поверили в то, что эти изменения коммерческого варианта «Энигмы» очень сильно приблизили ее к рубежу «практической неразрешимости (невозможности расшифровки)». И все же, когда Алан 4 сентября присоединился к команде Блетчли, он обнаружил, что там все гудит от открытий, сделанных польскими криптоаналитиками. Ощущения были свежими и новыми, потому что технические материалы прибыли в Лондон только 16 августа. А в них указывались методы, с помощью которых поляки в течение семи лет расшифровывали сообщения, зашифрованные «Энигмой».
Во-первых, и это было обязательное условие (sine qua non), поляки сумели выяснить наличие проводов, соединенных с тремя роторами. Знать, что немцы используют машину «Энигма» — это одно, но узнать о наличии специальных проводов — это совсем другое дело. Сделать это в мирном 1932 году было настоящим подвигом. Это произошло благодаря усилиям французских спецслужб, чьи шпионы в сентябре и октябре 1932 г. добыли копию инструкций по применению машины. Инструкцию они передали полякам и затем — британцам. Разница заключалась в том, что в польском департаменте работали трое энергичных математиков, которые смогли использовать полученные документы, чтобы узнать о проводах.
Гениальные наблюдения, остроумные предположения и использование элементарной теории групп позволили понять, что в машине используются провода, и понять структуру рефлектора. Поняв все это, польские математики догадались, каким образом буквы на клавиатуре связаны с механизмом шифровки. Они могли быть соединены в полном беспорядке, чтобы внести дополнительную сложность в конструкцию машины. Однако поляки догадались и позднее убедились в том, что конструкция «Энигмы» не предусматривает эту потенциальную свободу. Буквы соединялись с ротором в алфавитном порядке. В результате поляки создали логическую, но не физическую копию машины и получили возможность использовать это обстоятельство.
Другими словами, они смогли сделать эти наблюдения, только поняв очень специфический способ использования машины. Применяя этот метод, они продвинулись в направлении регулярной расшифровки материалов, зашифрованных с помощью «Энигмы». Они не сломали машину; они победили систему.
Базовый принцип использования «Энигмы» заключался в том, что ее роторы, кольца и коммутационная панель устанавливались определенным образом, затем осуществлялась шифровка сообщения, и после того, как это было сделано, роторы автоматически поворачивались на шаг. Однако для того, чтобы такая система связи функционировала, получатель должен был знать первоначальное положение машины. В этом заключалась фундаментальная пролема любой системы шифрования. Недостаточно было иметь саму машину, должен был также существовать согласованный и постоянный метод ее использования. Согласно методу, который применяли немцы, первоначальное положение машины частично определялось во время ее использования шифровальщиком. При этом неизбежно применялись индикаторы, и именно с помощью системы индикаторов полякам удалось добиться успеха.
Чтобы добиться точности работы, порядок расположения роторов фиксировали в письменной инструкции, то же относилось к коммутационной панели и установке колец. Задачей шифровальщика было выбрать оставшийся элемент — изначальную установку трех роторов. Это сводилось к выбору некоей тройки букв, например, «W H J». Самая простая система индикаторов просто передала бы «W H J» и включила бы это сочетание в зашифрованное сообщение. Однако на самом деле все было намного сложнее. Сочетание «W H J» само зашифровывалось в машине. Для этого в инструкции на день закладывались так называемые базовые настройки (ground settings). Они, как и порядок расположения роторов, коммуникационная панель и установки колец, были общими для всех операторов в сети. Предположим, что базовая настройка была «R T Y». Затем шифровальщик устанавливает свою «Энигму» с учетом определенного положения роторов, коммутационной панели и колец. Он поворачивает роторы, который считывают «R T Y». После этого он зашифровывает в два приема установку ротора по своему выбору. Иными словами, он зашифровывает «W H J W H J», получая, допустим сочетание «E R I O N M». Он передает сочетание «E R I O N M», затем возвращает роторы на «W H J», зашифровывает сообщение и передает его. Преимущество заключалось в том, что каждое сообщение после первых шести букв зашифровывалось на другой настройке. Слабость системы состояла в том, что в течение одного дня все операторы в сети использовали одно и то же положение машины для первых шести букв своих сообщений. Еще хуже было то, что эти шесть букв всегда представляли шифровку повторяющихся сочетаний из трех букв. Повторение этого элемента и сумели использовать польские криптоаналитики.
Их метод заключался в том, чтобы с помощью радиоперехватов ежедневно составлять список этих первоначальных последовательностей из шести букв. Они знали, что в списке содержится некая модель или система. Например, если первой буквой была А, а четвертой R, то в любом другом сообщении, где первой буквой является А, то четвертой снова будет R. Накопив достаточно сообщений, они сумели составить полную таблицу, предположим:
Первая буква: А B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Четвертая буква: R G Z L Y Q M J D X A O W V H N F B P C K I T S E U
Затем появятся еще две таблицы, в которых связываются вторая и пятая и третья и шестая буквы. Существовал целый ряд способов использования этой информации для выяснения положения «Энигмы» на тот момент, когда были отправлены все эти сочетания из шести букв. Но особенно важным считался метод, который реагировал на механическую работу шифровальщика, включая механизированную форму анализа.
Поляки написали несколько таблиц сочетаний букв в форме циклов. Запись цикла широко применялась в элементарной теории групп. Чтобы преобразовать приведенное выше специфическое сочетание букв в «циклическую» форму, аналитик начинал с буквы А и отмечал, что А связана с буквой R. В свою очередь, буква R была связана с В, В — с G, G — c M, M — c W, W — c T, T — c C, C — c Z, Z — c U, U — c K, и К — с А, таким образов получался полный «цикл»: (A R B G M W T C Z U K). Полное сочетание можно записать как произведение четырех циклов:
(A R B G M W T C Z U K) (D L O H J X S P N V I) (EY) (FQ)
Причина такой записи состояла в следующем: аналитики обратили внимание на то, что длины этих циклов (в нашем примере 11, 11, 2, 2) не зависели от коммутационной панели. Они зависели только от положения роторов, коммутационная панель влияла на то, какие буквы появлялись в циклах, но не на их количество. Это наблюдение продемонстрировало, что положения роторов оставляют довольно четкие характерные признаки в зашифрованном тексте, когда поток сообщений рассматривается как единое целое. Фактически они оставили лишь три характерных признака — длины циклов каждой из трех таблиц сочетаний букв.
Из этого следовало, что если у аналитиков был полный набор признаков длин циклов, трех для каждого положения ротора, то все, что им нужно было сделать для того, чтобы определить, какое положение ротора использовалось для первых шести букв — это просто перебрать весь набор. Проблема заключалась в том, что в каталоге было 6 17576 позиций роторов. Но они сделали это. Для облегчения работы польские математики разработали небольшую электрическую машину, в которой были установлены роторы «Энигмы», и которая автоматически формировала требуемые комбинации букв. На всю работу у поляков ушел год, результаты ее были занесены в картотеку. Но после этого детективная работа была фактически механизирована. Для определения комбинации длин циклов, которые соответствовали обмену шифрованными сообщениями за день, требовалось всего 20 минут поиска в картотеке. В результате аналитики идентифицировали позиции роторов, в которых те находились во время шифровки шести букв индикаторов. Имея эту информацию, аналитики могли вычислить все остальное и прочитать дневную шифропереписку.
Это был элегантный метод, но его недостаток заключался в том, что он полностью зависел от конкретной системы индикаторов. И это не могло продолжаться долго. Сначала у поляков перестала получаться расшифровка сообщений, зашифрованных «Энигмой», применяемой в германском военно-морском флоте, и «… с конца апреля 1937 г., когда немцы изменили военно-морские индикаторы, они (поляки) смогли прочитать только военно-морскую переписку за период с 30 апреля по 8 мая 1937 г., и ту лишь в ретроспективе. Более того, этот небольшой успех не оставил им никаких сомнений в том, что новая система индикаторов сделала «Энигму» намного более безопасной…»
Затем, 15 сентября 1938 г., в тот день, когда Чемберлен прилетел в Мюнхен, произошла более серьезная катастрофа. Немцы изменили все остальные свои системы. Изменения были незначительны, но это означало, что в течение одной ночи все занесенные в каталог длины циклов стали совершенно бесполезны.
В новой системе базовая настройка (ground settings) больше не устанавливалась заранее. Теперь она выбиралась шифровальщиком, который таким образом должен был передать ее получателю. Это делалось простейшим способом — она передавалась, как есть. То есть, если шифровальщик выбирал буквы A G H, то устанавливал роторы так, что они считывали A G H. Затем он мог выбрать другую настройку, например, T U I. Он зашифровывает T U I T U I, получая, допустим, R Y N F Y P. Затем он передает A G H R Y N F Y P как буквы-индикаторы, после чего следует само сообщение, зашифрованное с помощью роторов с базовой настройкой T U I.
Безопасность этого метода базировалась на том, что установки колец менялись день ото дня. Однако первые три буквы (A G H в нашем примере) могли раскрыть всю переписку. Соответственно, перед аналитиками стояла задача определить установки колец, которые были общими для всего потока шифрованных сообщений сети. Удивительно, но польские аналитики смогли решить задачу поиска новых отличительных признаков, которые позволяли определить установку кольца или, что эквивалентно, определить физическое положение провода (core-position), которое соответствовало отрыто объявленной установке ротора, например A G H в нашем примере.
Так же как в случае с более старым методом, поиски характерных признаков зависели от оценки всего потока сообщений в целом и в использовании элемента повторений в последних шести из девяти букв-индикаторов. Если общая базовая настройка отсутствует, то отсутствует и четкая связь между первой и четвертой, второй и пятой, третьей и шестой буквами, которую можно проанализировать. Но «остаток» этой идеи уцелел, подобно улыбке Чеширского кота. Иногда случалось так, что первая и чтвертая буквы фактически совпадали. Иногда совпадали вторая и пятая или третья и шестая буквы. Это явление было без всяких очевидных причин названо «мамой». Таким образом, если предположить, что сочетание T U I T U I было действительно зашифровано как R Y N F Y P, то повторяющаяся буква Y считалась «мамой». Этот факт дает небольшой кусочек информации о положении роторов, которое они занимали во время шифровки букв T U I T U I. Метод решения задачи зависел от поиска достаточного количества таких кусочков, сложив которые можно было бы разгадать всю головоломку.
Более точно можно было сказать, что core-position содержит букву-маму, если шифровка этой буквы оказывается одинаковой через те же самые три шага. Это было не очень редкое явление и имело место в среднем один раз в двадцати пяти. Некоторые core-position (около сорока процентов) имели свойство содержать как минимум одну букву-маму, а остальных их не было совсем. Свойство содержать или не содержать букву-маму не зависело от коммутационной панели, а ее идентификация, напротив, требовала ее учитывать.
Аналитики с легкостью определяли местоположение всех букв-мам в дневном потоке шифровок. Они не знали физическое положение проводов, которое приводило к их возникновению. Однако из открыто объявленных установок ротора, например, A G H, они узнавали относительное физическое положение проводов. Эта информация дала возможность определить систему появления букв-мам. Из-за того, что только около сорока процентов положений (core-positions) содержали буквы-мамы, существовала единственный способ, в котором система могла совпадать с их известным распределением. Таким образом, был определен новый характерный признак — система букв-мам.
Однако заранее составить каталог всех возможных систем, как поляки поступили применительно к длинам циклов, было невозможно. Поэтому нужно было найти другие, более сложные способы определения соответствия. Аналитики использовали листы с перфорациями. Это были простые таблицы всех физических положений проводов (core-positions), в которых вместо того, чтобы печатать «содержит букву-маму» или «не содержит букву-маму», пробивали или не пробивали отверстия. В принципе, поляки могли бы сначала изготовить одну огромную таблицу, и затем ежедневно изготавливать шаблон систем «букв-мам», отмеченных в потоке шифросообщений за данный день. Накладывая шаблон на таблицу, они, в конце концов, находили бы позицию, где отверстия совпадали. Однако такой метод был бы слишком неэффективен. Вместо этого они выбрали метод накладывания кусков таблицы физических положений один на другой, чередуя их в порядке, соответствующем найденным относительным положениям материнских букв. В итоге совпадение схем наблюдалось там, где свет проходил сквозь все листы. Преимущество метода чередования заключалось в одновременной проверке 676 вариантов. Это была по-прежнему длительная работа, требовавшая проведения 6 26 операций для полного исследования. Требовалось также изготовить перфорированные листы, регистрировавшие 6 17576 положений проводов. Но аналитики выполнили эту работу в течение нескольких месяцев.
И это был не единственный метод, который они разработали. Система перфорированного листа требовала знания местоположения десяти материнских букв в потоке сообщений. Вторая система требовала знания местоположения лишь трех материнских букв, но использовала не только факт существования такой буквы, но и конкретную букву, которая оказывалась материнской в зашифрованном тексте. Важной особенностью найденного метода было то, что эти конкретные буквы должны были быть среди тех букв, на которые не оказывала влияния коммутационная панель. С тех пор как в 1938 г. в коммутационной панели использовались только шесть или семь пар букв, это требование стало не слишком обязательным.
В принципе, метод заключался в сопоставлении обнаруженной системы трех конкретных материнских букв со свойствами положениями провода. Однако было невозможно каталогизировать заранее все материнские буквы в 6 17576 положениях, а затем провести поиск, даже с помощью чередующихся листов. В этом случае возникало слишком много возможных вариантов. Вместо этого польские математики пошли на радикально новый шаг. Они решили перебирать позиции роторов каждый раз заново, не делая каталоги заранее. Но это должен был делать не человек. Работа должна была выполняться машинами. К ноябрю 1938 г. они построили такие машины — фактически их было шесть, по одной на каждый возможный способ расположения роторов. Во время работы машины громко тикали, поэтому их назвали «Бомбами».
В «Бомбах» использовалась электрическая схема «Энигмы». В ней применялся электрический метод распознавания обнаруженных «совпадений». Сам факт того, что «Энигма» была машиной, позволял задуматься о механизации криптоанализа. Суть идеи заключалась в том, чтобы соединить между собой шесть копий «Энигмы» таким образом, чтобы электрическая цепь замыкалась при появлении трех конкретных «материнских» букв. Относительные основные позиции проводов шести «Энигм» фиксировались на известных относительных установках «материнских букв» — так же как в чередовании листов. Сохраняя эти относительные позиции, «Энигмы» проверяли каждую возможную позицию. Они могли проделать полный перебор позиций за два часа, т. е. каждую секунду проверялось несколько позиций. Это был «лобовой» метод, заключавшийся в том, что проверялись все возможные варианты один за другим. В нем не было математической изысканности. Однако он «втащил» криптоанализ в двадцатый век.
К сожалению для польских криптоаналитиков, немцы сильнее их углубились в двадцатый век. Едва поляки оснастили свои «Энигмы» электромеханической системой, как новое осложнение свело на нет их усилия. В декабре 1938 г. количество роторов в немецких «Энигмах» было увеличено с трех до пяти. Вместо шести возможных вариантов расположения роторов их число выросло до шестидесяти. Польские аналитики не испытывали недостатка в предприимчивости и преуспели в разработке новой системы расположения проводов благодаря ошибкам криптографов самозваной немецкой службы безопасности СД. Однако арифметика здесь была простой. Вместо шести «Бомб» теперь нужно было иметь шестьдесят. Вместо шести комплектов перфорированных листов теперь требовалось шестьдесят. Поляки проиграли. Так складывалась ситуация в июле 1939 г., когда британская и французская делегации прибыли в Варшаву. У поляков не было технических ресурсов для дальнейших разработок.
Так выглядела история процесса, которую услышал Алан. Сам процесс застопорился. Однако даже на тот момент поляки были на годы впереди англичан, которые по-прежнему оставались там, где они были в 1932 г. Англичане не смогли разработать систему проводов, они не смогли осознать тот факт, что клавиатура соединялась с первым ротором в простом порядке. Как и польские аналитики, они предполагали, что в данной точке конструкции имеется какая-то сбивающая с толку операция, и с удивлением узнали, что таковая отсутствует. Перед июльской встречей 1939 г. в GC&CS даже не думали «о возможности испытаний высокоскоростной машины, предназначенной для борьбы с «Энигмой»». Это можно было назвать отказом воли на некотором уровне. Они действительно не хотели думать, они действительно не хотели знать. Теперь же было преодолено конкретное препятствие, и англичанам пришлось столкнуться с проблемой, которую поляки считали неразрешимой:
«Вскоре после того как различные документы, предоставленные поляками — а именно, детали электропроводки — прибыли в GC&CS, появилась возможность расшифровать старые сообщения, ключи к которым были взломаны поляками, но более новые сообщения так и остались нерасшированными».
Они остались не расшифрованными по той же самой причине, по которой поляки считали их нечитаемыми. У них не было достаточного количества «Бомб» или перфорированных листов для пятироторной «Энигмы». Существовала также еще одна трудность: с 1 января 1939 г. в немецких системах использовалось десять пар на коммутационной панели, из-за чего польский метод с «Бомбой», перестал работать. За всем этим стояла более глубокая проблема. Она заклчалась в том, что основные польские методы полностью зависели от определенной системы индикаторов. Поэтому требовалось предложить что-то совершенно новое. И именно в этот момент Алан впервые сыграл решающую роль.
Британские аналитики немедленно приступили к изготовлению шестидесяти комплектов перфорированных листов, которые требовались для использования первого метода «материнских букв» — перед ними стояла колоссальная задача проверки миллиона положений ротора. Но они знали, что если девятибуквенная система индикаторов будет изменена, пусть даже совсем незначительно, то их листы окажутся бесполезными. Им был нужен какой-то принципиально новый метод, не зависящий от систем индикаторов.
И такие методы существовали. В случае с «Энигмой» это были машины без коммутационной панели. Такой, например, была итальянская «Энигма», которую использовали войска Франко во время гражданской войны в Испании. GC&CS взломала ее систему в апреле 1937 г. Взлом ее был основан на методе, который Синков назвал «Интуитивным» (Intuitive) или методом «вероятного слова». Его суть заключалась в том, что аналитик должен был угадать слово, появляющееся в сообщение, и его точное место. Это не было невозможным, если принять во внимание стереотипный характер большинства военных сообщений и помнить об особенности «Энигмы», когда буква не может быть зашифрована самой собой. Предположив, что соединения проводов к роторам «Энигмы» известны, правильно угаданное слово может достаточно легко привести криптоаналитика к идентификации первого ротора и его начальной позиции.
Такой анализ мог быть сделан вручную. Но в принципе можно было применить механизированный метод, используя тот факт, что даже миллион возможных позиций роторов не был «страшно большим числом». Подобно польской «Бомбе», машина могла бы просто перебирать позиции роторов одну за другой до тех пор, пока не будет найдена та, что позволит превратить зашифрованный текст в обычный.
Мы забываем о внутренних деталях базовой «Энигмы» и воспринимаем ее просто как ящик, который трансформирует букву на входе в букву на выходе. Положение машины представлено тремя числами, соответствующими позициям роторов. (Мы также не учитываем, что средний и расположенный ближе к центру роторы могут двигаться, и считаем, что они статичны; это не влияет на принцип).
Предположим, что нам точно известно, что слово G E N E R A L зашифровано буквами U I L K N T N с помощью машины «Энигма» без коммутационной панели. Это значит, что существует такая позиция ротора, когда буква U трансформируется в букву G, также следующая позиция трансформирует I в Е, следующая — L в N и т. д. В принципе, не существует помех в переборе всех возможных позиций то тех, пока не будет найдена нужная. Самым эффективным способом было бы рассматривать все семь букв одновременно. Это можно было сделать, если создать цепочку из семи «Энигм», установив из роторы в последовательные позиции. Задав буквы U I L K N T N, можно будет увидеть, появятся ли буквы G E N E R A L. Если нет, все «Энигмы» нужно передвинуть на один шаг, и повторить процесс. В конце концов, будет найдена нужная позиция ротора, и тогда положение машин будет выглядеть, допустим, так
Метод не требовал технических изысков, превосходящих уровень польской «Бомбы». Было достаточно легко прикрепить провода так, чтобы ток по ним шел лишь тогда, когда все семь букв совпадут с G E N E R A L и выключить машину.
Даже в самые первые дни эта идея не казалась особенно надуманной. Современник Алана, физик из Оксфорда Р.В.Джонс, который стал советником секретной службы по науке, был поставлен да довольствие в Блетчли в конце 1939 г. Он обсуждал насущные проблемы криптоанализа с заместителем Деннистона Эдвардом Трэвисом. Последний говорил о более амбициозной проблеме автоматического распознавания не определенного текста, а немецкого языка вообще. Джонс находчиво предложил несколько вариантов решения, одним из которых было «отметить или сделать прокол в бумаге или пленке в любой из 26 позиций в соответствии с буквой, выходящей из машины… и пропустить получившуюся запись мимо блока фотоэлементов, так что каждый из них может сосчитать количество появлений буквы, которую он ищет. После того, как будет достигнуто заданное общее число, распределение частот встречаемости букв можно будет сравнить с числом, соответствующим языку, таким образом, будет создано что-то вроде шаблона».
Трэвис представил Джонса Алану, которому идея «понравилась». Однако в том, что касалось «Энигмы», то основной метод по-прежнему оставался совсем другим. Он основывался на идее анализа известного куска обычного текста. Трудность, конечно, заключалась в том, что у военной «Энигмы» была коммуникационная панель, которая делала такой примитивный процесс невозможным — существовало 150 738 274 937 250 возможных комбинаций десяти пар букв. Проверить их все у машины не было никакой возможности.
Конечно, это устрашающее число не оказывало влияния на серьезного аналитика. Большие числа сами по себе не гарантировали безопасности от взлома. Любой человек, решивший криптограмму-головоломку, сумел устранить все кроме одного из 403 291 461 126 605 635 584 000000 различных буквенных замещений. Это было возможно сделать благодаря тому, что буква Е вполне обычна, сочетание АО — редко и т. д. и т. п. Так что каждый мог устранить большое количество вариантов сразу.
Как видно, большое количество коммутационных панелей само по себе не является проблемой. Можно рассмотреть гипотетическую машину, в которой своппинг коммутационной панели применяется только перед зашифровкой с помощью базовой «Энигмы». Предположим, что для такой машины точно известно, что текст F H O P Q B Z является шифровкой слова G E N E R A L.
И опять-таки, имеется возможность ввести буквы F H O P Q B Z в семь соединенных последовательно «Энигм» и проверить, что получается на выходе. Но в этот раз аналитик не ожидает появления букв G E N E R A L, потому что к ним был применен неизвестный своппинг коммутационной панели. Тем не менее, кое-что еще можно сделать. Предположим, что в некоей точке процесса прохода через все позиции ротора сложился такой набор значений:
(26!/ 10!6!2) На самом деле 11 пар дают немного больше способов — правда, тут совсем небольшая разница; 12 или 13 пар иногда меньше, т. е. 26! Это также число возможных подключений проводов к каждому ротору «Энигмы».
Затем можно задать вопрос: могут ли (или не могут) буквы G F G C O R I быть получены из комбинации G E N E R A L как побочный эффект от своппинга коммутационной панели. В этом примере звучит ответ «нет», потому что при своппинге первая буква G поменяется, а вторая буква G превратится в N, своппинг не может превратить первую букву в слове G E N E R A L в F, а вторую — в C. К этому можно добавить, что своппинг не может превратить букву R в слове G E N E R A L в О, а затем трансформировать А в R. Любого из этих замечаний достаточно, чтобы исключить эту позицию роторов.
Чтобы правильно ответить на вопрос, надо исходить из принципа соответствия. Если загрузить зашифрованный текст в «Энигмы», то будет ли результат на выходе соответствовать известному заранее простому тексту в том плане, что он отличается только в силу своппинга. С этой точки зрения, соответствия (OR) и (RA) или (EF) и (ЕС) являются противоречиями. Но достаточно одного противоречия, чтобы устранить миллиарды возможных коммутационных панелей на этой гипотетической машине. Поэтому огромное число (замещений) может считаться несущественным в сравнении с логическими свойствами шифровальной системы.
Было сделано важнейшее открытие. Его суть заключалась в том, что нечто подобное можно было бы сделать и с реальной военной «Енигмой» со своппингом для коммутационной панели. Ведь он осуществлялся перед и после ввода текста на роторы у базовой «Энигмы». Открытие было сделано далеко не сразу и оно не было плодом раздумий и усилий одного человека. Чтобы сделать этот вывод, ушло несколько месяцев. К его авторам, в первую очередь, следует отнести двух человек. В то время, как Джеффрис присматривал за изготовлением новых перфорированных листов, Алан и Гордон Уэлчмен контролировали разработку изделия, которое позже стало известно как «британская Бомба».
«Атаку» начал Алан, а Уэлчмэн отвечал за анализ потоков информации, поэтому ему первому удалось сформулировать принцип механизации поиска логических соответствий, основанный на «вероятном слове». Польские аналитики механизировали простую форму распознавания, будучи ограниченными используемой тогда системой индикаторов. Новая машина, как ее видел Алан, была намного более амбициозной, требовала наличия проводки для имитации «включений» от гипотетической коммутационной панели и средств распознавания не только простых соответствий, но и появляющихся противоречий.
Теперь предположим, что нам известно, что буквы L A K N Q K R являются шифровкой слова G E N E RA L, и эта шифровка выполнена на «полноценной» «Энигме» с коммутационной панелью. В этот раз нет смысла в проверке сочетания L A K N Q K R на базовых «Энигмах» и в просмотре того, что получается на выходе, потому что перед вводом L A K N Q K R на роторы «Энигмы» к этой комбинации букв был применен неизвестный своппинг коммутационной панели. Но поиски были небесполезны. Рассмотрим только одну букву, а именно А. Существует только 26 вариантов воздействия коммутационной панели на А, поэтому мы можем проверить их все. Начать мы можем с принятия гипотезы (АА), т. е. допустить, что коммутационная панель не повлияла на букву А.
Что следует из этого? Теперь мы можем использовать то обстоятельство, что имеется только одна коммутационная панель, выполняющая одну и ту же своппинговую операцию на буквах, поступающих на роторы и выходящих из них (если бы «Энигма» была оснащена двумя разными коммутационными панелями — одной для своппинга вводимых букв, другой — для своппинга получающихся, то это была бы совсем другая история). Кроме того, мы можем использовать тот факт, что этот конкретный иллюстративный «ключ» содержит одну особенность — замкнутый контур. Проще всего это можно увидеть при выработке возможных обобщений, которые можно сделать из (АА).
Проверяя вторую букву в комбинации, мы вводим А в роторы «Энигмы» и получаем на выходе, например, букву О. Это значит, что коммутационная панель должна содержать своппинг (ЕО).
При проверке четвертой буквы, утверждение (ЕО) будет иметь импликацию для N, например, (NQ); теперь третья буква дает импликацию для К, например (KG).
Наконец, мы рассматриваем шестую букву: здесь контур замыкается, и мы получаем либо соответствие, либо противоречие между (KG) и оригинальной гипотезой (АА). Если это противоречие, то гипотеза оказалась ложной и может быть удалена.
Предложенный метод был далек от идеала, потому что полностью зависел от нахождения замкнутых контуров в «ключе». Этот феномен проявлялся не во всех ключах. Но это был метод, который по-настоящему работал, потому что идея с замнутой цепью позволяла перевести работу в электрическую форму. Это доказывало, что огромное количество коммутационных панелей само по себе не являлось непреодолимым препятствием.
Это было начало, и оно стало первым успехом Алана. Подобно большинству научных исследований военного времени, идея не требовала самых совершенных знаний. Скорее здесь была нужна квалификация такого же уровня, что и про проведении перспективных исследований, но применяемая при решении более простых проблем. Идея автоматизации процессов была достаточно известна в двадцатом веке. Ей не был нужен автор «Computable Nambers». Но его серьезный интерес к математическим (вычислительным) машинам, его увлеченность идеей работы машины, были очень важны. Опять же, присущие коммутационной панели условия «соответствия» и «противоречия» касались только сугубо ограниченной проблемы, а не чего-то, подобного теореме Гёделя, которая описывала бесконечное множество теории чисел. Но аналогия с формалистской концепцией математики, в которой импликации должны были механически доведены до логического конца, была поразительна.
Алан смог реализовать свою идею в виде конструкции новой «Бомбы» в начале 1940 г. Она была запущена в производство, причем работа шла со скоростью, которую невозможно было представить в мирное время. Выпуском руководил Гарольд «Док» Кин на заводе компании «British Tabulating Machinery» в Летчуорте. Раньше здесь выпускали офисные счетные машины и сортирующие устройства, в которых реле выполняли простейшие логические функции, например, суммирование и распознавание. Теперь задачей завода был выпуск реле, выполняющих переключение «Бомбы» в случае «распознавания» позиции, где есть соответствие, и остановку машины. И снова Алан оказался тем самым человеком, который понял, что необходимо сделать. Сказался его необычный опыт знакомства с релейными множителями, который помог вникнуть в проблему выполнения логических манипуляций в такого рода технике. Возможно, в 1940 г. не было никого, кто мог бы контролировать эту работу лучше его.
Однако не Алан увидел, как можно кардинально улучшить конструкцию машины. Этим человеком стал Гордон Уэлчмен. Он присоединился к криптоаналитической группе, работавшей над «Энигмой» и сразу сделал важное открытие: самостоятельно изобрел метод перфорированных листов, совершенно проигнорировав тот факт, что поляки уже придумали его, и Джеффрис наладил их производства. Затем, изучив конструкцию «Бомбы» Тьюринга, он понял, что машина не может в полной мере использовать слабости «Энигмы».
С созданием «Бомбы» и запуском ее в производство проблема «Энигмы» все равно была далека от разрешения. «Бомба» не выполняла всю работу, связанную с методом «вероятного слова». Тут нужно отметить важный пункт: когда соблюдались условия соответствия, и «Бомба» останавливалась, это не всегда означало, что найдена нужная позиция ротора. Такая «остановка», как ее называли, могла произойти случайно. Каждую «остановку» нужно было проверить на «Энигме», чтобы установить, не преобразует ли она весь оставшийся зашифрованный текст в немецкий так до тех пор, пока не будет найдена правильная позиция ротора.
Угадать вероятное слово было совсем не тривиальной задачей, как и сопоставить его с зашифрованным текстом. Хороший шифровальщик, конечно, мог сделать эти операции невозможными. Правильный способ использования «Энигмы» заключался в том, чтобы защититься от вероятного взлома такими очевидными средствами как предварение сообщения переменным количеством бессмысленных комбинаций букв, вставкой буквы Х в длинные слова, использованием «похоронной процедуры» в стереотипные или повторяющиеся части сообщения. Основной принцип заключался в том, чтобы сделать систему как можно более непредсказуемой, но понятной законному получателю. Если все было сделано как следует, найти необходимые «Бомбе» «ключи» было невозможно.
«Бомба» оставалась почти бесполезной, пока не удалось взломать поток зашифрованных сообщений, но это произошло не там, где ожидалось.
Работа по взлому сигналов люфтваффе вели по-другому: использовали метод перфорированных листов, который применялся для системы девятибуквенных индикаторов. В течение осени 1939 г. было завершено изготовление шестидесяти комплектов листов, и копию передали французским криптоаналитикам в Виньоль. Это был акт надежды. С декабря 1938 г. не удалось расшифровать ни одного сообщения, зашифрованного с помощью «Энигмы», поэтому англичане не имели никакой гарантии, что к моменту окончания изготовления листов они вообще понадобятся. Однако надежда оправдалась:
«В конце года, — говорится в отчетах GC&CS, — наш эмиссар вернулся с важнейшей новостью о том, что шифр взломан (28 октября, Грин) на … листах, которые он привез с собой. Мы немедленно приступили к работе над ключом (25 октября, Грин)…; впервые шифр «Энигмы», использованный в военное время, был взломан в январе 1940 г.». В отчете GC&CS далее говорится: «Внесли ли немцы изменения в свою машину на Новый год? Пока мы ждали … было взломано еще несколько шифров 1939 г. Благоприятный день, наконец, настал… Листы были наложены…и «Красный» (шифр) от 6 января был взломан. Вскоре последовали другие шифры…»
Счастье улыбнулось британцам, и перфорированные листы позволили первый раз войти в систему. Это было как на Принстонской охоте за сокровищами — каждый новый успех давал ключ к следующей цели с более быстрой и полной расшифровкой. Помимо листов, англичане использовали и другие методы — алгебраические, лингвистические, психологические. Но это всегда было очень сложно, потому что правила постоянно менялись, а они должны были действовать максимально быстро, чтобы не отставать. Они держались изо всех сил, стоило им отстать на несколько месяцев, и они бы не смогли догнать немцев. Весной 1940 г. положение было особенно шатким, они держались на находчивости и интуиции.
Догадываться и надеяться — это самая полная характеристика действий британцев. Правительство немногим лучше общественности понимало в том, что надо делать, чтобы выиграть войну, и что вообще происходит.
Кроме того, оказалось, что шифровки люфтваффе, на прочтение которых в Блетчли потратили столько времени и сил в марте 1940 г., состоят, в большинстве своем, из детских стишков, отправленных в качестве тренировки. Даже там, где аналитики были заняты захватывающей работой, часто ощущалось чувство оторванности от жизни и разочарования. То же самое было в Кембридже. Алан вернулся туда на время увольнения, чтобы поработать над некоторыми математическими проблемами и повидаться с друзьями. В Кингс-колледж им пришлось провести некоторое время в бомбоубежище, но бомбежка так и не началась. Три четверти детей, эвакуированных из Кембриджа, вернулись домой к середине 1940 г.
Однако к Рождеству война не закончилась. 2 октября 1939 года Алан воспользовался правом временно (до окончания войны) приостановить свою работу в качестве преподавателя. И хотя его курс по основаниям математики значился в списке лекций, он так и не был прочитан. Шла русско-финская война. Однажды на вечеринке в комнате Патрика Уилкинсона Алан познакомился со студентом-третьекурсником Робином Гэнди, который изучал математику и добросовестно пытался защищать идеи коммунистической партии. Лозунг «Руки прочь от Финляндии» был настоящей демагогией, которую Алан презирал, но Робин Гэнди ему нравился, и вместо того, чтобы ссориться с ним, он, задавая вопросы, по-сократовски привел его к противоречию.
Единственной реальной вещью даже во время «странной войны» был конфликт на море. Как и в годы Первой мировой войны, островное положение Британии было одновременно ее силой и слабостью. Война с Британией означала атаку на мировую экономику. Одна треть мирового торгового судоходства приходилась на Британию. Вряд ли существовал какой-либо вид сырья, кроме каменного угля и кирпичей, в котором Британия была бы независима от ввоза из-за границы. Несмотря на блокаду, Германия могла выжить, привлекая природные и человеческие ресурсы из Европы. Выживание Британии зависело исключительно от безопасности океанского судоходства. В этом заключалось чудовищное неравенство.
Именно война на море стала «епархией» Алана. В начале 1940 г. «Энигмы» были распределены между ведущими криптоаналитиками, которые заняли домики, разбросанные на территории поместья Блетчли. Уэлчмен взял на себя «Энигмы» вермахта и люфтваффе и занял домик № 6, к нему присоединились новобранцы. Диллвин Нокс взял себе итальянскую «Энигму» и «Энигму», которую использовала немецкая СД. Ему тоже придали новобранцев. Эти системы, которые не имели коммутационных панелей, лучше сочетались с его психологическими методами. А Алан в домике № 8 приступил к работе с «Энигмой» германского военно-морского флота. В остальных домиках разместились секции перевода и интерпретации выходных сигналов. В домике № 3 перерабатывали материалы по вермахту и люфтваффе, которые выдавала бригада из домика № 6, а военно-морские сигналы интерпретировала группа в домике № 4, которой руководил Фрэнк Бёрч.
Вероятно, Алану было мало что известно об обстановке, в которой он работал. А она была не очень вдохновляющей. Он работал на Адмиралтейство, которое с огромной неохотой передало военно-морской криптоанализ в ведение GC&CS. Оно традиционно стремилось к автономии. Руководя крупнейшим флотом мира, оно полагало, что может вести военные действия самостоятельно. Однако оно не усвоило урок, согласно которому флоты полагаются не только на силу, но и на информацию, потому что орудия и торпеды бесполезны, если их не применять в нужное время в нужном месте.
Отдел военно-морской разведки (Naval Intelligence Division, NID) был создан только во время Первой мировой войны, а в мирное время он был ужат до размеров, достойных романов Кафки.
К сентябрю 1939 г. новый глава отдела, Норман Деннинг, сумел несколько улучшить ситуацию. Он ввел картотеки вместо книг учета, установил прямую телефонную связь с Ллойдом, и оборудовал Зал слежения, где можно было отслеживать и обновлять местоположение торговых судов. Контакты с GC&CS были не такими успешными. Фактически к криптоаналитической организации, после Первой мировой войны перешедшей под эгиду Форин-Офис, относились, скорее, как к врагу. Деннинг пытался вернуть ее под контроль Адмиралтейства вплоть до февраля 1941 г.
Правда, дальновидный Деннинг сумел установить правило, согласно которому новая подсекция NID, Оперативный разведывательный центр (ОРЦ), должен был получать и координировать информацию из всех источников. Это был настоящий прорыв. Перед войной штат ОРЦ составлял 36 человек. Им нужно было решить множество проблем, но главная проблема 1939 г. заключалась в том, что у них не было информации, которую нужно было координировать.
Самолеты Берегового командования время от времени засекали немецкие подлодки, и командование Королевских ВВС убедили информировать Адмиралтейство, когда такие случаи имели место. Авиаразведка ограничивалась тем, что нанимала гражданских пилотов фотографировать немецкую береговую линию. Информация от агентов в Европе была «скудной». «Самые полезные сведения поступали от одного дилера черного рынка в шелковых носках, у которого были связи в Почтовом управлении германского военно-морского флота. Время от времени он мог сообщать почтовые адреса определенных кораблей. Таким образом, добывалась фрагментарная информация об их местонахождении». Когда в ноябре 1939 г. был потоплен корабль «Равалпинди», Адмиралтейство было не в состоянии выяснить даже класс судна, ответственного за эту трагедию.
Вплоть до начала войны в «военно-морской подсекции Германской секции GC&CS, в штате которой в мае 1938 г. числились один офицер и один клерк, по-прежнему не было криптоаналитиков». В этом заключалась одна из причин того, почему никто даже не попытался ответить на немецкий вызов. Теперь, после поступления помощи от поляков и почти готовой «Бомбы», перспективы выглядели получше, но общая картина была очень мрачной.
Чтобы добиться хоть какого-нибудь прогресса, Алану было нужно что-то большее. «Начиная с декабря 1939 г. GC&CS ставило Адмиралтейство в известнось о срочности выполнения этого… требования, но у Адмиралтейства было мало возможностей выполнить его. Однако война (по меньшей мере, на море) продолжалась, и это означало, что немецкое командование должно было учитывать вероятность попадания самой машины «Энигма» в руки противника. Дела обстояло именно так; открытия поляков лишь дали GC&CS возможность начать работу в этом направлении семь месяцев назад, потому что «три входных колеса «Энигмы», были добыты у экипажа немецкой подлодки U-33 только в феврале 1940 г.». Однако все это «не давало оснований для дальнейшего продвижения». Наличие используемой немецким военно-морским флотом шифровальной машины хоть и было необходимо, но далеко не достаточно. Если бы германский флот использовал свою машину «более внимательно», то его шифры были менее прозрачными, чем дурацкие повторяющиеся тройки, которые использовали поляки. А скудный поток шифровок в мирные дни давал слишком слабую основу для плодотворной попытки взлома шифра.
Затем война на море распространилась на сушу, нападение Германии на Норвегию опередило планы англичан. Англо-французской реакции совсем не способствовал тот факт, что немецкая криптоаналитическая служба (Beobachter Dienst) смогла прочитать целый ряд шифрованных сообщений, и это было использовано с большим успехом.
В конце кампании командующий флотом метрополии жаловался, что «очень обидно, что противник всегда знает, где находятся наши корабли, в то время как мы узнаем, где находятся его основные силы лишь тогда, они топят один или несколько наших судов». Во время окончательного отступления из Нарвика 8 июня британский авианосец «Глориос» был потоплен немецкими линкорами «Шарнхорст» и «Гнейзенау». В ОРЦ не знали о положении «Глориос», не говоря уже о немецких кораблях, и узнали о его потоплении только из победных реляций, переданных открытым текстом.
События в Норвегии перевели Блетчли-Парк в состояние войны, потому что в ходе кампании удалось «вручную» взломать главный шифр люфтваффе и общий шифр, которыми пользовали другие рода войск. Это в значительной степени помогло получить информацию о передвижении немецких войск. Что касается флота, то в домике № 4 смогли добиться прогресса в изучении шифросообщений, который мог бы оказаться полезным в событиях с авианосцем «Глориос». Однако система, при которой эта информация могла бы быть использована, отсутствовала. Да и ситуация в Норвегии складывалась так, что большой пользы открытия, сделанные в Блетчли-Парк, принести уже не могли. Однако теперь ОРЦ был обязан обратить внимание на Блетчли. Там осознали отчаянную нужду в реорганизации системы военно-морской разведки. «В самом начале кампании Адмиралтейство полностью нас игнорировало. Когда оно отдавало приказы, которые привели к первому сражению за Нарвик 9 апреля, то было уверено, что туда прибыл один германский корабль, в то время как туда прибыл отряд из десяти эсминцев. Приказ Адмиралтейства основывался на сообщениях прессы».
И в такой ситуации волшебный шанс, который мог бы очень помочь работе Алана над военно-морской «Энигмой», был упущен по глупости:
«26 апреля корабль военно-морского флота захватил немецкий патрульный катер VP2623, совершавший переход из Германии в Нарвик, и нашел там несколько документов… Но их могло бы быть намного больше, если бы VP2623 не был бы ограблен досмотровой группой до начала тщательного обыска. Адмиралтейство тут же отдало приказ, призванный предупредить проявления такой вопиющей халатности в будущем. Фактически найденные документы дали возможность получить некоторую информацию об уровне потерь, полученных основными немецкими силами во время Норвежской кампании. Расшифровки не представляли большого оперативного интереса.
Захват шифровального оборудования ожидался и был разрешен, а вот получить тончайшие, растворимые в воде страницы текущих инструкций по применению машины — это совсем другое дело.
Тем временем работа над «Энигмой» люфтваффе, которая принесла успех Блетчли в начале 1940 г., начала давать первые плоды. Правда, случился сбой, потому что 1 мая 1940 г. «германское командование ввело новые индикаторы для всех шифров «Энигмы», кроме «желтого». Перфорированные листы были только что изготовлены, и аналитики были готовы начать «охоту за сокровищами», теперь же они были почти бесполезны. Однако «вскоре после введения изменений 1 мая немцы допустили несколько ошибок» — классических ошибок, отправив сообщения, зашифрованные с помощью старой и новой систем. Поэтому 22 мая группа из домика № 6 сумела обнаружить новую («Красную») систему шифровки основных сообщений люфтваффе и начать ее взлом буквально на следующий день. Однако к этому моменту немецкие войска уже стояли на Сомме и приближались к Дюнкерку. Успех аналитиков Блетчли пришел слишком поздно и позволил раскрыть планы немцев относительно наступления на западе.
Но именно тогда началось «боевое» применение первых «Бомб», в мае 1940 г. — прототипа Тьюринга, а после августа — машины с диагональной доской. Естественно, машины «сильно повысили скорость и регулярность, с которыми специалисты GC&CS взламывали ежедневно меняющиеся шифры «Энигмы»». «Бомбы» были установлены не в Блетчли, а в разных удаленных пунктах вроде Гейхерст Мэнор, затерянного в самом дальнем уголке Бакингемшира. Их обслуживали дамы из Женской службы военно-морского флота, которые не знали, что они делают, и, не спрашивая о причинах, «загружали» роторы и звонили аналитикам, чтобы сообщить об остановке машины. «Бомбы» были по-своему красивы, издавая звуки, подобные стуку тысячи иголок швейных машинок — это работали релейные переключатели.
Армейские офицеры, служившие в Блетчли, были очень впечатлены работой «Бомб». Офицер разведки Ф. У. Уинтерботам назвал ее «Восточной богиней, которой суждено стать оракулом Блетчли». Об «оракуле» говорили и в ОРЦ. Такое определение забавляло Алана, потому что он тоже представлял себе оракула, дающего ответы на неразрешимые вопросы.
Когда в полдень пришло сообщение о перемирии (Германии и Франции), свободные от службы аналитики играли в шары в Блетчли-Парк с присущим англичанам хладнокровием. Громкие слова были теперь бесполезны. В ближайшие месяцы глазами и ушами британцев стали радары, хотя в конце года «жемчужины» информации, полученные из шифровок «Энигмы», позволили найти разгадку навигационных лучей люфтваффе.
Если опасность прямого вторжения на Британские острова схлынула, то удары по морским коммуникациям угрожали полностью прервать связи Британии с внешним миром. В первый год войны потопление корабля немецкой подлодкой не считалось доминирующей проблемой. Более существенным были ликвидация торговых флотов оккупированных и нейтральных государств, прекращение торговли через Ла-Манш и в Средиземноморье, а также снижение способности британских портов и транспортной системы страны переработать прибывающие грузы.
Однако с конца 1940 г. положение начало меняться. Британский торговый флот должен был доставлять грузы на остров, отделенный всего лишь 20 милями водного пространства от войск противника, и делать это, следуя по пути в тысячи миль по кишащему вражескими подлодками морю. Британия должна была поддерживать деятельность своей экономики, от которой зависели сотни миллионов людей по всему миру и одновременно вести войну. Ей пришлось воевать с Италией на Ближнем Востоке, который был теперь также далек от нее, как Новая Зеландия. Уроки 1917 г. были усвоены, и с самого начала войны британцы ввели систему конвоев. Однако испытывавший огромные нагрузки военно-морской флот не мог сопровождать конвои вглубь Атлантики. В этот раз Германия в течение нескольких недель достигла того, чего не смогла добиться в течение четырех лет с помощью пулеметов и горчичного газа. Теперь базы немецких субмарин расположились на французском побережье Атлантики.
Лишь один фактор был за то, что вероятность немецкой победы на море не так велика, как кажется. Строительство подводного флота, показавшего феноменальные успехи в 1917 г., до 1939 г. практически не велось. Блеф под Данцигом означал, что Гитлер ввязался в войну, имея менее шестидесяти субмарин под командой Дёница. Из-за близорукой стратегии немецкого руководства численность подлодок находилась примерно на том же уровне до конца 1941 г. Хотя резкий рост числа успехов немецких подводников после падения Франции внушал тревогу, сам по себе он не мог считаться катастрофическим для Британии.
Чтобы сохранять способность вести войну, Британия должна была импортировать тридцать миллионов тонн различных товаров в год. Для этого она располагала флотом общим водоизмещением тринадцать миллионов тонн. В течение года, начиная с июня 1940 г., немецкие субмарины в среднем ежемесячно топили корабли общим водоизмещением 200000 тонн. Такие потери можно было бы возместить. Но все понимали, что если численность подлодок вырастет в три раза, и количество потопленных кораблей вырастет в той же пропорции, то это приведет как к краху морских перевозок, так и к невосполнимым потерям кораблей. В течение своего срока службы каждая подлодка топила более двадцати кораблей, и противопоставить этому было нечего до тех пор, пока она оставалась невидимой. Это было скорее логическое, чем физическое преимущество подводной лодки. Огромная ошибка немцев заключалась в том, что они не смогли использовать это свое преимущество над единственным оставшимся противником и дали ему время, чтобы нивелировать его с помощью новых средств получения информации и коммуникации. К сонару присоединились радиопеленгатор и радар. Работа команды из домика № 8 все еще сильно отставала.
Алан начал исследование сообщение военно-морской «Энигмы» самостоятельно, затем к нему на время присоединились Питер Туинн и Кендрик. Техническую работу выполняли женщины. В июне 1940 г. к группе присоединился новый математик: Джоан Кларк, один из нескольких сотрудников «уровня профессора» женского пола. Руководство гражданской службы упрямо противилось принципу равной оплаты труда и предоставления женщинами равных должностей с мужчинами. Поэтому Джоан Кларк пришлось повысить до неприметной должности «лингвиста», которую довоенный истэблишмент зарезервировал для женщин. Трэвис также вел переговоры о переводе ее на должность офицера Женской службы военно-морского флота, где ей могли платить больше. Но в самом домике доминировала более прогрессивная атмосфера Кембриджа. Джоан Кларк пригласил в Блетчли Гордон Уэлчмен, который был ее преподавателем по проективной геометрии. Алан познакомился с ней в Кембридже.
Таким образом, летом 1940 г. Алан Тьюринг оказался в положении, когда он мог говорить людям, что им следует делать. Это случилось с ним впервые после окончания школы. С другой стороны, в отличие от школы, ему впервые пришлось контактировать с женщинами.
Остаток 1940 г. не принес больших успехов с «Энигмой». Апрельский захват немецкой подлодки дал немного, но хотя бы кое-что. Это послужило одной из причин появления Джоан Кларк в домике № 8.
В течение мая 1940 г. аналитики GC&CS смогли прочитать зашифрованные «Энигмой» сообщения за шесть дней предыдущего месяца. Это дало важную дополнительную информацию об организации системы радиосвязи и шифрования германского военно-морского флота. GC&CS смогла подтвердить это, хотя немцы, прибегая в простым ручным кодам и шифрам для таких вещей как легкие корабли, судоверфи и торговое судоходство. Однако части кригсмарине, даже самые маленькие, всегда использовали «Энигму». GC&CS установило также, что они используют только два шифра «Энигмы» (Внутренний и Внешний), и что подводные лодки и надводные корабли используют одни и те же шифры, переходя на внешний шифр только во время операций в дальних водах.
В оставшиеся месяцы 1940 г. удалось прочитать сообщения только за пять дней в апреле и мае, и «дальнейшая работа также подтвердила худшие опасения GC&CS о трудности взлома даже Внутреннего шифра, который использовался для зашифровки 95 процентов сообщений, передаваемых германским военно-морским флотом». Работа группы Алана показала, что они не могут рассчитывать на успех без новых захватов (инструкций или шифровальных машин). Но пока они ждали, Алан не сидел без дела. Он разработал математическую теорию, которая потребуется для их использования. Теория шла намного дальше, чем постройка «Бомбы».
Изучая поток зашифрованных сообщений, опытный глаз может сказать, что такие-то вещи «кажутся вероятными», но сейчас, когда целью является серийное производство, необходимо перевести зыбкие, интуитивные оценки в нечто более точное и механистическое. Основа психического аппарата, необходимая для этого, была создана в восемнадцатом столетии, хотя это было ново для GC&CS. Английский математик Томас Байес понял, как описать математически концепцию «обращенной вероятности» — это термин для того, чтобы переставить местами причину и следствие — по известному факту вычислить вероятность того, что следствие было вызвано данной причиной.
Основная идея представляет собой не что иное, как простой расчет «вероятности» причины, который люди постоянно применяют, даже не задумываясь об этом. Классическое представление его выглядит так: предположим, что у нас есть два одинаковых ящика, в одном находятся два белых и один черный шар, в другом — один белый и два черных шара. Затем нужно угадать, в каком ящике находится какой набор шаров. Допускается даже эксперимент — можно сунуть руку в каждый из ящиков и вынуть по шару (конечно, не заглядывая внутрь). Если вынимается белый шар, то здравый смысл подсказывает, что два раза более вероятнее, что он вытащен из ящика с двумя белыми шарами, чем из второго ящика. Теория Байеса дала точный расчет этой идеи.
Одна из особенностей этой теории заключалась в том, что она опиралась не на происходящие события, но на изменения отношения. На самом деле, было очень важно помнить о том, что эксперименты могут только создать относительные изменения «вероятности», но не абсолютные значения. Сделанный вывод всегда будет опираться на априорную вероятность, которую экспериментатор держал в уме в начале эксперимента.
Чтобы лучше прочувствовать теорию, Алан любил размышлять с точки зрения разумного человека, вынужденного делать ставки, основываясь на предположении. Ему нравилась идея пари, и он представил теорию в форме шансов. Например, последствия эксперимента увеличивает шансы вдвое тем или иным способом. Если разрешены дальнейшие эксперименты, то шансы возрастут до очень больших значений, хотя, в принципе, полная определенность достигнута все равно не будет. Или же процесс можно представить по-другому: как сбор все большего и большего количества данных. С этой точки зрения, будет более естественным подумать о суммировании чего-либо каждый раз, когда сделан эксперимент, а не об умножении шансов, существующих на данный момент. Это можно проделать, используя логарифмы. Американский философ Ч.С.Пирс описал сходную идею в 1878 г., дав ей название «значение данных». Ее принцип заключался в том, что научный эксперимент дает выраженное количественно «значение данных», которое можно прибавлять или вычитать из вероятности верности гипотезы. В нашем примере обнаружение белого шара дает прибавление «значения данных» в количестве log2 к гипотезе, что ящик, из которого его вынули, был ящиком с двумя белыми шарами. Это была не новая идея, но…
«Тьюринг был первым, кто понял значение присвоения названий единицам, в которых измеряется значение данных. Если основанием логарифма было е, он называл единицу «естественный бан» и «простой бан», если основание равнялось 10… Тьюринг ввел название «децибан» — понятно, что он равнялся одной десятой бана по аналогии с децибелом. Причиной появления названия «бан» были десятки тысяч листов, отпечатанных в городе Бэнбери (Banbury), на которые наносились «значения данных» в децибанах, необходимые для выполнения важного процесса, названного Banburismus».
Поэтому «бан данных» представлял собой нечто, что делало верность гипотезы в десять раз более вероятной, чем до этого. Тьюринг механизировал процесс разгадывания и был готов перевести его на машины, которые будут суммировать децибаны, приближаясь к разумному решению.
Алан развивал теорию в нескольких направлениях. Очень важным ее применением была новая процедура проведения экспериментов, которую со временем назвали «последовательным анализом». Идея Тьюринга заключалась в определении цели для «значения данных», которая требовала продолжения наблюдений для достижения цели.
Такой метод был намного эффективнее, чем решать заранее, сколько экспериментов провести.
Тьюринг также ввел принцип оценки значения эксперимента с помощью учета количества значений данных, который он дает в среднем. Он даже продолжал обдумывать понятие «дисперсии» значений данных, полученных в ходе эксперимента, как критерия возможной случайности полученных результатов. Сведя эти идеи вместо, он перевел искусство угадывания, применяемое в криптоанализе, в 40-е годы двадцатого века. Он работал для себя, либо не зная о более ранних работах других ученых (того же Пирса), либо предпочитая собственную теорию статистическим методам, предложенным Р.А.Фишером в 30-х годах.
Поэтому теперь, когда они думали, что ключ, присутствующий в тексте, «вероятно», верен, или одно сообщение было, «вероятно», передано дважды, иди что одни и те же настройки были, «вероятно», использованы дважды, или что какой-то ротор — крайний в ряду, можно было проверить вероятность суммированием полученных значений данных рациональным способом. Сэкономленный на этом час равнялся часу, в течение которого субмарина проходила шесть миль, гонясь за конвоем.
Идеи Алана Тьюринга начали превращаться в рабочую систему. В центре ее была «Бомба», по-прежнему стрекотали машины, пробивающие перфорации в картах, «девушки из большой комнаты» работали на производственной линии. Все этого делало «игру в угадайку» настолько эффективной и быстрой, насколько это позволяли разработанные наскоро методы.
Первый запланированный захват был осуществлен 23 февраля 1941 г. во время рейда на Лофотенские острова у побережья Норвегии. Это значило, что кто-то погиб за инструкции к «Энигме», в которых нуждался Алан: немецкий вооруженный траулер «Кребс» был выведен из строя, его капитан был убит, не успев уничтожить до конца секретные документы. Оставшиеся в живых покинули корабль. Было найдено достаточно материалов для того, что команда из домика № 8 прочитала все шифровки военно-морского флота за февраль 1941 г. и за разные даты, начиная с 10 марта.
Отставание во времени, по мнению специалистов по анализу информации, было устрашающим. Сообщения по линии военно-морского флота, в отличие от большей части информации, поступавшей из других источников, содержали данные первоочередной важности. В одном из них, расшифрованном первым, говорилось:
Военно-морской атташе в Вашингтоне сообщает конвой рандеву 25 февраля в 200 морских милях восточнее острова Сейбл. 13 грузовых судов, 4 танкера 100000 тонн. Груз: детали к самолетам, детали машин, грузовики, боеприпасы, химикаты. Вероятный номер конвоя НХ 114.
Но 12 марта, когда сообщение было расшифровано, было уже слишком поздно что-то делать. Оставалось только узнать, откуда военно-морской атташе так много знает. Два дня спустя люди Тьюринга прочитали шифровку от Дёница.
От кого: адмирал, командующий подводными силами.
Эскорт для U69 и U107 будет в пункте 2 1 марта в 0800.
Двумя неделями ранее эта информация очень пригодилась бы в Зале слежения — если бы было известно, где расположен пункт 2. Нужно было накопить информацию, чтобы суметь решить такие проблемы с анализом.
Массив информации за март 1941 г. взломать не удалось. Но затем к команде домика № 8 пришел триумф: она дешифровала апрельский траффик, не дожидаясь новых захватов инструкций. Сообщения за апрель и май были взломаны «криптоаналитическими методами». Они, наконец, начали взламывать систему. Группа из домика № 4 могла теперь взглянуть противнику в глаза, расшифровав сообщения такого рода:
От: Центр оперативной разведки ВМС Ставангер Кому: Адмирал Западного побережья [24 апреля; дешифровано 18 мая]
Доклад противника Офицер G и W
Высшее военно-морское командование (Первый оперативный дивизион), телеграмма № 8231/41
Захвачены шведские рыбацкие суда:
1. Оперативный дивизион считает, что задачей шведских рыбацких судов было получение информации о минах в интересах Британии.
2. Удостоверьтесь в том, что ни Швеция, ни другое иностранное государство не знают о захвате. Должно создаться впечатление, что корабли затонули, попав на мины.
3. Экипажи должны содержаться под арестом до дальнейших распоряжений. Вам следует направить детальный доклад об их допросах.
Материалы недельной давности по-прежнему были очень важны с точки зрения получения информации о системе. Однако еще важнее было добиться сокращения разрыва во времени. К концу мая 1941 г. они смогли сократить разрыв всего до одних суток. В одном из сообщений, которое удалось расшифровать в течение недели, говорилось:
[19 мая; дешифровано 25 мая]
От: адмирала командующего подводными силами
Кому: U94 и U556
Фюрер наградил обоих капитанов Рыцарским крестом к Железному кресту. Я бы хотел передать вам мои искренние поздравления по случаю признания заслуг и успехов лодок и их экипажей. Желаю счастья и успехов в будущем. Уничтожьте Англию.
Уничтожить Англию было теперь намного труднее, чем они думали, потому даже старые сообщения ставили под угрозу планы немцев. Когда 19 мая «Бисмарк» вышел в море из Киля, задержка с расшифровкой в три и даже больше дней не позволила команде домика № 8 раскрыть секрет его курса. Однако утром 21 мая несколько прочитанных сообщений за апрель не оставили никаких сомнений в том, что целью «Бисмарка» будут традиционные торговые маршруты. После Адмиралтейству оставалось действовать более традиционным путем, пеленгуя радиосообщения «Бисмарка». Но 25 мая догадки дешифровщиков были подтверждены перехваченным 25 мая сообщением «Энигмы» люфтваффе. События развивались очень замысловато, и военно-морская «Энигма» сыграла в них незначительную роль. Но если бы «Бисмарк» вышел в море всего неделей позже, история развивалась по совсем другому сценарию. Новые открытия, сделанные в домике № 8, изменили бы всю картину.
Причиной тому послужили серьезные выводы, к которым аналитики пришли по прочтении более старых материалов: «после изучения расшифрованных сообщений за февраль и апрель GC&CS пришла к выводу о том, что немцы постоянно держат метеорологические суда в двух точках, одно — к северу от Исландии, другое — в центре Атлантики. Хотя их рутинные доклады зашифрованы «погодным шифром» и внешне отличаются от сообщений, зашифрованных «Энигмой», на кораблях имеется военно-морская «Энигма»».