Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры Беллос Алекс
Числа появились около 8000 лет назад, а математика возникла в Египте примерно в 600 году до нашей эры.
Все началось с публичной демонстрации способа измерения высоты пирамид. Греческий мыслитель Фалес показал, как определить высоту Великой пирамиды в Гизе, не взбираясь на нее. Сначала он установил на земле шест, который вместе с тенью образовал две стороны треугольника, как показано на представленном ниже рисунке. Пирамида со своей тенью тоже создавала треугольник. Гениальность Фалеса состояла в том, что он понял: хотя эти два треугольника существенно разнятся по размерам, у них одинаковая форма, поскольку солнечные лучи падают параллельно друг другу. Это означало, что на основании высоты маленького треугольника можно рассчитать высоту большого. Если говорить в современных терминах, Фалес понял следующее:
Высоту шеста и длину его тени измерить не составляет труда. Расстояние от центра основания пирамиды до конца ее тени измерить непосредственно нельзя, поскольку этому мешает сама пирамида[57]. Возможно, прежде чем делать расчеты, Фалес подождал, когда солнечные лучи будут направлены перпендикулярно грани пирамиды, так как в этот момент расстояние от центра пирамиды до ее грани равно половине длины стороны пирамиды. Учитывая, что в приведенном выше уравнении три значения были известны, Фалес смог вычислить оставшееся значение — высоту пирамиды.
Параллельные лучи солнца образуют два подобных треугольника: один создан пирамидой, а другой — шестом
Открытие Фалеса стало крохотным шагом для тригонометрии, науки о треугольниках, и огромным скачком для человечества. По мнению ученого, способ определять размер объекта логически вытекал из его свойств[58]. Это отличало мышление Фалеса от мышления египтян, которые проявляли выдающиеся способности в практических областях (таких как строительство пирамид), но при этом их математические знания значительно ограничивались эмпирическими правилами и треугольниками, существующими в реальной жизни. В расчетах Фалеса был задействован треугольник, являющийся абстракцией реальности, образованной солнечными лучами. Идеи Фалеса положили начало греческому рациональному мышлению, которое мы считаем основной западной математики, философии и науки.
Имя Фалеса также носит еще одно его открытие — теорема Фалеса, которая гласит, что треугольник, вписанный в полукруг, всегда прямоугольный[59] [60]. Кроме того, воспользовавшись дедуктивным методом, Фалес предсказал солнечное затмение 585 года до нашей эры, а также повышение урожайности оливковых деревьев в его родном городе Милете после нескольких неблагоприятных лет. Он скупил все оливковые маслобойни, какие только смог, по самым низким ценам и разбогател во время небывалого урожая оливок. Столетие спустя древнегреческий комедиограф Аристофан подшутил над великим мудрецом, введя в одну из пьес сцену, где Фалес упал в канаву, в задумчивости рассматривая звезды. Фалеса помнят не только как первого в истории математика и философа, но и как первого самого рассеянного ученого.
Во время устроенного в Гизе представления Фалес продемонстрировал, как посредством треугольника измерить расстояние от ближней точки до дальней без физического перемещения в дальнюю точку. Впоследствии треугольники стали использовать для измерения гораздо больших расстояний, чем высота пирамиды, что полностью изменило такие науки, как астрономия, навигация и картография. Но об этом мы поговорим позже. Иногда огромные расстояния можно измерить, просто понаблюдав за тенью, отбрасываемой вертикально установленным шестом в солнечный день. Спустя три столетия после того, как Фалес с помощью шеста и дедуктивной логики произвел впечатление на фараона, Эратосфен применил тот же метод для получения первой реалистичной оценки окружности Земли.
Эратосфен жил в Александрии, столице эллинистического Египта, где возглавлял крупнейшую в то время знаменитую Александрийскую библиотеку. Там же, в Александрии, он измерил угол падения солнечных лучей у верхушки вертикального шеста в полдень летнего солнцестояния. Оказалось, что этот угол составляет примерно пятидесятую часть полного круга. Эратосфену было известно, что в Сиене, самом южном городе Египта, есть знаменитый колодец, дно которого полностью освещается в полдень летнего солнцестояния, то есть в это время в этом месте Солнце совсем не отбрасывает тень. На основании этих двух фактов Эратосфен сделал вывод, что расстояние от Александрии до Сиены должно составлять пятидесятую часть окружности Земли.
Эратосфен рассуждал так. Во-первых, в то время уже знали, что Земля круглая: люди видели, что корабли уходят за горизонт, а Земля отбрасывает изогнутую тень на Луну во время лунного затмения. Во-вторых, Эратосфену было известно, что Сиена находится строго на юг от Александрии. С учетом этих двух фактов он смог нарисовать представленную ниже схему, на которой изображено поперечное сечение земного шара с севера на юг, проходящее через Александрию и Сиену, в полдень летнего солнцестояния. В этот момент солнечные лучи направлены через Сиену прямо в центр Земли, а в Александрии падают на шест под углом. Поскольку шест установлен вертикально, он также должен указывать на центр земного шара. Следовательно, можно нарисовать абстрактную геометрическую схему (рисунок справа), на которой параллельные линии изображают солнечные лучи, а пересекающая их линия проходит от вершины шеста к центру Земли.
В полдень летнего солнцестояния Солнце не отбрасывает тень в Сиене, но отбрасывает тень от шеста, установленного в Александрии. Угол, который образуют солнечные лучи с шестом, равен углу от центра Земли к этим двум городам
Одна из основных теорем греческой геометрии гласит, что лежащие накрест углы равны, а это значит, что линия, пересекающая две параллельные прямые, образует с ними равные углы. Следовательно, угол, который образует с лучами шест, равен углу в центре Земли. Эратосфен определил, что построенный шестом угол составляет пятидесятую часть полного круга, стало быть, и угол в центре Земли такой же. Получается, расстояние от Александрии до Сиены составляет одну пятидесятую окружности земного шара.
Выходит, что для того, чтобы вычислить окружность Земли, Эратосфену следовало просто умножить расстояние от Александрии до Сиены на пятьдесят. У греков уже была достаточно точная оценка этого расстояния — 5000 стадиев: его измерили бематисты (землемеры), шагомеры, определяющие расстояние и маршрут. (Эратосфену как создателю географии судьба подарила три географических факта, без которых его измерения были бы невозможны: египтяне расселились вплоть до Сиены, находящейся на Тропике Рака — самой северной широте, где Солнце не отбрасывает тень по крайней мере один раз в год; Сиена расположена строго на юг от Александрии; земля между этими двумя городами позволяла проложить более-менее ровную дорогу.) Один стадий в современной системе измерения равен 166 метрам. Таким образом, окружность Земли была рассчитана так: 166 метров 5000 стадиев 50, что составляет примерно 41 500 километров, всего на 1500 километров (около 4 процентов) больше правильного значения. На протяжении целой тысячи лет никому не удалось получить более точный результат, чем Эратосфен.
Сейчас город Сиена известен как Асуан. В нем до сих пор сохранился тот самый колодец, однако из-за безжалостного полуденного зноя, наступающего в день летнего солнцестояния, это место вряд ли станет Меккой для туристов.
Ко временам Эратосфена греческая математика уже прошла путь от первых идей Фалеса относительно треугольников до большого свода теорем о них вместе с доказательствами. Преобладание треугольника в греческом мышлении обусловлено тем, что все фигуры, построенные на основе прямых линий (квадраты, пятиугольники и т. д.), можно разбить на треугольники, а фигуры, образованные кривыми линиями (такие как окружности, эллипсы и параболы), — приближенно представить в виде треугольников.
Поскольку все треугольники делятся на прямоугольные (треугольники, в которых один угол прямой, или «четвертьоборотный»), древние греки ценили последние больше всего. На представленном ниже рисунке показано, как разбить треугольник на два треугольника поменьше с прямыми углами. Для этого необходимо провести перпендикуляр до самой большой стороны от противоположного угла треугольника. Когда мы начинаем изучать математику, нам рассказывают, что такое гипотенуза — самая длинная сторона прямоугольного треугольника, противоположная прямому углу. И сразу после этого объясняют теорему Пифагора (нижний рисунок), которая гласит:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов[61]
Прямоугольные треугольники
Теорема Пифагора
Теорема Пифагора стала одной из наиболее известных в математике по многим причинам, самая главная из которых состоит в том, что в ней речь идет о прямоугольном треугольнике — объекте планиметрии, не поддающемся упрощению.
Когда Солнце отбрасывает тень от шеста, образуется прямоугольный треугольник, как мы помним из истории о Фалесе. Однако, когда Солнце движется по небу, изменение угла падения солнечных лучей не вызывает пропорционального изменения длины тени. Если угол увеличивается с постоянным приращением (как на представленном ниже рисунке), то приращение длины тени с каждым разом становится все больше, поэтому в конце дня мы видим, как тени буквально ползут по земле. Астрономы, не говоря уже о производителях солнечных часов, очень хотели понять взаимосвязь между углом падения солнечных лучей и длиной тени. Но у древних греков не было инструмента, который бы помог им ответить на этот вопрос: при всех их геометрических знаниях, существовавшая на то время система представления чисел была чрезвычайно громоздкой. Для того чтобы продвинуться дальше в изучении треугольников, древним грекам требовалась более эффективная система записи дробных чисел.
Солнечные лучи, падающие под равными углами, отбрасывают тени разной длины
Греческая система счисления произошла от египетской, которая подразумевала запись чисел двумя способами[62]. Вырезая числа на дереве или высекая на камне, египтяне использовали иероглифы. Каждая степень десяти от единицы до миллиона была представлена специальным символом: 1 — вертикальная линия, 10 — перевернутая буква U, 100 — спираль, 1000 — цветок лотоса со стеблем, 10 000 — слегка изогнутый палец, 100 000 — головастик, 1 000 000 — человек на коленях с поднятой к небу головой[63]. Любое число зписывалось посредством повторения этих символов; например, число 3 141 592 выглядело бы так.
Для записи чисел на папирусе египтяне применяли менее сложную систему иератического письма, которая больше подходила для использования ручки и чернил. Они ввели специальные символы для обозначения цифр и чисел, кратных 10. Таким образом, вместо утомительного изображения числа 7 в виде семи вертикальных линий египтяне применяли один символ . Переход от представления чисел в виде повторяющихся иероглифов к их записи с помощью символов был важным шагом вперед.
В случае записи чисел с помощью иероглифов для обозначения дробей над числом размещался символ рта , для того чтобы обозначить обратную величину — подобно тому, как мы ставим 1 над линией дроби. Например, дробь изображалась как , а — как . В системе записи чисел посредством иератического письма для обозначения дроби над числом ставилась точка; например, дробь выглядела так: . Египтяне использовали только единичные дроби, поэтому им приходилось разбивать дроби с числителем больше 1 на сумму единичных дробей, например — на + и — на + + + . Сжатое значение египетских сумм единичных дробей напоминает нашу систему десятичных дробей, в которой, например, число 0,234 представляет сумму дробей + + , хотя египетская система была не настолько эффективной и гибкой, как наша[64]
Во времена Евклида древние греки уже использовали систему счисления, основанную на египетском иератическом письме: 27 числам соответствовали 27 различных символов — букв греческого алфавита[65]. Например, число 444 записывалось как µ, поскольку символом обозначалось число 400, символом µ — 40 и — 4. Дроби описывались словами, скажем, «одиннадцать частей в восьмидесяти трех» или отображались в виде простых дробей с числителем и знаменателем, во многом напоминавших современную форму, такую как , хотя у греков сохранилось исторически сложившееся пристрастие к единичным дробям. Египетская и греческая системы представления чисел не годились для астрономии, поскольку для отслеживания движения планет необходимо рассчитывать малейшие доли углов, а простые и единичные дроби слишком громоздки для этого.
В Месопотамии, однако, применялась гораздо более гибкая система представления чисел. В Вавилоне использовалась позиционная система счисления, в которой значение каждой цифры зависело от ее позиции в числе. Современная числовая система — это десятичная позиционная система счисления. Например, в числе 123 цифра 3 находится в разряде единиц, цифра 2 — в разряде десятков и цифра 1 — в разряде сотен. Большим преимуществом позиционной системы счисления является то, что с ее помощью можно записывать дроби. В нашей системе счисления такие дроби называются десятичными. Например, в числе 0,56 цифра 5 находится в разряде десятых, а цифра 6 — в разряде сотых.
Вавилоняне применяли шестидесятеричную систему счисления, то есть в ее основу было положено число 60. (В вавилонской системе числа записывались в виде комбинации двух символов — вертикального клина и горизонтального клина .) До сих пор неизвестно, почему вавилоняне выбрали именно число 60 в качестве основания позиционной системы, хотя, возможно, это объясняется тем, что шестьдесят — минимальное число, которое делится на 1, 2, 3, 4, 5 и 6, а это упрощало решение ряда арифметических задач. Вавилоняне расширили свою систему представления чисел на дроби. У них не было специального «шестидесятеричного» символа, подобного нашей десятичной запятой, поэтому значение разрядов приходилось определять по контексту. Например, число 123 могло означать также, что цифра 1 находится в разряде единиц, цифра 2 — в разряде шестидесятых, а цифра 3 — в разряде 3600-х. Позиционные дроби значительно превосходят простые дроби, как мы знаем по собственному опыту применения десятичных дробей. Для их записи требуется меньше символов, и с ними проще делать расчеты. Вавилоняне умели извлекать корень из двух до трех шестидесятеричных разрядов, или с точностью около 0,000008 от истинного значения — поразительный результат для того периода. Легкость, с которой вавилоняне делили углы на более мелкие части, позволила им добиться выдающихся для своего времени успехов в астрономии.
Вавилоняне поделили круг на 360 градусов. Возможно, такое разбиение было связано с зодиакальным кругом, который состоял из 12 знаков зодиака и 36 декан (деканальных божеств), или с тем, что 360 — это примерное количество дней в году. Не так давно появилось еще одно предположение: число 360 выбрано потому, что, как показано на рисунке ниже, в окружность вписывается шесть равносторонних треугольников и каждый из углов в ее центре разделен на 60 частей, как того требуют шестидесятеричные дроби. Безусловно, все эти причины дополняли друг друга, и вавилонская система счисления оказалась чрезвычайно долговечной.
Во II столетии до нашей эры древние греки заимствовали вавилонские дроби, используемые до сих пор. Градус по традиции был разделен на 60 более мелких частей, каждая из которых обозначалась как pars minuta prima («часть мелкая первая») и состояла, в свою очередь, тоже из шестидесяти мелких частей, позиционируемых как pars minuta secunda («часть мелкая вторая»). От этих латинских выражений произошли слова минута и секунда, или единицы времени, — самые известные реликвии, доставшиеся нам от древней шестидесятеричной системы счисления.
Имея в своем распоряжении подходящую систему счисления, древнегреческий астроном Гиппарх приступил к составлению таблицы данных о соотношении сторон треугольника. Он делал это на основе хорды — отрезка, соединяющего две точки окружности и названного так потому, что он напоминает туго натянутую струну лука[66]. Каждая хорда с центром окружности образует треугольник, как показано на рисунке ниже
Если длина окружности постоянна, то углам с вершиной в ее центре соответствуют хорды разной длины. Гиппарх составил таблицу углов, кратных 7,5 градуса, с указанием длины хорд. Во II столетии нашей эры астроном Птолемей развил эту идею, создав таблицу хорд для окружности с радиусом 60 единиц, в которой была приведена длина хорд, соответствующих углам с интервалом в полградуса от 0 до 180 градусов, с точностью до третьего шестидесятеричного разряда. Таблицы хорд Гиппарха и Птолемея оказались бесценны для западных астрономов, рассматривавших Землю и другие небесные тела как вершины космических треугольников. Таким образом, треугольник стал первым телескопом за всю историю человечества, сделав внеземные объекты доступными для измерения.
В Индии в середине первого тысячелетия нашей эры астрономия процветала по той же причине, что и в Вавилоне: у индийцев тоже была позиционная система счисления, позволяющая им эффективно описывать как очень большие, так и очень малые числа. На самом деле индийская система счисления даже превосходила вавилонскую, поскольку основывалась на десятках, что было более удобно, чем группы по шестьдесят цифр. Кроме того, индийцы считали ноль полноправным числом, а не символом-заполнителем незначащих разрядов чисел, как вавилоняне. Индийские астрономы также пользовались таблицами длин сторон треугольников. Однако вместо хорд они их составили для полухорд. Как показано на верхнем рисунке, полухорда — это сторона прямоугольного треугольника, в котором радиус окружности представляет собой гипотенузу,а другая сторона — часть биссектрисы, перпендикулярной хорде. Концепция полухорд удобнее для расчетов, поскольку, как мы уже знаем, любой треугольник делится на прямоугольные треугольники. Позиционная система счисления индийцев и их знания о длине сторон треугольников получили распространение в арабском мире и со временем достигли Европы. Система представления чисел с помощью цифр от 0 до 9, которые мы используем в наше время, так же как и выбор полухорд, берет свое начало в индийской системе счисления.
В VI столетии до нашей эры Фалес уловил суть самого важного свойства треугольников, лежащего в основе всего, что мы о них знаем, в частности, что при равных углах отношения их сторон не меняются.
А теперь представим, что мы перенеслись на две тысячи лет вперед, в то время, когда математики изобрели три новые концепции, основанные на этом свойстве: синус, косинус, тангенс.
SOH-CAH-TOA![67]
Тем, кто забыл это мнемоническое правило, хочу напомнить формулы:
Синус, косинус и тангенс — это тригонометрические функции, применяемые по отношению к прямоугольным треугольникам, таким как треугольник на представленном выше рисунке. Синус угла — это отношение противолежащего катета к гипотенузе; косинус угла — отношение прилежащего катета к гипотенузе; тангенс угла — отношение противолежащего катета к прилежащему.
Если понадобится увеличить изображенный на рисунке треугольник до нужного размера, пропорции между сторонами останутся неизменными, а это значит, что синус, косинус и тангенс угла , которые принято записывать как «sin », «cos » и «tan »[68], представляют собой постоянную величину. Тригонометрические функции — это своего рода идентификационный код, описывающий форму прямоугольных треугольников: она зависит от внутренних углов, поэтому, если они неизменны, не изменяются и значения синуса, косинуса и тангенса.
При внимательном рассмотрении приведенных выше рисунков связь между синусом и полухордой становится очевидной. Синус угла представляет собой отношение противолежащей стороны к гипотенузе, которое равно отношению полухорды к радиусу. Если радиус равен 1, тогда синус угла — это и есть полухорда.
Согласно этимологии слова «синус», оно пришло к нам из Индии. На санскрите полухорда обозначалась как jya-ardha, или «половина тетивы». Арабы транслитерировали это слово как jiba — лишенное смысла слово, звучащее почти как jaib — «пазуха», или «углубление». При переводе арабских текстов на латынь термин jaib был переведен как sinus, что означало складку тоги над грудью женщины. В английском языке это слово трансформировалось в sine.
Ниже представлена небольшая тригонометрическая таблица. Углам с изящными значениями не всегда соответствуют столь же изящные значения тригонометрических функций. При величине угла от 0 до 90 градусов значение синуса находится в пределах от 0 до 1, косинуса — от 1 до 0, а тангенса — от 0 до бесконечности. Первые тригонометрические таблицы были составлены в XV–XVI веках с использованием геометрических и математических методов, что подготовило почву для золотого века треугольника.
sin 1° = 0,0175/cos 1° = 0,9998/tan 1° = 0,0175
sin 10° = 0,1736/cos 10° = 0,9848/tan 10° = 0,1763
sin 30° = 0,5000/cos 30° = 0,8660/tan 30° = 0,5774
sin 45° = 0,7071/cos 45° = 0,7071/tan 45° = 1,0000
sin 60° = 0,8660/cos 60° = 0,5000/tan 60° = 1,7321
sin 90° = 1,0000/cos 90° = 0,0000/tan 90° =
При отсутствии необходимых технических приспособлений можно применить новые математические инструменты. Например, если мы хотим измерить высоту дерева, мы решаем эту задачу при помощи прямоугольного треугольника, как показано ниже.
Если Р — это точка на земле, с которой видна верхушка дерева, а — угол наблюдения, то:
Эту формулу можно преобразовать в следующее уравнение:
h = d tan
Как правило, такие уравнения записываются так:
h =d tan
Топографу эпохи Возрождения следовало измерить угол с помощью транспортира и визира, после чего ему лишь оставалось найти в тригонометрической таблице значение tan . Расстояние d он мог измерить посредством мерной ленты или куска веревки. Вот и весь секрет того, как вычислить высоту дерева, не отрываясь от земли.
Для того чтобы определить высоту горы, необходимо нарисовать два треугольника (как показано выше), поскольку добраться до угла треугольника, расположенного прямо под вершиной горы, невозможно. Топограф решает эту задачу путем наблюдения за вершиной горы из двух точек, каждая из которых образует прямую линию с вершиной под углами и . Кроме того, он измеряет расстояние d между этими двумя точками. Высоту горы можно рассчитать с помощью значений tan , tan и d (в Приложении 3 показано, как это сделать).
Тригонометрия (или наука о соотношении сторон треугольника) повлияла на развитие таких областей, как навигация и военное дело, позволив морякам и солдатам измерять расстояния до объектов, к которым они не могли приблизиться без риска утонуть или быть убитыми. Кроме того, тригонометрия помогла арабскому ученому аль-Бируни превзойти результат Эратосфена в определении окружности Земли. В XI веке нашей эры, когда аль-Бируни жил в крепости у Соляного Кряжа в Пенджабе, он случайно нашел место, географические характеристики которого идеально подходили для измерения высоты горы. Она была высокой и выходила на плоскую равнину. Все складывалось как нельзя лучше для реализации этого намерения посредством тригонометрии, поэтому аль-Бируни так и поступил. Но затем, вместо того чтобы собрать вещи и уйти, он взобрался на вершину горы и измерил угол между горизонтальным направлением взгляда и горизонтом, обозначенный на рисунке ниже как . Далее аль-Бируни соединил точку встречи горизонта с землей и точку на вершине горы, в которой он стоял, с центром Земли, образовав прямоугольный треугольник. Затем он вычислил радиус Земли, умножив высоту горы на отношение (доказательство можно найти в Приложении 3). Выполнив необходимые расчеты, аль-Бируни получил значение радиуса Земли, равное 6335 километрам, что дает окружность 39 800 километров — всего на 0,5 процента меньше правильного значения и почти в десять раз точнее, чем оценка Эратосфена.
Измерение радиуса Земли по методу аль-Бируни
Соотношение сторон треугольника стало настоящим открытием для архитекторов, астрономов, артиллеристов, ученых и мореплавателей. К тому же это послужило толчком к формированию абстрактной математики, позволяющей по-новому взглянуть на классические геометрические концепции, такие как теорема Пифагора, которая гласит, что:
a2+b2= c2,
где c — гипотенуза, a и b — два катета.
Если — это угол между сторонами b и c, тогда:
Другими словами, a = c sin , а b = c cos . Мы можем подставить эти значения в уравнение Пифагора:
(c sin )2 + (c cos )2 = c2,
которое можно преобразовать так:
c2 (sin )2 + c2 (cos )2 = c2
и привести к следующему виду:
(sin )2 + (cos )2 = 1
Прекрасно! Теперь у нас есть компактная формула, демонстрирующая, как можно вычислить синус по косинусу и наоборот без необходимости рисовать треугольник. Это простейшее из уравнений, которые называют тригонометрическими тождествами — уравнениям, включающими в себя тригонометрические функции. Принято считать, что арабский математик ибн-Юнус (современник аль-Бируни) вывел следующую формулу:
Она имела огромное значение, хотя математикам понадобилось пять сотен лет, чтобы понять почему. Уравнение ибн-Юнуса позволяет заменить такую трудную математическую операцию, как умножение, на более простое действие — сложение.
Представьте, что нам нужно умножить 0,2897 на 0,3165.
Оба числа находятся в диапазоне от 0 до 1, стало быть, есть такие углы, для которых эти числа являются косинусами. Определить, какие именно углы соответствуют данным значениям, помогут тригонометрические таблицы. Вот эти углы:
cos 73,160° = 0,2897
cos 71,548° = 0,3165
Следовательно, мы можем записать уравнение так:
0,2897 0,3165 = cos 73,160° cos 71,548°
Приведенное выше тождество говорит о том, что эта формула эквивалентна следующему уравнению:
Обратившись к таблицам, получим тождество:
Это и есть результат умножения чисел 0,2897 и 0,3165, причем очень точный. Умножьте их с помощью калькулятора, округлите произведение до четвертого десятичного знака, и получите 0,0917.
Приведенный выше способ умножения чисел может показаться слишком сложным, но в конце XVI столетия он был самым легким. Вместо того чтобы расписывать операцию умножения в столбик, что требует больших усилий и времени, достаточно просто посмотреть в сборник тригонометрических таблиц, сложить два числа, найти их разность, снова посмотреть в таблицы, сложить два числа и разделить их на два. Этот метод обозначается термином простаферезис (prosthaphaeresis), который образован от греческих слов, означающих сложение и вычитание, — prosthesis и aphaeresis.
Метод простаферезиса вдохновил шотландца Джона Непера на поиск еще более эффективного способа преобразования умножения в сложение, что в 1614 году привело к открытию логарифма. Вместо умножения двух чисел теперь можно было сложить их логарифмы. Логарифмы Непера существенно упростили процесс умножения, из-за чего метод простаферезиса утратил популярность. Тем не менее на протяжении нескольких десятилетий триумфа прямоугольный треугольник — квинтэссенция геометрии — играл двойную роль в качестве невидимого оружия арифметики.
Хотя треугольники, несомненно, весьма полезны по отдельности, в командной игре они особенно эффективны. Если нарисовать сеть треугольников (как показано на рисунке ниже) и измерить в ней все углы, то достаточно определить точную длину одной линии, чтобы рассчитать длину всех остальных линий сети. Предположим, нам известна точная длина линии, выделенной жирным; обозначим ее как l. Тригонометрическое тождество, которое принято называть теоремой синусов, дает нам формулу расчета длины двух других сторон треугольника:
где — угол, противоположный жирной линии, и — два других угла треугольника. Поскольку все углы в треугольниках сети известны, на основании длины каждой очередной линии можно вычислить длину двух других линий — и так далее, пока не будет известна длина каждой линии сети. Этот метод применим к любым треугольникам, а не только к прямоугольным.
В 1533 году голландский математик Гемма Фризиус понял, что метод триангуляции как нельзя лучше подходит для картографии, поскольку измерять углы гораздо легче, чем большие расстояния[69]. Его идея состояла в том, чтобы выбрать точки на местности так, чтобы от каждой из них было видно две других, и построить таким образом сеть треугольников. Он измерил углы между точками с помощью теодолита — круглого транспортира на подставке. Определив длину базисной линии, Гемма Фризиус смог рассчитать все остальные расстояния, используя тригонометрические таблицы, а затем нарисовал точную карту местности.
Триангуляция
Франция стала первой страной, в которой триангуляция была выполнена по всей территории, и произошло это в 1668 году. Единственная сложная задача в любом виде триангуляции заключается в измерении первого расстояния. Аббат Жан Пикар взял за основу участок прямой дороги от Вильжюиф до Жувиньи длиной в 11 километров, который тщательно измерил с помощью деревянных мерных реек. Затем Пикар отправился на север, используя в качестве вершин треугольников такие ориентиры, как часовые башни и вершины холмов, и измеряя только углы между ними. Добравшись до Атлантического океана, Пикар обнаружил, что побережье гораздо ближе расположено к Парижу, чем считалось раньше. «Твоя работа стоила мне приличной части моих владений!» — фыркнул Людовик XIV. Начатый Пикаром процесс триангуляции продолжался еще столетие после его смерти, пока территорию Франции не покрыли четыре сотни треугольников. Знаменитая карта Франции, составленная в итоге, содержала больше деталей, чем любая другая из созданных ранее карт, и была выполнена почти в том же масштабе, что и стандартные туристические карты Michelin, доступные в наше время.
Французы испытывали amour fou — безумную любовь к треугольникам. В 1735 году Людовик XV отправил две команды геодезистов-триангуляторов в противоположные концы Земли, для того чтобы решить важный научный спор. Земля — неидеальная сфера. Шли жаркие дискуссии вокруг того, какую форму она имеет — сплюснутую у полюсов (как грейпфрут) или на экваторе (как лимон). Эта тема стала предметом раздора между британцами, ратующими за первое, и французами, которые с ними не соглашались. Французы поняли, что можно правильно определить, на какой именно плод похожа Земля, сравнив расстояние, которое покрывает на поверхности Земли один градус широты у Северного полюса и у экватора. Если бы Земля имела форму идеальной сферы, длина одного градуса широты была бы везде одинаковой и составляла бы окружности Земли. Однако, если бы у полюсов это расстояние было больше, это означало бы, что земной шар сплюснут у полюсов, а если меньше, значит, у экватора. Французы отправили одну экспедицию в Лапландию, а другую — в сторону современного Эквадора в Южной Америке. Наблюдая за звездами, они рассчитали начальную широту, а затем в Лапландии начали строить сеть триангуляции строго на север, а в Эквадоре — строго на юг. В конечной точке триангуляции они снова определили широту посредством наблюдений за звездами. После длительной борьбы со снежными бурями и москитами в Скандинавии и высотной болезнью в Андах две группы пришли к выводу, что в Лапландии один градус широты длиннее. Британцы оказались правы: наш мир действительно похож на большой pamplemousse («грейпфрут» по-французски).
Французы использовали треугольник в качестве рабочего инструмента для социального и научного развития. Для Великобритании же это был инструмент управления империей[70]. Великое тригонометрическое исследование Индии, проводившееся в течение большей части XIX столетия, стало крупнейшим научным проектом своего времени. Говорят, по количеству погибших людей и потраченных денег оно превзошло многие индийские войны той эпохи. Процесс измерения начался с южной оконечности Индийского полуострова, продолжился по джунглям, Деканскому плоскогорью и северным равнинам и закончился в Гималаях под руководством полковника Джорджа Эвереста (правильное произношение его имени — «Иврест»).
В ходе триангуляции измеряются как горизонтальные, так и вертикальные углы, что дает возможность создать трехмерную сеть треугольников, позволяющую топографам измерить и высоту объектов, и расстояние между ними. В Гималаях высота горных вершин представляла наибольший интерес. В то время самой высокой в мире считалась гора Чимборасо в Эквадоре, высоту которой столетием ранее измерили французы. Гималаи с их покрытыми снегом вершинами называли величественными горами, но заявления о том, что они выше Анд, воспринимались как очередная небылица из страны фокусников и заклинателей змей. Однако это мнение изменилось, когда экспедиия Джорджа Эвереста добралась до цепи гор, вздымающихся в небо, у самой высокой из которых не было местного названия. Впоследствии ее нарекли «Эверест» — по имени полковника Эвереста. Это самая высокая гора в мире, и ее название все произносят неправильно.
Северо-восточная территория Великой тригонометрической службы Индии, в том числе Колката (бывшая Калькутта) и Гималаи
Science Museum/Science & Society Picture Library
В Великобритании создание первой триангуляционной сети, охватывающей всю территорию страны, осуществлялось в период с 1783 по 1853 год. (Один конец базисной линии находится сейчас на территории автопарка аэропорта Хитроу, где размещен небольшой памятный знак. Базисные линии и аэропорты чаще всего располагаются на равнинах.) Повторная триангуляция началась в 1935 году и продолжалась до 1962 года. Управление геодезии и картографии установило в вершинах треугольников более шести тысяч бетонных геодезических знаков, ставших основой создания сети координат, используемой в официальных картах до сих пор.
Однако результаты повторной триангуляции почти сразу же устарели. Необходимость построения триангуляционной сети в масштабах всей страны была обусловлена тем, что измерять углы гораздо легче, чем расстояние между объектами. Но в 1960-х годах появилась новая лазерная технология, позволяющая точно определять большие расстояния. Достаточно разместить лазерный передатчик в одном месте, а приемник — в другом, и лазерный луч пройдет этот отрезок со скоростью света. Расстояние от источника до цели равно произведению скорости света на время прохождения этого расстояния. Когда у геодезистов появилась возможность использовать лазерные приборы, у них отпала необходимость в построении треугольников.
В Великобритании осталось 6200 геодезических знаков, и все они стали местом паломничества, причем не только для таких людей, как Роб Вудолл, но и для искателей приключений самых разных мастей. Геометрическая простота этих знаков, которые представляют собой пирамидальные обелиски с плоской верхушкой, придает им непреходящее мистическое очарование. Сейчас, когда они изрядно обветшали и потрепаны временем, поневоле задаешься вопросом: может, их поставили здесь друиды, а не географы?
Тем не менее новые технологии все же не могут обойтись без треугольников. Тригонометрические функции — неотъемлемая часть Глобальной системы позиционирования (Global Positioning System, GPS), инфраструктуры на основе спутниковой связи, которая устанавливает местоположение наших смартфонов и автомобильных навигаторов, в каком бы месте земного шара мы ни находились. Каждый спутник сети расположен на независимой орбите, которая определяется на основании ряда параметров, рассчитанных с помощью синусов и косинусов. Для того чтобы мой телефон вычислил свое местоположение, он должен получить такие координаты минимум с четырех спутников. Когда это происходит, он обрабатывает эти данные, обращаясь к таблице синусов и косинусов, хранящейся в его памяти.
Ученые пользовались таблицами тригонометрических функций на протяжении двух тысяч лет. В настоящее время мы носим их в карманах. Принцип, который гласит, что стороны треугольников с одинаковыми углами пропорциональны, был положен в основу первого математического доказательства и сохраняет свою важность в информационную эпоху.
4. Конусоголовые
Автор направляет свет своего факела на конус и видит его отражение в ракетах, планетах и башнях. Он познаёт радость катания шаров — как погруженных в чернила в Италии эпохи Возрождения, так и отскакивающих от бортика бильярдного стола в Нью-Йорке
Давайте возьмем прямоугольный треугольник и модифицируем его, вращая вокруг одной из меньших сторон. Полученный трехмерный объект — это конус: геометрическое тело с основой в виде круга и острой вершиной. Такие объемные фигуры не очень практичны: их нельзя катать как шары или складывать друг на друга как кубики. Тем не менее в прошлом конус активно использовался в моделях головных уборов. Вьетнамские крестьяне, работающие на рисовых полях, волшебники, отстающие ученики — все они носили остроконечные шляпы. У древних греков среди ремесленников и простого люда был популярен конусообразный головной убор из войлока или кожи — пилос. Однако в целом интерес к конусу имел скорее интеллектуальный, чем портняжный характер, поскольку конус — это настоящий математический клад.
Разрежьте конус ножом — и получите сечение в виде одной из четырех кривых: окружность, эллипс, парабола или гипербола. Форма конического сечения зависит от угла наклона лезвия ножа. Горизонтальный разрез образует окружность; наклонный разрез, пересекающий боковую поверхность конуса, — эллипс; разрез, параллельный образующей конуса, — параболу, а более глубокие разрезы — гиперболу, как показано на рисунке ниже. Анализ конических сечений стал высшим достижением древнегреческой геометрии и представляет собой яркий пример того, как некий объект исследований изучался исключительно ради удовольствия и лишь тысячелетие спустя нашел важнейшее применение. Оказалось, что обычный конус содержит ответы на фундаментальные вопросы об устройстве Вселенной.
Конические сечения
Окружность — это замкнутая плоская кривая, все точки которой равноудалены от центра. Привяжите нить к карандашу и воткнутой в бумагу булавке, натяните нить — и сможете нарисовать окружность. А теперь сделайте из нити петлю и зафиксируйте ее на двух булавках, как показано на рисунке ниже. Путь, который пройдет карандаш, туго натягивающий нить, — это эллипс. Все окружности имеют одинаковую форму, а это значит, что при их уменьшении или увеличичении полученная в итоге окружность будет идентична любой другой окружности. Эллипсы, напротив, бывают разной формы, зависящей от положения булавок, или фокусов. Чем ближе фокусы друг к другу, тем больше эллипс напоминает окружность. Когда фокусы совпадают, эллипс превращается в окружность. На самом деле в математике окружность считается частным случаем эллипса с совпадающими фокусами.
Как нарисовать эллипс
При взгляде на окружность под углом мы видим эллипс. Колеса, монеты, часы, обручи, кольца и диски всегда выглядят как эллипсы, если только они не находятся параллельно лицу, что бывает нечасто. Кроме того, для любого эллипса есть такой угол зрения, под которым он похож на окружность. (Отодвиньте эту книгу в сторону и поверните ее от себя, чтобы увидеть любой из эллипсов на этих страницах как окружность.)
Эллипс обладает одним геометрическим свойством, представляющим исторический интерес для любителей игр в закрытых помещениях. Если стол для игры в американский бильярд сконструирован в виде эллипса, то шар, посланный из одного фокуса, всегда отскакивает от борта и направляется ко второму фокусу, независимо от того, в каком направлении сделан удар по шару. Эта интересная особенность обусловлена следующим свойством эллипса: прямая линия, проведенная от одного фокуса к точке на эллипсе, образует с касательной такой же угол, что и линия, проведенная из этой точки к другому фокусу, как показано на рисунке слева. Когда вы наносите удар по шару, отбивая его на край стола, угол движения шара в момент его приближения к борту равен углу в тот момент, когда шар отскакивает от борта, — это известно любому, кто когда-либо натирал мелом конец кия[71]. Следовательно, если ударить по шару в одной точке фокуса, он обязательно отскочит в направлении другого фокуса.
Линии, проведенные от точки на эллипсе к двум его фокусам, образуют с касательной одинаковые углы, что обеспечивает бильярдистам три способа загнать шар в лузу непрямым ударом
В начале 1960-х годов ученик средней школы из Коннектикута Арт Фриго-младший сделал эллиптический стол для игры в американский бильярд, после того как узнал о конических сечениях в школьном математическом кружке. На столе Арта была черная точка на месте одного фокуса и луза — на месте другого; больше луз у этого стола не было. Если на столе находился только один шар, как показано на рисунке справа, существовало три способа загнать его в лузу, нацеливаясь не на саму лузу, а на черную точку. В таком случае, если сделать удар по шару в направлении черной точки, шар пройдет через нее, ударится о борт и попадет в лузу; если сделать удар по шару в направлении, противоположном направлению на черную точку, шар также отскочит от борта и попадет в лузу; если сделать удар по шару в направлении, противоположном лузе, то шар отскочит от борта один раз, пройдет через черную точку, ударится о борт еще раз, отскочит и снова попадет в лузу. Этот стол был настоящей машиной по забиванию шаров в лузу! Арт предложил начинать игру, которую он назвал «эллиптипул», с одного белого и шести цветных шаров на столе. Оригинальная форма стола открывала уникальные возможности для создания новых схем игры.
Арт сделал прототип своего стола и взял его с собой, когда поступил в Колледж Союза в городе Скенектади. В студенческом клубе стол пользовался такой популярностью, что о нем даже рассказывали в теленовостях. Впоследствии Арт запатентовал стол, и одна из компаний по производству игрушек предложила парню сделку. «У них были заказы на 80 000 столов. Мне тогда исполнился 21 год, и я подумал: “Я стану миллионером!”» — вспоминал он. Компания наняла Пола Ньюмана, который как раз снялся в главной роли в драме о бильярде The Hustler («Мошенник»), для съемок в рекламе стола. Однако возникли непредвиденные трудности. В результате понадобился почти год, чтобы столы поступили в продажу, но к тому времени дерево, из которого они были сделаны, деформировалось. После этого была разработана новая версия более прочного стола с монетоприемником, и такие столы установили в сотнях баров крупных городов. Но и это не помогло.
Когда Арт побывал в одном из таких мест, чтобы понаблюдать за игрой, он очень расстроился из-за того, что за его столом никто не играл. «Мне было больно, когда я увидел, что люди не понимают эту игру, — сетовал он. — Люди воспринимали мой стол просто как стол, который чем-то отличается от остальных. Если вы не знаете о фокальных точках, мяч не полетит туда, куда надо. Люди не могли загнать шар в лузу, потому что не понимали сути игры». Тем не менее, по словам Арта, этот опыт научил его тому, как не нужно начинать выпуск продукта. Впоследствии он стал успешным предпринимателем, занимаясь бриллиантами и губковыми швабрами. В настоящее время Арт живет во Флориде и импортирует оливковое масло.
Возможно, математической зависимости между фокусами эллипса и не удалось совершить переворот в американской барной культуре, но зато она нашла прекрасное применение в индустрии осветительных приборов. Подобно тому как бильярдный шар, посланный из одного фокуса эллипса, отскакивает от борта в направлении другого фокуса, все лучи источника света, если его разместить в фокусе эллипса, сделанного из отражающего материала, будут направлены в сторону другого фокуса. Вращая эллипс вокруг невидимой линии, соединяющей две фокальные точки, вы получите трехмерную фигуру под названием «эллипсоид». Если разместить лампочку у одного из фокусов эллипсоида с зеркальной внутренней поверхностью, это и будет основной элемент театрального прожектора. Речь идет о самом эффективном способе получения узконаправленного луча света. Излучаемый лампочкой свет отражается поверхностью эллипсоида и собирается во втором фокусе, образуя концентрированный пучок света, который преломляется затем через линзу. На самом деле оптическое применение конических сечений объясняет происхождение слова «фокус»: на латыни оно означает «очаг». В немецком языке происхождение этого слова еще более очевидно: «фокус» на немецком — brennpunkt, что значит «точка воспламенения».
Здания с эллиптическими крышами обладают удивительными свойствами, поскольку звук, созданный в одном из фокусов, будет отражаться из любой точки на поверхности крыши в другой фокус. Например, гигантский купол мормонского Табернакля (молитвенного дома) в Солт-Лейк-Сити был специально построен в форме половины эллипсоида[72] Если вы уроните булавку у кафедры проповедника, которая находится в одном из фокусов, звук от ее падения будет отчетливо слышен у другого фокуса, расположенного более чем в пятидесяти метрах от первого.
Развитие древнегреческой математики длилось почти тысячу лет, от Фалеса, который жил в VII–VI веках до нашей эры, до последней значимой фигуры — Паппа, предположительно жившего на рубеже IV–III веков до нашей эры[73]. Самое почетное место занимают три мыслителя: Евклид, Архимед и Аполлоний, великая троица классических математиков. Все они жили в III столетии до нашей эры. С Евклидом и Архимедом мы встретимся немного позже. Аполлоний же, самый младший из них, учился и преподавал в Александрии. Кроме того, он проживал в городе Пергам (территория современной Турции), в котором находилась вторая по величине библиотека Греческой империи. В наше время из этих троих гигантов мысли Древней Греции Аполлоний наименее известен, хотя в свое время его называли Megas Geometris — Великим Геометром. Из всех его книг до нас дошел только трактат о конусах Conics («Конические сечения»).
В трактате «Конические сечения» Аполлоний показал, как рассечение конуса позволяет получить три типа сечений, и дал им имена. Термин «эллипс» происходит от греческого слова leipein («опустить, пропустить»), «парабола» — от para («рядом, около»), а «гипербола» — от hyper («сверх, по ту сторону»). (Суффикс — bola означает «бросать»[74].) Названия, выбранные Аполлонием, основаны на свойствах областей этих кривых, достаточно сложных для того, чтобы их здесь объяснять. Однако мы можем выяснить, что он имел в виду, воспользовавшись понятием угла наклона секущей плоскости и той аналогией с рассечением конуса, о которой шла речь выше. Когда угол наклона секущей плоскости равен углу наклона боковой поверхности конуса, полученное сечение называется параболой; когда этот угол больше — гиперболой. В трактате «Конические сечения» содержится 387 тезисов; читать этот труд нелегко, отчасти потому, что Аполлоний использует громоздкую систему обозначений, уже вышедшую из употребления. Тем не менее он проделал колоссальную работу, которая считается высшим достижением древнегреческой геометрии. Тщательно изучив свойства конуса, Аполлоний создал формальную основу для крупных научных открытий, сделанных спустя два тысячелетия.
В «Конических сечениях» Аполлоний самонадеянно заявил, что тему этого трактата стоит изучать исключительно ради удовольствия. И все же он разработал математические концепции, нашедшие применение на практике. Древние звездочеты видели, что планеты перемещаются не по прямым линиям, а блуждают по небу и зачастую даже возвращаются обратно, образуя петли. (Слово «планета» происходит от греческого planetes — «странник».) В свое время Платон заявил, что планеты двигаются по идеальной окружности, которая представляет собой самую простую и изящную форму. Это утверждение основывалось на уверенности Платона в том, что мир построен с геометрической простотой и элегантностью, даже если факты говорят об обратном. Данным заявлением Платон бросил мыслителям вызов: доказать блуждающее движение небесных тел, используя определенное сочетание круговых движений. Аполлоний принял вызов и разработал систему, которая стала стандартной моделью на почти две тысячи лет.
Согласно предложенному Аполлонием описанию движения планет Земля находится в центре мироздания. Каждая планета движется по малой окружности — эпициклу, который, в свою очередь, перемещается вокруг Земли по большой окружности — деференту, как показано на рисунке ниже. Эта похожая на кружево орбитальная траектория напоминает рисунок, полученный с помощью спирографа — игрушки, в которой маленькое зубчатое колесо с ручкой в одном из отверстий вращается вокруг зубчатого колеса большего диаметра. Бывают моменты, когда орбита планеты, которая движется по эпициклу, перемещающемуся по деференту, образует петли, что объясняет, почему время от времени планеты как будто движутся в обратную сторону. Система Аполлония полностью соответствовала фактическим данным при совсем незначительных погрешностях, легко устраняемых посредством введения дополнительного эпицикла. Это означало, что орбита планеты формируется под влиянием совокупности трех круговых движений, другими словами — движется по окружности, которая перемещается по второй окружности, которая, в свою очередь, движется по третьей окружности с Землей в центре.
В труде «Альмагест», написанном во II веке нашей эры[75], греческий астроном Птолемей описал систему эпициклов и деферентов, которая оставалась общепризнанной моделью устройства мира вплоть до XVI столетия. Никто не подвергал ее сомнению, даже когда более точные измерения требовали включения все большего количества эпициклов. Последняя версия этой модели, включавшая в себя 39 циклов и эпициклов, описывала движение пяти планет, Солнца и Луны[76]. Мечта Платона о геометрической элегантности привела к созданию чрезвычайно запутанной схемы, которую даже церковь критиковала за нерациональность. «Если бы Всемогущий Бог посоветовался со мной перед творением, я бы порекомендовал что-нибудь попроще», — сказал в XIII веке о системе Птолемея король Альфонсо X Кастильский, которого еще называли El Sabio — Мудрый.
Сейчас мы знаем, что Аполлоний был неправ. Более простая модель планетных орбит все же существует, о чем мы поговорим чуть позже. На самом деле пренебрежительная фраза «прибавлять эпициклы» употребляется в наше время по отношению к плохой науке, бесконечному совершенствованию ошибочной теории в надежде на то, что в конце концов она сработает. Тем не менее система эпициклов господствовала так долго потому, что она как нельзя лучше справлялась со своей задачей. В большинстве случаев теория опровергается тогда, когда доказана ее несостоятельность. Но теорию эпициклов так никто и не опроверг, поскольку это невозможно в принципе. Интересно то, что циклы и эпициклы можно использовать для описания любой замкнутой непрерывной орбиты[77]. Идея Аполлония оказалась настолько действенной, что никому даже в голову не приходило искать что-то другое.
В 2005 году аргентинцы Кристиан Карман и Рамиро Серра решили описать невероятно сложную орбиту, а затем найти эпициклы, образующие ее[78]. Они выбрали для этого изображение Гомера Симпсона, поскольку оно вовсе не похоже на орбиту, а еще потому, что это ведь Гомер Симпсон![79] Представленный ниже рисунок с немалым количеством завитушек — это модель гомеровской орбиты. Большая окружность — деферент, а переплетение окружностей поменьше содержит 9999 эпициклов разных размеров. Планета вращается вокруг 9999-го эпицикла, который движется вокруг 9998-го эпицикла и так далее до самого первого эпицикла, вращающегося вокруг деферента. К тому времени, когда планета завершит один оборот вокруг деферента (и два оборота вокруг первого эпицикла, три вокруг второго и т. д., в том числе 10 000 оборотов вокруг 9999-го эпицикла), она пройдет весь путь по этому рисунку. Карман и Серра были, по их собственным словам, «поистине взволнованы и очень довольны», когда их модель заработала. Пожалуй, Платон тоже оценил бы присущую Гомеру поэтичность.
Похоже на Мардж, но это Гомер: путь, пройденный планетой, орбита которой представляет собой совокупность 10 000 окружностей, — это портрет главы семейства Симпсонов
Шестнадцатого мая 1571 года в 4:37 утра в небольшом немецком городке Вайль-дер-Штадт был зачат Иоганн Кеплер[80]. Он родился через 224 дня, 9 часов и 53 минуты, в 14:30 27 декабря. Эти детали известны нам благодаря гороскопу, который Кеплер составил для себя в возрасте 26 лет. В нем он рассказывает также о том, что едва не умер от оспы, что его руки были сильно изуродованы, что он часто страдал от болезней кожи и что когда в возрасте 21 года он потерял невинность, то это далось ему «с невероятным трудом и сопровождалось острой болью в мочевом пузыре». Исходя из всего этого, мы можем сделать вывод о наличии у Кеплера качеств, определивших всю его жизнь: мнительность, склонность к самоанализу, одержимость звездами и любовь к числам.
К тому времени, когда Кеплер составил этот гороскоп, он уже опубликовал свою первую книгу The Mystery of the Cosmos («Тайна мироздания»), в которой представил модель планетарной системы, основанную на предложенной на полстолетия раньше революционной теории Николая Коперника о том, что планеты вращаются вокруг Солнца. Хотя Коперник отвергал геоцентризм, он все же считал, что планеты перемещаются по эпициклам. Кеплер усовершенствовал эти воззрения посредством модели, в которой орбиты планет образуют суперструктуру из геометрических объектов, так называемых платоновых тел, таких как куб, тетраэдр, октаэдр, икосаэдр и додекаэдр. Все эти фигуры были разного размера, но в центре структуры находилось Солнце. Безусловно, это была неправильная модель, тем не менее книга «Тайна мироздания» сделала Кеплеру имя в ученых кругах, и, когда знаменитый датский астроном Тихо Браге начал строить новую обсерваторию возле Праги, он взял амбициозного молодого немца к себе в помощники.
Браге был эпатажным аристократом. Он носил протез носа из сплава золота и серебра, после того как кузен отсек нос ему во время дуэли, состоявшейся из-за одной математической формулы. Кроме того, у Браге был домашний лось, который упал замертво, выпив слишком много пива за ужином. Однако этот датчанин гораздо бережнее обращался со своими астрономическими данными — самыми точными и полными на то время, о чем знала вся Европа. Тихо Браге поручил Кеплеру разобраться с орбитой Марса — планеты, путь которой больше всего отклонялся от круговой орбиты. Это была изнурительная, кропотливая работа, требующая построения возможных орбит, расчета прогнозируемых позиций и проверки данных наблюдения. «Если этот утомительный метод внушает вам отвращение, — объяснял Кеплер впоследствии, — он должен внушить вам и сострадание ко мне, поскольку я проделал это не менее семидесяти раз».
В период «боев с Марсом» Кеплер сделал перерыв, во время которого изобрел современную оптику. В книге The Optical Part of Astronomy («Оптика в астрономии») есть раздел о зеркалах, сделанных в форме конических сечений: эллипса, параболы и гиперболы. В действительности именно в этом труде Кеплер ввел слово «фокус», означавшее точку пересечения отраженных лучей света. Когда Кеплер вернулся к Марсу, его так вывела из себя неспособность найти систему круговых движений, которая согласовывалась бы с данными наблюдения, что в конце концов он решил отказаться от теории эпициклов. Новое направление исследований вряд ли внушало Кеплеру оптимизм. «Я очистил авгиевы конюшни астрономии от окружностей и спиралей, — сетовал он, — и остался с одной телегой навоза». На протяжении года Кеплер экспериментировал с яйцевидной орбитой — овалом, сплюснутым у одного края и более острым у другого, хотя сам ученый испытывал отвращение к такой форме орбиты и не считал ее ни симметричной, ни гармоничной. Для того чтобы аппроксимировать этот овал в своих вычислениях, он использовал эллипс — геометрическую фигуру, которую знал по работе с применением конических сечений в оптике. И тут его осенило: эта фигура с ее свойствами сама может все объяснить. «O me ridiculum! Каким же глупцом я был! — воскликнул Кеплер. — Идеальный эллипс — это единственно возможная форма орбиты планет».
Поначалу Кеплер отбрасывал идею об эллиптической орбите Марса, потому что считал ее слишком простой для того, чтобы ее не заметили другие ученые. Кроме того, он знал, что у эллипса два фокуса, а это противоречило теории об уникальности Солнца, предполагающей, что оно должно быть в центре системы, а не в одной из одинаково важных точек. Однако затем Кеплер понял, что, несмотря на кажущееся противоречие, Солнце действительно находится в одном из фокусов и что именно его влияние определяет скорость движения планеты по орбите. (В другом фокусе нет ничего.) Чем ближе планета к Солнцу, тем быстрее она движется по эллиптической орбите, но охватывает при этом равную площадь за равные промежутки времени, как показано на рисунке ниже. Философ Норвуд Рассел Хэнсон писал, что величайшее достижение Кеплера было самым смелым актом воображения за всю историю науки[81]. «Даже концептуальные потрясения [двадцатого столетия] не требовали такого разрыва с прошлым». Модель эпициклов Аполлония была в конце концов вытеснена эллипсом — кривой, которой Великий Геометр сам дал имя и свойства которой знал лучше, чем кто-либо другой.
Для того чтобы добраться из точки A в точку B, требуется столько же времени, сколько из точки C в точку D, поскольку заштрихованные сегменты имеют одинаковую площадь. Следовательно, по мере отдаления от Солнца планета движется медленнее
В 1610 году Кеплер получил послание от Галилео Галилея, выдающегося астронома, жившего за Альпами, в Италии. Оно гласило:
smaismrmilmepoetalevmibunenugttaviras
Новость Галилея была слишком захватывающей, чтобы держать ее в себе, но и слишком ценной, чтобы рассказывать о ней всем подряд, тем самым помогая кому-то в его научных изысканиях. Поэтому ученый написал ее в виде анаграммы, что устанавливало приоритетность открытия, а также позволяло сохранить детали в тайне и избежать чрезмерной ответственности в случае, если он окажется неправ.
Эта загадка сводила Кеплера с ума. В конце концов ему показалось, что он у цели, когда он переставил буквы и получил вместо бессмысленного набора символов предложение, имевшее смысл: «Salve umbistineum geminatum Martia proles» — «Привет вам, близнецы, порождение Марса» (хотя он и использовал здесь латинизацию немецкого слова umbeistehen). Кеплер был убежден, что его соперник обнаружил у Марса два спутника. Впоследствии Галилей расшифровал эту анаграмму так: «Altissimum planetam tergeminum observavi» — «Высочайшую планету тройную наблюдал». Открытие касалось вовсе не Марса, а Сатурна: Галилей выявил у этой планеты выпуклости по бокам, которые образуют кольца Сатурна. Но самое интересное, что Кеплер таки оказался прав! У Марса действительно есть два спутника, Фобос и Деймос, которые были открыты два столетия спустя.
Чуть позже Галилей поддразнил Кеплера еще одной анаграммой, но на этот раз она имела смысл и носила намеренно провокативный характер: «Haec immatura a me iam frustra leguntur — oy», или «Этa ущербность рaзбирaется мною покa безуспешно». В данном случае Кеплер тоже нашел решение со смыслом: «Macula rufa in Jove est gyratur mathem etc» — «Ибо Юпитер, увы, говорят, вертится, испачканный красным пятном». На самом деле Галилей хотел передать такое послание: «Cynthiae figuras aemulatur Mater Amorum» — «Мать любви [Венера] подражает фигурам Цинтии [Луны]» (это означало, что у Венеры тоже есть фазы, напоминающие фазы Луны). Тем не менее ошибочный перевод Кеплера снова оказался пророческим. Через пятьдесят лет астрономы увидели, что у Юпитера действительно есть красное пятно — гигантский атмосферный вихрь, известный как Большое красное пятно.
Галилей и Кеплер изменили представление об ученых, превратившись из пассивных исследователей в героев-первооткрывателей. Имея перед собой единственную Вселенную, каждый из них хотел получить признание как человек, определивший ее строение. После Галилея многие ученые, в том числе Роберт Хук, Христиан Гюйгенс и Исаак Ньютон, использовали не поддающиеся расшифровке анаграммы, для того чтобы защитить свою интеллектуальную собственность. Так продолжалось до тех пор, пока публикация в журнале не стала в XVIII столетии стандартным способом объявить о последних научных достижениях.
Галилей принял теорию Коперника о том, что Земля вращается вокруг Солнца, но опровергал гипотезу Кеплера об эллиптической форме орбит планет[82]. Несмотря на это, Галилей добился серьезных успехов в изучении движения сферических объектов другого типа. Летом 1592 года в качестве молодого профессора математики он посетил своего друга и покровителя, маркиза Гвидобальдо дель Монте в его замке в Урбино. Маркиз был назначен генеральным инспектором укреплений Тосканского герцогства, а это означало, что для него особый интерес представляла траектория движения пушечных ядер. Они летят по прямой линии, а затем падают вниз, как предполагала традиционная аристотелевская механика, или двигаются по какой-то кривой, прежде чем долетят до цели?
Для того чтобы выяснить это, друзья провели эксперимент, который оказался настолько простым, что трудно было поверить, как никто не додумался до этого раньше. Они взяли два небольших металлических шара, окунули их в чернила и запустили по диагонали по наклонной плоскости. След, оставленный каждым из шаров, представлял собой симметричную дугу. Галилей видел, что шары поднимаются вверх точно так же, как и опускаются вниз: траектория движения вверх представляет собой зеркальное отображение траектории падения. Эта симметрия навела Галилея на мысль о том, что движение можно разделить на горизонтальные и вертикальные элементы. В свободном полете характер движения объекта по горизонтали отличается от характера вертикального движения. Впоследствии Галилей провел и другие эксперименты с шарами, покрытыми чернилами, продемонстрировав, что если тело брошено со стола горизонтально, то:
1) — горизонтальное смещение пропорционально затраченному времени. Так, если тело проходит 1 единицу расстояния за 1 секунду, оно пройдет 2 единицы за 2 секунды, 3 единицы за 3 секунды и т. д.;
2) — вертикальное смещение пропорционально квадрату затраченного времени. Так, если тело падает на 1 единицу расстояния за 1 секунду, оно упадет на 4 единицы за 2 секунды, на 9 единиц за 3 секунды и т. д.
На основании знаний о свойствах конических сечений, открытых Аполлонием, Галилей смог сделать вывод, что траектория движения шара, запущенного со стола, представляет собой параболу, как показано на рисунке слева[83]. Когда какое-либо тело, например баскетбольный мяч, запускается под углом (рисунок справа), оно тоже движется по параболе, но сначала мяч должен подняться по одной ее стороне, а затем опуститься по другой ее стороне. Такая парабола является траекторией движения объекта, свободно движущегося под воздействием силы тяжести. Это может быть струя фонтана, полет стрелы или движение мяча, брошенного в воздух. Писатель Томас Пинчон назвал свой выдающийся роман Gravity’s Rainbow[84] в соответствии с описанием оставленного немецкой ракетой «Фау-2» параболического следа, представляющего собой метафору расцвета и падения культур.
На протяжении почти двух тысяч лет конические сечения считались вершиной древнегреческой математической мысли, красивыми кривыми без какой-либо практической функции. Затем были открыты сразу две области их применения, которые, как оказалось, «скрывались» у всех на виду: планеты перемещаются по эллиптическим орбитам, а брошенные тела — по параболам. В конце XVII века Исаак Ньютон продемонстрировал, как оба эти следствия вытекают из его законов движения и всемирного тяготения. Галилей и Кеплер изучали одну и ту же проблему в разных масштабах. (Строго говоря, брошенный в воздух камень на самом деле начинает двигаться по эллиптической орбите вокруг Земли, и он бы завершил процесс, если бы масса Земли была сосредоточена в ее центре. Однако, с точки зрения наблюдателя, мы можем предположить, что брошенный камень движется по параболе.)
У парабол есть одно важное, удивительное свойство: все они имеют одну и ту же форму. Как параболу ни уменьшай или ни увеличивай, она останется подобной другим параболам, точно так же как окружность не меняет своей формы при изменении диаметра. Это вытекает из нашего первоначального определения конических сечений, согласно которому каждый угол наклона секущей плоскости образует уникальную фигуру. Окружность и парабола могут быть образованы только под одним углом: в случае окружности секущая поверхность должна быть параллельной основанию конуса, а в случае параболы — боковой поверхности конуса. Эллипс и гипербола могут быть получены под разными углами наклона секущей поверхности, а значит, они могут иметь разную форму.
Для описания параболы существуют два определения: 1) это геометрическое место точек, равноудаленных от заданной точки и заданной линии, известных как фокус и директриса (см. рисунок 1); и 2) это кривая, которая, будучи сделанной из отражающего материала, отражает все лучи света, исходящего из фокуса, параллельно друг другу (см. рисунок 2).
Геометрия параболы
Первое определение предоставляет оригамистам легкий способ построения параболы. Обозначьте точку F на листе бумаги, как продемонстрировано на первом рисунке ниже. Возьмите произвольную точку P на нижней кромке листа и сложите лист так, чтобы совместить эти точки друг с другом, как показано стрелкой. Полученную линию сгиба отметьте пунктиром. Повторите данную процедуру для множества точек, расположенных на нижней кромке листа бумаги. Полученная в итоге кривая — это парабола. (Подсказка: каждый сгиб образует линию, точки которой равноудалены от фокуса и произвольной точки.)
Построение параболы посредством сгибания листа бумаги
Второе определение объясняет, почему парабола — самая распространенная кривая в магазине осветительных приборов. Если лампочка установлена в фокусе параболического зеркала, лучи света отражаются параллельно. Вращение параболы вокруг ее центральной оси образует параболоид, в форме которого и сделаны отражающие зеркала в фонариках, прожекторах и автомобильных фарах.
Этот процесс работает и в обратном направлении. Параллельные лучи света, поступающие в параболоид, отражаются его поверхностью в фокус. Следовательно, если задача рефлектора — собрать в пучок солнечные лучи (которые можно считать параллельными, поскольку Солнце находится очень далеко), понадобится параболическая поверхность. Параболоиды широко применяются в технологии использования солнечной энергии. Например, отражатель Шеффлера, параболическая металлическая чаша, повсеместно используется в развивающихся странах для приготовления пищи. Он направлен на Солнце и медленно поворачивается вслед за его движением, для того чтобы поймать как можно больше солнечных лучей, отражая их в одну и ту же точку (фокус), в которой находится плита. Самая мощная солнечная печь представляет собой параболическое зеркало высотой 45 метров, расположенное во французских Пиренеях, неподалеку от Одейо. Из-за огромных размеров само зеркало не двигается, а принимает отраженный солнечный свет от 63 маленьких плоских вращающихся зеркал. В фокусе зеркала находится круглый щит, который в солнечные дни нагревается до 3500 °C — достаточно высокая температура, для того чтобы варить свинец, плавить вольфрам или превратить дикого кабана в пепел.
Солнечная печь в Одейо, Франция
© Иэн Фрейзер/Shutterstock.com
Параболические антенны служат также для приема электромагнитных и звуковых волн, поступающих в фокус от удаленных объектов. Такие антенны уже стали привычным элементом городского пейзажа: чаще всего они устанавливаются на крышах домов тех людей, которые смотрят спутниковое телевидение, но их можно встретить и на командно-диспетчерских пунктах и военных объектах. Шпионы, инженеры звукозаписи на телевидении и орнитологи используют параболические микрофоны для улавливания тихих звуков с большого расстояния. Принцип во всех случаях один и тот же. Параболоид — единственная геометрическая фигура, отражающая параллельные волны в определенную точку.
В 1668 году Исаак Ньютон построил первый «отражающий» телескоп, ключевыми элементами которого были зеркала, а не линзы, использовавшиеся в телескопах до этого. Ньютон понял, что для основного зеркала самая оптимальная форма — параболоид, но не смог изготовить такое зеркало, поэтому ему пришлось довольствоваться сферическим. Однако даже при наличии подобного дефекта отражающий телескоп был гораздо лучше, чем предыдущие модели, поэтому, начиная с XVII века, большинство телескопов были зеркальными.
Кроме того, Ньютон сделал в отношении парабол одно открытие, которое представляло в то время сугубо теоретический интерес, а сейчас успешно применяется в промышленном производстве телескопов. Если вращать цилиндрический сосуд, наполненный жидкостью, ее поверхность принимает форму параболоида. Под воздействием вращения жидкость поднимается выше у стенок сосуда и образует углубление в центре, создавая поперечное сечение в форме параболы. На этом свойстве построен один из способов изготовления параболических зеркал — вращать сосуд с расплавленным стеклом и дать этому стеклу застыть в таком положении. Большой бинокулярный телескоп, один из самых мощных телескопов в мире, был сделан именно так. Телескоп состоит из двух параболических зеркал диаметром 8,4 метра, изготовленных в огромной вращающейся печи в подземной лаборатории, расположенной под футбольным полем Аризонского университета в Тусоне. Хотя лаборатория может выпускать в год всего по одному зеркалу ценой в десятки миллионов долларов, это все равно более дешевый и быстрый метод, чем изготовление аналогичного зеркала посредством шлифовки стекла.
Еще дешевле телескоп с жидким зеркалом — в нем используется вращающийся цилиндр, наполненный отражающей жидкостью. Большой зенитный телескоп возле Ванкувера представляет собой чашу, наполненную ртутью, которая во время вращения принимает форму параболоида. На настоящий момент это самый дешевый из крупных телескопов мира, но у него есть один серьезный недостаток: чаша вращается в горизонтальной плоскости, а значит, телескоп может быть направлен только прямо вверх, в зенит.
В 1637 году французский математик Рене Декарт изобрел систему координат, что стало самым значительным прорывом в понимании конических сечений со времен Аполлония. Декартова система координат определяет положение точки на плоскости по ее расстоянию от вертикальной и горизонтальной оси[85]. Каждая точка имеет уникальные координаты (a, b), где a — это позиция на горизонтальной оси, а b — на вертикальной (см. рисунок 1 ниже). Данная система позволяла математикам описывать кривые посредством уравнений и представлять уравнения в виде кривых. Следовательно, она создала мост между геометрией, изучающей фигуры, и алгеброй, изучающей уравнения, которые были до этого разными математическими дисциплинами.
По сложившейся традиции мы записываем уравнения с помощью переменных x и y, отображающих позицию на горизонтальной и вертикальной оси, другими словами — координаты (x, y). Например, график уравнения x = y представляет собой совокупность всех точек с координатами (x, y), где x = y. Как показано на рисунке 2, это точки с координатами (1, 1), (2, 2), (3, 3) и т. д. С другой стороны, график уравнения y = x2 — это совокупность всех точек, у которых y = x2. Это точки с координатами (0, 0), (1, 1), (2, 4), (3, 9) и т. д. Такая кривая, представленная на рисунке 3, представляет собой параболу, касающуюся горизонтальной оси в начале системы координат или в точке с координатами (0, 0). Но, поскольку школьная программа больше ориентирована на алгебру, чем на геометрию, наша первая встреча с параболой происходит в момент построения графика уравнения y = x2. Возможно, вы узнаете ее как старого друга, первую U-образную кривую, которая встретилась вам в процессе изучения элементарной математики.
Декартова система координат
Корни алгебры лежат в решении практических задач. Например, какова формула площади квадрата? Если предположить, что x — это сторона квадрата, а y — его площадь, то эта формула выглядит так: y = x2. Когда в уравнении есть x2 или y2, но не более высокая степень x или y, оно называется квадратным уравнением. Вавилоняне изобрели собственные методы решения квадратных уравнений, в частности для задач, связанных с расчетом площадей. К началу эпохи Возрождения решение квадратных уравнений уже было хорошо изученной областью. Что же еще оставалось о них неузнанным?
Благодаря прямоугольной системе координат было установлено, что квадратные уравнения — это не что иное, как конические сечения. Другими словами, каждое квадратное уравнение описывает определенное коническое сечение, и каждое коническое сечение может быть описано квадратным уравнением. Два тщательно изученных раздела математики оказались альтернативным представлением друг друга. Общее квадратное уравнение Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, где A, B, C, D, E и F — это константы и хотя бы одна из констант A, B и C отлична от нуля, всегда отображается на графике в виде конического сечения, и наоборот: любое коническое сечение, отображенное на графике, может быть выражено в виде приведенного выше уравнения. На рисунке 4 уравнение эллипса будет таким: 2x2 + y2 + 8x = 0, а уравнение параболы — таким: 16x2 24xy + 9y2 38x 84y + 121 = 0. В середине XIX века немецкий математик Август Фердинанд Мебиус открыл поразительное свойство параболы y = x2: эта кривая представляет собой Multiplikationsmaschine — «машину умножения»[86].
Мебиус хорошо разбирался в геометрических изгибах: в буквальном смысле слова, как в случае ленты Мебиуса (скрученной полоски бумаги со склеенными концами), и в более абстрактном смысле — при вычислениях с помощью параболы. Этот метод представлен ниже на первом рисунке. Для того чтобы выполнить операцию a b, достаточно нарисовать прямую линию между точками на параболе, где x = —a и x = b. Точка, в которой эта линия пересекает ось у, — и есть ответ! Все, что нужно, — это нарисовать линию и отметить точку пересечения. На рисунке справа — пример выполнения операции 2 3. Требуемая линия проходит через точки на параболе, в которых x = –2 и x = 3, и пересекает ось у в точке 6. Данный метод применим к любым двум числам (доказательство можно найти в Приложении 4).