Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры Беллос Алекс

Экспоненциальный рост может быть либо пошаговым, либо непрерывным. В аналогии с бактериями, использованной в своей лекции Бартлеттом, одна бактерия превращается в две, две бактерии превращаются в четыре, четыре — в восемь и т. д. Население также увеличивается на целые числа за фиксированные промежутки времени. Однако на представленном ниже рисунке кривые растут экспоненциально и непрерывно. В каждой точке кривая повышается со скоростью, пропорциональной ее высоте.

Экспоненциальные кривые

Когда уравнение представлено в виде y = ax, где a — положительное число, кривая демонстрирует непрерывный экспоненциальный рост. Кривые на рисунке описаны уравнениями y = 3x, y = 2x и y = 1,5x; другими словами, эти кривые отображают последовательности, в которых каждый очередной член в три, два и полтора раза больше предыдущего. Например, в случае уравнения y = 2x, если x равно 1, 2, 3, 4, 5…, тогда y равно 2, 4, 8, 16, 32…

На графике меньшего масштаба (см. первый рисунок) кривые напоминают ленты, приколотые к вертикальной оси в точке 1. На графике более крупного масштаба (второй рисунок) можно увидеть, что все кривые разделяют одну судьбу: приближаются к вертикальной оси всего через несколько единиц по горизонтальной оси. Совсем не похоже на то, что эти кривые покроют когда-либо всю плоскость по горизонтали, хотя на самом деле это обязательно произойдет. Если бы я захотел показать на графике кривую y = 3x, где x = 30, страницу нужно было бы растянуть на сто миллионов километров по вертикали.

Когда кривая растет по экспоненциальному закону, то чем выше она поднимается, тем круче становится. Чем дальше мы перемещаемся по такой кривой, тем быстрее она растет. Однако прежде, чем продолжить, давайте познакомимся с новым понятием — понятием градиента, математического показателя крутизны подъема. Градиент наклона равен отношению изменения высоты к изменению расстояния по горизонтали — это должно быть хорошо знакомо каждому, кто когда-либо ехал на автомобиле или велосипеде по горной дороге. Если дорога поднимается на 100 метров за 400 метров пути по горизонтали, как показано на рисунке ниже, то градиент составляет , или , что записывают на дорожных знаках как 25 %. Это определение интуитивно понятно, поскольку оно означает, что чем круче дорога, чем выше градиент. Однако здесь нужно быть внимательным. Дорога, у которой градиент равен 100 %, — это дорога, высота подъема которой равна пройденному расстоянию, то есть она повышается под углом всего 45 градусов. Теоретически у дороги может быть градиент и больше 100 процентов; на самом деле он может быть бесконечным, если она направлена вертикально вверх.

Дорога, показанная на рисунке выше, имеет постоянный градиент. Однако в действительности градиент большинства дорог представляет собой переменную величину. Такие дороги то набирают крутизну, то выравниваются, то снова устремляются вверх. Для того чтобы найти на них градиент любой точки (другими словами, кривой), необходимо провести в этой точке касательную и определить ее градиент. Касательная — линия, которая соприкасается с кривой в этой точке, но не пересекает ее (слово tangent («касательная») происходит от латинского tangere («касаться»)). На представленном ниже рисунке кривой с переменным градиентом я обозначил точку Р и провел в ней касательную. Для того чтобы найти ее градиент, нужно нарисовать прямоугольный треугольник, который покажет нам изменение высоты a при смещении по горизонтали, равном b, а затем рассчитать отношение a/b. Размер треугольника не имеет значения, поскольку соотношение высоты и ширины останется неизменным. Градиент в точке Р — это градиент касательной в точке Р, равный a/b.

Вернемся к описанию экспоненциальных кривых: чем дальше мы перемещаемся по ним, тем круче они становятся. Другими словами, чем выше по кривой вы пройдете, тем больше будет градиент. В действительности мы можем сделать еще более смелое заявление: для всех экспоненциальных кривых градиент неизменно представляет собой определенный процент от высоты. Но здесь возникает очевидный вопрос: что такое «кривая Златовласки», для которой значения градиента и высоты всегда равны?

Оказывается, такая «правильная» кривая описывается уравнением:

y = (2,7182818284…)x

Как показано на рисунке ниже, когда высота равна 1, градиент тоже равен 1, когда высота равна 2, градиент равен 2, когда высота равна 3, градиент равен 3 и т. д. Следовательно, когда высота равна числу , градиент равен ; когда высота равна миллиону, градиент тоже равен миллиону. В любой точке кривой два ее фундаментальных свойства, высота и градиент, равны друг другу и повышаются вместе, как взлетающие в небо возлюбленные на картине Шагала.

Кривая y = ex: высота точки на кривой всегда равна градиенту в этой точке

Однако геометрическая красота этой кривой вступает в противоречие с ее уродливым порождением — хаотичной совокупностью цифр десятичного числа, начинающейся с 2,718 и продолжающейся до бесконечности без повторений. Для удобства обозначим это число буквой e и назовем его экспоненциальной константой. Это вторая самая известная математическая константа после . Однако, в отличие от числа , которое изучают уже на протяжении тысячи лет, число e появилось сравнительно недавно.

Говорят, что, когда Альберта Эйнштейна спросили, что он считает величайшим открытием всех времен, он с иронией ответил: «Сложный процент». Возможно, на самом деле этого диалога никогда не было, но он вошел в городскую мифологию, поскольку именно такой шутливый ответ мы хотели бы услышать. Процент — это денежный сбор, который вы платите, когда берете деньги в долг, или получаете, когда даете их взаймы. Как правило, размер данного сбора составляет определенный процент от суммы, взятой или предоставленной в долг. Простой процент — это конкретная сумма денег, которая выплачивается на первоначальную сумму и остается неизменной при каждом очередном периоде выплаты процентов. Так, если банк назначает простой процент в размере 20 процентов годовых по кредиту в объеме 100 фунтов стерлингов, то через год долг составит 120 фунтов, через два года — 140 фунтов, через три года — 160 фунтов и т. д. Однако в случае сложного процента сумма процентных платежей рассчитывается за каждый очередной период с учетом начисленных процентов, другими словами — на накопленную сумму долга. То есть если банк назначает сложный процент в размере 20 процентов годовых, кредит в объеме 100 фунтов превратится через год в 120 фунтов, через два года это будет уже 144 фунта, через три — 172,8 фунта и т. д. Эти суммы рассчитаны следующим образом.

Первый год:

долг + проценты = 100 + (100 ) = 120

Второй год:

накопленный долг + проценты = 120 + (120 ) = 144

Третий год:

накопленный долг + проценты = 144 + (144 ) = 172,8

И так далее.

Сложный процент растет гораздо быстрее, чем простой, поскольку он увеличивается по экспоненте. Прибавление Х процентов к основной сумме долга равносильно умножению на , а значит, представленные выше расчеты можно записать и в такой форме.

Первый год:

100 + (1 + )

Второй год:

100 (1 + ) (1 + ) = 100 (1+ )2

Третий год:

100 (1 + )2 (1 + ) = 100 (1 + )3

Это и есть последовательность, подчиняющаяся экспоненциальному закону.

Кредиторы издавна отдают предпочтение сложному проценту перед простым. Действительно, в одной из самых первых задач в математической литературе, записанной на месопотамской глиняной табличке, датируемой 1700 годом до н. э., спрашивается, сколько времени уйдет на удвоение суммы, если проценты накапливаются при ставке 20 процентов годовых. Одна из причин привлекательности банковского дела состоит в том, что сложный процент увеличивает долг или ссуду в геометрической прогрессии, а это значит, что вскоре вы должны будете либо выплатить, либо, наоборот, заработать баснословную сумму. Римляне осуждали начисление сложного процента как худшую форму ростовщичества. В Коране это считается грехом. Тем не менее глобальная финансовая система полагается в своей деятельности на эту практику. Именно так рассчитываются остатки на наших банковских счетах, проценты по кредитным картам и платежи по ипотечным кредитам. Сложный процент был главным катализатором экономического роста с самого начала развития нашей цивилизации.

В конце XVII столетия швейцарский математик Якоб Бернулли задал достаточно простой вопрос по поводу сложного процента. Какова зависимость между интервалом его начисления и стоимостью кредита? (Якоб был старшим братом Иоганна, с которым мы познакомились в предыдущей главе, когда он призвал самых блестящих математиков мира найти путь наискорейшего спуска.) Что лучше: начислять полную годовую процентную ставку один раз в год, или половину годовой процентной ставки каждые полгода, или двенадцатую часть ставки один раз в месяц, или даже часть ставки каждый день? Интуиция подсказывает, что чем чаще мы начисляем проценты, тем больше процентной прибыли заработаем, что действительно так, поскольку в данном случае деньги работают на нас дольше. Однако я хочу объяснить вам эти расчеты шаг за шагом, поскольку они раскрывают одну интересную математическую закономерность.

Для того чтобы максимально упростить расчеты, давайте исходить из предположения, что сумма депозита составляет 1 фунт стерлингов и что банк выплачивает на него проценты по ставке 100 процентов годовых. Через год стоимость депозита удвоится и будет равна 2 фунтам.

Если же мы сократим вдвое процентную ставку и интервал начисления процентов, то получим ставку 50 процентов, которая начисляется за год дважды.

Следовательно, через шесть месяцев наш депозит вырастет до такой суммы:

1 (1 + ) = 1,50

Через год сумма депозита составит:

1 (1+ ) (1+ ) = 1 (1 + )2 = 2,25

Следовательно, начисляя проценты каждые полгода, мы заработаем на 25 пенсов больше.

Аналогично, если процентная ставка составляет 12-ю часть от 100 процентов и есть двенадцать ежемесячных платежей, депозит вырастет до следующей суммы:

1 (1 + )12 = 2,613

То есть при ежемесячном начислении процентов мы дополнительно получим 61 пенс.

А если процентная ставка составляет 365-ю часть от 100 процентов при наличии 365 ежедневных платежей, то сумма депозита будет:

1 (1 + )365 = 2,7146

В этом случае мы зарабатываем дополнительно 71 пенс.

Закономерность очевидна. Чем больше интервалов начисления процентов, тем больше дохода приносят вложенные деньги. Но насколько далеко мы можем продвигать этот процесс? Якоб Бернулли хотел знать, есть ли какой-либо предел увеличения суммы, если интервалы начисления процентов будут становиться все меньше и меньше.

Как мы уже видели, если разделить годовую процентную ставку на n и начислять ее n раз, баланс на конец года в фунтах составит:

(1 + )n

Если сформулировать вопрос Бернулли в алгебраической форме, то он прозвучит так: что произойдет со значением этого выражения, если n будет стремиться к бесконечности? Оно тоже будет увеличиваться до бесконечности или приблизится к конечному пределу? Мне нравится визуализировать эту задачу в виде своего рода «перетягивания каната» по горизонтальной оси графика. Чем больше значение n, тем меньше значение (1 + ), что перетягивает все выражение в левую сторону. С другой стороны, показатель степени n тянет все выражение вправо, поскольку чем больше раз вы умножаете то, что находится в скобках, тем больше итог. В начале соревнования побеждает показатель степени, так как мы уже видели, что когда n равно 1, 2, 12 и 365, значение (1 + )n увеличивается от 2 до 2,25, затем до 2,613 и 2,7146. По всей вероятности, вы уже понимаете, к чему мы идем. Когда значение n стремится к бесконечности, в «перетягивании каната» наступает момент равновесия. Бернулли случайно нашел экспоненциальную константу, поскольку при n, приближающемся к бесконечности, значение (1 + )n стремится к числу e.

Сумма депозита в размере 1 фунт стерлингов через год при условии, что ставка 100 процентов годовых начисляется два раза в год, ежемесячно и непрерывно

Проанализируем этот процесс визуально. На представленном выше рисунке отображены три сценария того, что произойдет за год с депозитом в размере 1 фунт стерлингов при годовой ставке 100 процентов, начисляемой пропорционально за разные периоды. Пунктирная линия соответствует начислению процента два раза в год, тонкая линия — один раз в месяц. Чем больше шагов, тем выше поднимаются линии. Когда шаги становятся бесконечно малы, линия превращается в кривую y = ex — эталон экспоненциального роста.

Когда мы говорим, что кривая отображает непрерывное начисление процента, это значит, что сумма нашего депозита увеличивается в каждый момент времени на протяжении года и в конце года составит 2,718 фунта, или число e.

Бернулли открыл число e во время изучения сложного процента[110]. Безусловно, он был бы рад узнать, что его открытие стало краеугольным камнем современной банковской системы (разумеется, с более реалистичными процентными ставками). Причина в том, что британские финансовые учреждения по закону обязаны указывать непрерывно начисляемую процентную ставку по всем продуктам, которые они продают, независимо от того, с какой периодичностью они предпочитают выплачивать проценты — один раз в месяц, два раза в год, один раз в год или как-то еще.

Предположим, банк предлагает депозит под 15 процентов годовых при условии их выплаты один раз в год. Это означает, что через год депозит в размере 100 фунтов стерлингов вырастет до 115 фунтов. Если эти 15 процентов начислять непрерывно, то согласно формуле, полученной на основании свойств числа e, через год наш депозит вырастет до 100 e15/100, что дает 116,18 фунтов, или годовую процентную ставку 16,18 процента. По закону банк обязан объявить, что по этому депозиту проценты выплачиваются по ставке 16,18 процентов. На первый взгляд может показаться странным, что банкам приходится называть цифры,которые они не используют на практике, однако это правило было введено для того, чтобы клиенты могли сравнить похожие банковские продукты. Как депозит, по которому проценты выплачиваются ежемесячно, так и депозит с выплатой процентов один раз в год, можно оценить по соответствующим ставкам непрерывно начисляемого процента. Практически каждый финансовый продукт включает в себя сложный процент, а каждый расчет непрерывно начисляемого процента содержит число e. Следовательно, экспоненциальная константа — это ключевое число, от которого зависит вся финансовая система.

Но хватит о деньгах. Экспоненциальный рост демонстрируют и многие другие явления, такие как распространение болезни, размножение микроорганизмов, скорость ядерной цепной реакции, увеличение интернет-трафика и фидбэк на электрогитаре. Во всех этих случаях ученые моделируют рост с помощью числа e.

Выше уже шла речь о том, что уравнение y = ax, где a — положительное число, описывает кривую экспоненциального роста. Мы можем представить его так, чтобы в нем присутствовало число e. Математические свойства показателя степени таковы, что член уравнения ax можно записать в виде ekx, где k — некоторое положительное число. Например, кривая последовательности, каждый член которой в два раза больше предыдущего, описывается уравнением y = 2x, но его можно записать и по-другому: y = e0,69x. Аналогичным образом кривая последовательности, каждый член которой втрое больше предыдущего, представлена уравнением y = 3x, что эквивалентно y = e1,099x. Математики предпочитают записывать уравнение y = ax в виде y = ekx, поскольку число e олицетворяет экспоненциальный рост в его чистом виде. Это число упрощает уравнение, делает его элегантнее и облегчает расчеты. Экспоненциальная константа e — важнейший элемент математики роста.

— первая константа, с которой мы знакомимся в школе; число e изучают гораздо позже, причем только те, кто специализируется на математике. Однако на уровне университетского образования число e занимает доминирующее положение. По чистой случайности вышло так, что e — это также самая распространенная буква в английском языке. Математическая роль числа e имеет свою аналогию в лингвистике. Когда в уравнении присутствует число e, это свидетельствует о расцвете экспоненциального роста, а цветение — признак зарождения жизни. Точно так же буква e привносит жизнь в письменный язык, превращая слова со смежными согласными в удобопроизносимое сочетание звуков.

У экспоненциального роста есть свой антипод — экспоненциальный спад. В его ходе величина многократно уменьшается в одной и той же пропорции. Например, экспоненциальный спад демонстрирует последовательность, каждый член которой в два раза меньше предыдущего:

1, , , , , , …

В случае экспоненциального спада эквивалент концепции периода удвоения — это фиксированный промежуток времени, необходимого для того, чтобы величина уменьшилась в два раза. В частности, в физике этот промежуток обозначается термином «период полураспада». Количество радиоактивных частиц в радиоактивном веществе сокращается по экспоненциальному закону, причем тоже с огромными различиями: период полураспада водорода-7 составляет 0,000000000000000000000023 секунды, тогда как кальция-48 — 40 000 000 000 000 000 000 лет.

Если говорить о примерах из повседневной жизни, то разность между температурой горячего чая и температурой чашки, в которую вы его только что налили, уменьшается по экспоненциальному закону. То же самое можно сказать и о снижении атмосферного давления по мере восхождения на гору.

Кривая чистого экспоненциального спада, показанная на рисунке ниже, описывается уравнением y = , которое можно представить и в такой форме: y = e—x. В случае экспоненциального спада градиент всегда имеет отрицательное значение и является величиной, обратной высоте. Кривая спада — это та же экспоненциальная кривая y = ex, отраженная вертикальной осью. У этой кривой есть одно интересное свойство: конечная площадь заштрихованной на рисунке области, ограниченной кривой и вертикальной и горизонтальной осями, равна 1, хотя длина этой области бесконечна, поскольку кривая никогда не достигнет горизонтальной оси.

Кривая экспоненциального спада y =

В майском выпуске журнала Acta Eruditorum 1690 года первооткрыватель числа e Якоб Бернулли снова вернулся к рассмотрению вопроса, над которым математики ломали голову уже целое столетие. Какую геометрическую форму образует кусок шпагата, закрепленный в обоих концах и провисающий под собственной тяжестью? Эта кривая (названная цепной линией — catenary, от латинского слова catena, «цепь») образуется в случае, когда тот или иной материал провисает под действием силы тяжести, как показано на рисунке ниже. Это может быть провисание электрического кабеля, ожерелья, скакалки или бархатного шнура. Поперечное сечение вздымающегося паруса — тоже цепная линия, развернутая на 90 градусов, поскольку ветер дует горизонтально, тогда как сила тяжести действует вертикально. Однако в отличие от многих других сложных математических задач, которые ученые ставили в XVII столетии, Якоб не знал ответа на этот вопрос до того, как поставил его. Год спустя ответ все еще ускользал от него. А через какое-то время решение задачи нашел младший брат Якоба Иоганн. Вы, наверное, подумали, что это стало поводом для большой радости в доме Бернулли, но на самом деле все было далеко не так. Семья Бернулли считалась одной из самых неблагополучных в математике.

Математическое украшение: цепная кривая

Семья Бернулли, первоначально обитавшая в Антверпене, скрывалась от преследований протестантов испанскими католическими властями. В начале XVII века торговцы специями Бернулли обосновались в швейцарском городе Базеле. Якоб, родившийся в 1654 году, был первым математиком в семье, которой предстояло стать великой династией ученых в разных областях науки. За три поколения восемь представителей семьи Бернулли заслужили звание выдающихся математиков, причем каждый сделал открытие, названное его именем. Якобу, изучавшему сложный процент, наибольшую известность принесла первая крупная работа по теории вероятности. По словам одного историка, он был «своевольным, упрямым, агрессивным, мстительным, одолеваемым чувством неполноценности, но все же твердо убежденным в своей уникальности»[111]. Из-за этого у него часто возникали конфликты с Иоганном, который был на тринадцать лет младше, но имел такой же скверный характер. Иоганн очень гордился тем, что ему удалось решить задачу о цепной кривой, и впоследствии с удовольствием вспоминал этот эпизод: «Усилия моего брата оказались тщетными; мне же повезло больше, поскольку у меня хватило способностей (я говорю это без хвастовства — с какой стати мне скрывать правду?), чтобы решить эту задачу»[112]. А еще он прибавил: «Надо признать, это стоило мне поисков, которые отняли всю ночь…» Всего одна ночь на решение задачи, с которой его брат не смог справиться за год? Вот это да! Со своими сыновьями Иоганн соперничал не меньше, чем с братом. Когда Французская академия наук присудила Иоганну премию вместе с его средним сыном Даниилом, он так болезненно воспринял это, что запретил сыну появляться в фамильном доме.

Как оказалось, у кривой, сущность которой так страстно стреился определить Якоб Бернулли, есть тайный ингредиент — e, число, открытое Якобом в другом контексте.

В современной системе обозначений уравнение цепной кривой выглядит так:

где a — это константа, от которой зависит масштаб кривой. Как показано на рисунке ниже, чем больше значение a, тем дальше друг от друга находятся концы кривой.

Графики цепной линии с разными значениями a

Если в уравнении цепной линии a = 1, то кривая имеет следующий вид:

Посмотрите внимательно на это уравнение: его член ex отображает чистый экспоненциальный рост, а член e—x — чистый экспоненциальный спад. Уравнение суммирует эти два члена и делит полученный результат на два, а это хорошо всем знакомая арифметическая операция — именно так мы должны сделать, чтобы найти среднее арифметическое этих двух значений. Другими словами, цепная линия — это среднее кривых экспоненциального роста и экспоненциального спада, как показано на рисунке ниже. Каждая точка такой U-образной кривой находится ровно посредине между двумя экспоненциальными кривыми.

Каждый раз, глядя на окружность, мы видим число — отношение длины окружности к диаметру. Каждый раз, смотря на висящую цепь, свободно провисшую паутину или прогиб пустой бельевой веревки, мы видим число e.

Цепная линия — это среднее кривых экспоненциального роста и спада

В XVII столетии английский физик Роберт Гук открыл одно удивительное механическое свойство цепной линии: в перевернутом виде она представляет собой самую устойчивую форму для отдельно стоящих арок. Провисающая цепь находится в положении, в котором ее внутренние силы растягивают ее вдоль линии кривой. В перевернутом виде все эти растягивающие силы превращаются в силы сжатия, делая цепную линию идеальной аркой, в которой все силы сжатия тоже действуют вдоль линии кривой. В арке, имеющей форму цепной линии, нет изгибающих сил: она поддерживает себя собственным весом, не нуждаясь ни в каких скобах или опорах. Такая арка будет очень устойчивой при минимальном количестве кирпичной кладки. Для того чтобы арка стояла прочно, кирпичи даже не нужно скреплять цементным раствором, поскольку они прижимают друг друга по всей ее высоте. Гук был весьма доволен своим открытием, заявив, что «еще ни один зодчий не пытался сделать нечто подобное». Однако вскоре после этого инженеры начали использовать цепные линии в работе. До наступления компьютерной эры самый быстрый способ создать их сводился к тому, чтобы повесить цепь, начертить кривую, построить модель из жесткого материала и поставить ее в перевернутом положении.

Цепная линия — это своего рода опора природы, идеальный способ стоять на двух ногах. Арка в форме перевернутой цепной линии является отличительной чертой творчества Антонио Гауди, каталонского архитектора, построившего ряд самых замечательных зданий XX века, в частности храм Святого семейства в Барселоне[113]. Гауди привлекала не только эстетическая красота цепной линии, но и ее математические свойства. Благодаря тому что он использовал цепные линии в своей практике, строительная механика стала главным элементом проектирования зданий.

Однако в зданиях арки редко стоят отдельно. Как правило, они образуют колонны или своды, присоединенные к стенам, полам и крышам. Гауди понял, что весь архитектурный проект здания можно разработать, применив модель из свисающих цепей. Именно так он и поступил. Например, когда Гауди поручили создать проект церкви для Колонии Гуэля возле Барселоны, он сделал перевернутый вверх дном каркас проектируемого строения. Вместо металлических цепей Гауди использовал веревки с подвешенными к ним сотнями мешочков, наполненных свинцовой дробью. Под весом мешочков, закрепленных на веревках, образовалась сеть видоизмененных цепных линий, в форме которых арки представляли собой самую устойчивую конструкцию для поддержания соответствующего веса (такого как крыша или строительные материалы). Для того чтобы посмотреть, как будет выглядеть церковь в законченном виде, Гауди сфотографировал свою модель и перевернул снимок наоборот. Хотя церковь Колонии Гуэля так и не была закончена, Гауди применил эту методику в своей дальнейшей работе.

Самое известное сооружение в форме цепной линии — это, пожалуй, арка в Сент-Луисе под названием «Врата на запад». Ее высота — 192 метра, но она немного более плоская по сравнению с идеальной кривой, поскольку у ее вершины чуть тоньше кирпичная кладка. В 2011 году в лондонской архитектурной компании Foster and Partners было принято решение использовать принцип цепной линии в рамках особенно сложного проекта — мегааэропорта в Кувейте, одном из самых негостеприимных, но густонаселенных мест на Земле. Ведущий архитектор проекта Николай Мальш объяснил мне, что для крыши здания терминала длиной 1,2 километра самая лучшая конструкция — это раковина, поперечное сечение которой имеет форму цепной линии. Хотя это гигантское сооружение (45 метров в ширину у основания и 39 метров в высоту посредине), его вес распределен настолько эффективно, что толщина может быть всего 16 сантиметров. «Проект, основанный не на принципе цепной линии, тоже вполне осуществим, но на него уйдет гораздо больше материалов, в нем будет больше профильных балок, и вообще его намного сложнее реализовать, — утверждает Николай. — Что же касается здания, построенного с использованием цепной линии, то, даже если отпадет его внешняя облицовка, а внутри все разрушится и превратится в пыль, песок и битый камень, оно все равно будет стоять».

В офисе Foster and Partners находятся точные модели самых знаменитых проектов компании, таких как лондонский «Огурец», Рейхстаг в Берлине и подвесной мост в Мийо (Франция). Но все же на столе Николая Мальша подвешена велосипедная цепь. «Мы любим цепную линию, — объясняет он, — потому что она говорит нам, как удержать крышу».

Репродукция цепной модели Гауди в музее Дома Мила в Барселоне. Чтобы увидеть форму будущего здания, переверните страницу вверх ногами

Фотография Натали Беллос

Цепная линия выполняет еще одну, менее известную функцию в архитектуре, которую вряд ли можно было бы применить в проектировании церквей и аэропортов. Бугристая дорожка в форме перевернутых цепных линий — прекрасная поверхность для плавной езды велосипеда с квадратными колесами или перекатывания кубов вместо шаров в боулинге.

Математик Стэн Вэген едет на своем трехколесном велосипеде в Колледже Макалестера (Сент-Пол, штат Миннесота)

© Стэн Вэген

Хотя семья Бернулли подарила миру больше знаменитых математиков, чем любое другое семейство за всю историю, величайший математик, родившийся в Базеле примерно в то же время, к ней не принадлежал. Леонард Эйлер (правильное произношение — «Ойлер»), сын местного пастора, был не по годам умным ребенком. Мальчик обладал математическим талантом, который открыл, а затем и воспитал его наставник Иоганн Бернулли. Когда в 1727 году Эйлеру исполнилось 19 лет, он переехал в Россию, чтобы занять должность в только что открывшейся Петербургской академии наук, где сын Иоганна Даниил возглавлял кафедру математики. Петр Великий предлагал королевское жалование, чтобы привлечь в Россию самые талантливые умы Европы. Кроме того, в Санкт-Петербурге была гораздо более интеллектуальная среда, чем в Базеле. Вскоре Эйлер стал одним из самых выдающихся петербургских ученых.

Леонард Эйлер был спокойным человеком и хорошим семьянином, что опровергало распространенное представление о гениальных математиках как о людях, испытывающих трудности в общении. Он имел поистине феноменальную память: говорят, он мог вспомнить все десять тысяч строк «Энеиды» Вергилия. Еще более феноменальной была его работоспособность. Ни один математик так и не смог сравниться с Эйлерм по количеству научных работ; ученый писал в среднем по 800 страниц в год. Когда он умер в 1783 году, в возрасте 76 лет, на его рабочем столе осталось столько материалов, что его статьи публиковались в научных журналах еще полстолетия. У Эйлера всегда было плохое зрение; к тридцати годам он перестал видеть левым глазом, а к шестидесяти — правым. Некоторые самые важные труды Эйлер диктовал, уже будучи слепым, целой группе секретарей, пытавшихся изо всех сил за ним поспевать. По их словам, Эйлер творил математику быстрее, чем это можно было записывать.

Однако Эйлера на фоне других математиков выделяет не только количество, но еще и качество, и разнообразие исследований. «Читайте, читайте Эйлера, — призывал французский математик Пьер-Симон Лаплас. — Он — наш общий учитель». Эйлер внес значительный вклад практически во все области науки того времени, от теории чисел до механики, от геометрии до теории вероятностей. Кроме того, он открыл и совершенно новые области. Работы Эйлера оказались настолько преобразующими, что его словарь символов был принят в математическом сообществе. Например, именно благодаря Эйлеру мы используем символы и e для обозначения констант окружности и экспоненциального роста. Он не первым применил символ (это сделал малоизвестный валлийский математик Уильям Джонс), но этот символ получил широкое распространение как раз благодаря Эйлеру. А вот что касается использования символа e в качестве экспоненциальной константы, то здесь пальма первенства принадлежит Эйлеру: он применил его в труде, посвященном баллистике пушечных ядер. Считается, что он выбрал букву «e», поскольку она оказалась первой из еще неиспользованных (в математических текстах уже было много обозначений a, b, c, d), а не потому, что с нее начиналось слово «экспоненциальный» или его фамилия. Несмотря на все свои достижения, Эйлер оставался скромным человеком.

Эйлер сделал одно неожиданное открытие в отношении числа e, но мы к нему вернемся после того, как я расскажу вам о новом символе — восклицательном знаке (не принадлежащем к числу изобретений Эйлера). Когда сразу же после целого числа пишется знак «!», это означает, что данное число необходимо умножить на все целые числа, которые меньше него. Операция «!» называется факториалом, а число n! читается как «n-факториал».

Факториалы начинаются так:

(0! = 1 по соглашению)

1! = 1

2! = 2 1 = 2

3! = 3 2 1 = 6

4! = 4 3 2 1 = 24

10! = 10 9 8 7 6 5 4 3 2 1 = 3 628 800

Факториалы растут очень быстро. К тому времени, когда мы получим 20! значение будет исчисляться квинтиллионами. Возможно, немецкие математики XIX века решили использовать для этой операции восклицательный знак потому, что именно так хотели продемонстрировать феноменальную скорость роста факториала. В некоторых английских текстах того времени предлагалось даже обозначать n! как «n-изумление», а не «n-факториал». Безусловно, восходящая траектория восклицательного знака действительно способна вызывать сплошное изумление: факториал опережает даже экспоненциальный рост.

Факториалы чаще всего применяются в процессе расчета комбинаций и перестановок. Например, сколько существует способов рассадить определенное количество людей на таком же количестве стульев? Разумеется, один человек может сесть на одном стуле только одним способом. Когда есть два человека и два стула, появляется два варианта выбора, две перестановки — AB и BA. В случае трех человек и трех стульев таких способов уже шесть: ABC, ACB, BAC, BCA, CAB и CBA. Однако вместо перечисления всех возможных перестановок можно использовать общий метод поиска результата. У первого человека есть три варианта выбора стульев, у второго — два, у третьего — один; следовательно, общее количество вариантов равно 3 2 1 = 6. Применив этот же метод к четырем людям и четырем стульям, мы найдем общее число вариантов так: 4 3 2 1 = 4! = 24. Другими словами, при наличии n людей и n стульев количество перестановок составляет n! Поражает то, что если вы устроите ужин для десяти человек, вы сможете рассадить их за столом более чем тремя с половиной миллионами способов.

Но давайте вернемся к числу e. Эту экспоненциальную константу можно записать с помощью целой кучи восклицательных знаков. Боже мой!!! Вот это да!!! Оказывается, если вычислить значение ! для каждого числа, начиная с 0, а затем подсчитать сумму всех членов этого ряда, то в результате получится число e.

В виде равенства это можно записать так:

Что эквивалентно следующему:

Начнем подсчитывать сумму член за членом:

1

2

2,5

2,6666…

2,7083…

2,7166…

Этот ряд приближается к истинному значению числа e со сверхзвуковой скоростью. Всего после десяти членов ряда значения совпадают с точностью до шести десятичных знаков, что весьма неплохо практически для всех научных целей.

Почему число e так красиво выражается в виде факториалов? Как мы видели в случае со сложным процентом, оно представляет собой предел (1 + )n, когда n приближается к бесконечности. Я избавлю вас от деталей доказательства, но выражение (1 + )n можно записать в виде огромной суммы дробей с единицей в числителе и факториалом в знаменателе.

Эйлер был большим поклонником занимательной математики и с интересом изучал математические игры и головоломки. Например, когда один любитель шахмат спросил, может ли конь пересечь доску так, чтобы попасть на каждую клетку только один раз, прежде чем вернуться в исходную позицию, Эйлер отыскал способ, как это сделать, что избавило от решения подобных вопросов до настоящего времени. Внимание Эйлера привлекала также французская карточная игра jeu de rencontre — игра в совпадения (разновидность одной из моих любимых детских игр под названием Snap!).

Суть игры в совпадения состоит в том, что два игрока (А и Б) тасуют каждый свою колоду карт, а затем одновременно переворачивают первую карту в своих колодах и продолжают делать это до тех пор, пока не закончатся карты. Если в ходе переворачиваний появляются одинаковые карты, выигрывает игрок А. (И я кричу: «Snap!») Если совпадений до самого конца нет, побеждает игрок Б. Эйлера интересовала вероятность того, что победителем окажется игрок А, другими словами, что за 52 раза встретится хотя бы одно совпадение.

За долгие годы этот вопрос возникал неоднократно, хотя и в разных ситуациях. Например, представьте себе, что гардеробщик не выдает номерки на те вещи, которые люди сдают в гардероб в течение вечера. Какова вероятность того, что хотя бы один человек получит свое пальто назад? Или возьмем такой пример. Кинотеатр продает билеты с указанием мест, но затем публике разрешают занимать любое свободное место. Если зал кинотеатра заполнен, какова вероятность того, что хотя бы одно место займет человек, на билете которого указан номер этого места?

Эйлер начал с самого начала[114]. Если в игре в совпадения колода карт каждого из игроков состоит из одной карты, то вероятность совпадения будет 100 процентов. Если в колоде два карты, вероятность равна 50 процентам. Эйлер составил таблицы перестановок для игр с колодами из трех и четырех карт и только после этого вывел закономерность. Вероятность совпадения карт при n картах в колоде рассчитывается по такой формуле:

Но посмотрите внимательно: эта закономерность напоминает представленный выше ряд для числа e.

Я опущу детали доказательства, но этот ряд действительно приближается к (1 — ), или около 0,63. Сумма ряда в точности равна (1 — ) только в случае, если n стремится к бесконечности, но приближение очень орошее уже после нескольких членов ряда. Когда n = 52, то есть количеству карт в колоде, сумма этого ряда равна (1 — ) с точностью до 70 десятичных знаков.

Следовательно, в этой игре вероятность совпадения составляет около 63 процентов. Другими словами, вероятность того, что совпадение будет, почти в два раза больше того, что его не будет. Точно так же вероятность того, что хотя бы один гость получит назад свое пальто, а посетитель кинотеатра сядет на правильное место, тоже составляет 63 процента. Интересно, что количество карт в колоде, гостей, сдающих пальто в гардероб, или мест в зале кинотеатра практически не влияет на вероятность хотя бы одного совпадения при условии, что карт, гостей или мест больше шести или семи. Каждый раз, когда вы увеличиваете число карт, гостей или мест, вы прибавляете еще один член в представленный выше ряд, определяющий возможность совпадения. Например, восьмая карта дает восьмой член ряда — 1/8! или 0,0000248, что меняет вероятность менее чем на четверть сотой одного процента. Девятая карта еще меньше влият на значение вероятности. То есть получается, что вероятность совпадения почти не меняется, играете ли вы полной колодой карт или картами одной масти. Точно так же не имеет значения, сколько гостей сдадут свои пальто в гардероб, десяток или сотня, или о зале какого кинотеатра идет речь — о местном мультиплексе или о кинотеатре Empire на Лестер-сквер.

Сделанное Эйлером открытие относительно присутствия числа e в математике карточных игр — один из первых примеров появления этой константы в области, не имеющей очевидной связи с экспоненциальным ростом. Впоследствии эта константа появится и в не менее конкурентной сфере — в математике выбора жены.

Давайте вернемся ненадолго к Иоганну Кеплеру. После того как в 1611 году выдающийся астроном овдовел, он провел собеседование с одиннадцатью женщинами-кандидатами на место следующей фрау К.[115]. Как писал сам Кеплер, процесс реализации этой задачи начался не совсем удачно: у первой кандидатки «плохо пахло изо рта», вторая «была воспитана в чрезмерной роскоши», а третья помолвлена с человеком, зачавшим ребенка с проституткой. Кеплер взял бы в жены четвертую, «высокую женщину атлетического телосложения», если бы не увидел пятую, которая казалась «скромной, бережливой и способной полюбить приемных детей». Но Кеплер вел себя настолько нерешительно, что обе женщины потеряли к нему интерес — и он встретился с шестой женщиной, но от брака с ней тоже отказался, потому что его «пугали расходы на роскошную свадьбу», и с седьмой, которая, несмотря на «внешность, заслуживающую того, чтобы ее любили», отвергла Кеплера, поскольку он снова медлил с решением. Восьмой женщине «нечего было предложить, [хотя] ее мать была весьма достойной женщиной»; у девятой были больные легкие; десятая оказалась «слишком уродливой даже для мужчины с простыми вкусами… низенькая и толстая, и воспитывалась в семье, известной чрезмерной тучностью»; последняя кандидатка была еще недостаточно взрослой. В конце концов Кеплер задал себе вопрос: «Что это — промысел Божий или моя собственная моральная вина два с лишним года разрывает меня в разных направлениях и вынуждает рассматривать возможность столь разных союзов?» Такой мучительный самоанализ характерен для построения близких личных отношений и в наше время. Великому немецкому астроному требовалась стратегия.

Рассмотрим следующую игру, которую, по данным автора книг о математике Мартина Гарднера, изобрели в 1958 году два друга — Джон Г. Фокс и Л. Джеральд Марни[116]. Попросите кого-либо взять сколько угодно листов бумаги и написать на каждом из них разные положительные числа — любые, от крохотных дробей до невероятно огромного числа, скажем 1 с сотней нулей. Затем листы бумаги следует положить на стол числами вниз и перемешать. Теперь начинается игра. Вы переворачиваете листы один за другим. Ваша задача — остановиться в тот момент, когда перевернете лист с самым крупным числом. Не разрешается возвращаться и выбирать число на листе, который вы уже перевернули. Если вы продолжаете переворачивать листы до самого конца, то сможете выбрать только число на последнем из них.

Поскольку игрок, переворачивающий листы бумаги, не знает, какие числа на них написаны, на первый взгляд может показаться, что его шансы выиграть невелики. Однако что поразительно, в эту игру можно выиграть более чем в трети случаев, независимо от того, сколько листов бумаги в ней задействовано. Вся хитрость — в умелом использовании информации об уже увиденных числах, для того чтобы сделать определенный вывод о числах на листах, которые еще не перевернуты. Стратегия состоит вот в чем: переверните определенное количество листов бумаги, выберите в качестве критерия сравнения максимальное число из уже открытых, а затем остановитесь на первом же числе, превышающем это значение. На самом деле оптимальное решение — перевернуть (0,368, или 36,8 процента) от общего количества листов бумаги, а затем выбрать первое число, которое больше любого другого числа среди уже перевернутых листов. В этом случае вероятность того, что вы найдете максимальное число, составляет , или 36,8 процента.

В 1960-х годах эта головоломка получила известность под названием «задача о выборе секретаря», или «задача о браке», поскольку она аналогична ситуации, когда босс просматривает список кандидатов на должность секретаря или мужчина анализирует список потенциальных жен, решая, как определить самую лучшую из имеющихся кандидатур[117]. (А еще причина такого названия, по всей вероятности, связана с тем, что большинство математиков — мужчины.)

Представьте себе, что вы проводите собеседования с двадцатью претендентами на должность вашего секретаря, причем решение относительно каждого кандидата должны принимать сразу. Если вы предложите это место первому же соискателю, то не поговорите со всеми остальными, а если никого не выберете до самого последнего претендента, то вам придется отдать эту работу именно ему. Или представьте, что вы намерены назначить свидание двадцати женщинам, зная, что на каждом очередном свидании вам предстоит решать, ваша ли это избранница, прежде чем назначать свидание следующей женщине. (Приношу свои извинения читательницам. Данная аналогия основана на предположении о том, что мужчина делает предложение женщине, а женщина обязательно отвечает согласием.) Если вы сделаете предложение на первом свидании, вы не сможете встретиться со всеми остальными женщинами, а если побываете на свидании с каждой из них, вам придется сделать предложение последней женщине, с которой вы встретитесь. В обоих случаях лучший способ увеличить вероятность выбора самой подходящей кандидатуры — провести собеседования с 36,8 процента кандидатов, а затем предложить работу или руку и сердце тому из них, кто окажется лучшим из тех, с кем вы уже пообщались. Этот метод не гарантирует, что вы найдете наиболее оптимальный вариант (вероятность всего 36,8 процента), но это все равно лучшая стратегия.

Если бы Кеплер знал в свое время, что ему предстоит общение с одиннадцатью женщинами, и применил эту стратегию, он встретился бы с 36,8 процента из них (четырьмя), а затем сделал бы предложение той из оставшихся кандидаток, которая понравилась бы ему больше тех, кого он уже видел. Другими словами, он выбрал бы пятую женщину, что он действительно сделал, но только после того, как встретился со всеми одиннадцатью претендентками (и этот брак оказался счастливым). Если бы Кеплер знал решение задачи о браке, он избавил бы себя от шести неудачных свиданий.

Задача о выборе секретаря (или задача о браке) стала одной из самых знаменитых в занимательной математике, хотя она и не отображает реальность, поскольку боссы могут вызывать кандидатов повторно, а мужчины — возвращаться к тем женщинам, с которыми встречались ранее (как и сделал Кеплер). Тем не менее в основе ее решения лежит невероятно полезная теория, получившая название «оптимальная остановка», другими словами — математическое обоснование того, когда лучше всего остановиться. Решение задачи об оптимальной остановке играет важную роль в сфере финансов, позволяя, например, определить, когда пора ограничить убытки по инвестициям или исполнить фондовый опцион. А еще оно может пригодиться в таких областях, как медицина (скажем, чтобы рассчитать оптимальное время для прекращения того или иного курса лечения), энергетика (чтобы составить прогноз, когда не стоит полагаться на углеводородное топливо), зоология (чтобы установить, когда закончить исследование большой популяции животных в поисках новых видов, которых там, похоже, нет, тем самым избежав напрасной траты средств).

Российский олигарх Борис Березовский был в прошлом профессором математики Академии наук СССР, которая стала преемницей альма-матер Эйлера[118] В 1980-х годах в соавторстве с другим ученым Березовский написал книгу, посвященную задаче о выборе секретаря. В 2003 году он переехал в Великобританию. Я несколько раз обращался к Борису Березовскому с просьбой о встрече, но всякий раз он просил меня перезвонить через пару месяцев. Через год безуспешных попыток я понял, что пора остановиться.

В основе решения задачи об оптимальной остановке лежит предположение о том, что взвешенные решения относительно случайных событий можно принимать исходя из накопленных знаний. Рассмотрим игру, в которой существует фантастически изобретательный способ использовать малейшие крохи информации[119]. (Эта игра не имеет отношения к числу e, но вы уж простите меня за небольшое отклонение от темы экспонент.) Результат настолько противоречит здравому смыслу, что поначалу многие математики просто отказываются в него верить.

Это достаточно простая игра. Вы записываете два разных числа на отдельных листах бумаги и кладете эти листы числами вниз. Я переворачиваю один из листов и говорю вам, больше на нем число, чем то, которое остается скрытым, или нет. Каким бы удивительным это ни казалось, но я дам правильный ответ более чем в половине случаев.

На первый взгляд это похоже на магию, но на самом деле здесь нет никаких трюков. Мой выбор не зависит от человеческого фактора, в частности от того, какие вы указали числа или как разместили листы на столе. Именно математика, а не психология позволяет мне выигрывать чаще, чем проигрывать.

Предположим, что мне нельзя переворачивать ни один из листов бумаги. В таком случае вероятность того, что я угадаю, на каком листе число больше, составляет 50 на 50. Есть два варианта выбора, один из которых будет правильным. Мои шансы угадать правильный ответ те же, что и в случае подбрасывания монеты.

Однако, когда я увижу хотя бы одно число, мои шансы повысятся, если я сделаю следующее:

1) — сам выберу произвольное число — пусть это будет число k;

2) — если k окажется меньше числа на перевернутом листе, я скажу, что перевернутое число самое большое;

3) — если k будет больше числа на перевернутом листе, я назову самым большим числом то, которое скрыто, то есть указано на неперевернутом листе.

Другими словами, моя стратегия состоит в том, чтобы выбирать число, которое я вижу, пока произвольное число k не окажется больше. В таком случае я выбираю то число, которого еще не видел.

Для того чтобы понять, почему моя стратегия дает мне преимущество, необходимо проанализировать значение числа k с учетом двух чисел, написанных на листах бумаги. Существует три возможности: 1) k меньше обоих чисел; 2) k больше обоих чисел; 3) k находится между двумя числами.

В первом случае, какое бы число я ни увидел, я выбираю именно его. Вероятность того, что я окажусь прав, составляет 50 на 50. Во втором случае, какое бы число я ни увидел, я выбираю другое число. Мои шансы снова 50 на 50. Наиболее интересна третья ситуация, в ней я выигрываю в 100 процентах вариантов. Если я вижу меньшее число, то выбираю другое, а если вижу большее число, то выбираю его. Если по счастливому стечению обстоятельств мое произвольное число попадает между двумя числами, которые написаны на листиках бумаги, я выиграю в любом случае!

(Здесь нужно подробнее объяснить, как именно я выбираю число k, поскольку у него всегда должен быть шанс оказаться между любыми двумя заданными числами. В противном случае у меня не будет преимущества. Например, если вы всегда записываете отрицательные числа, а мое произвольное число положительное, то оно никогда не окажется между вашими двумя числами, а мои шансы на выигрыш остаются 50 на 50. Мое решение состоит в том, чтобы выбирать число по закону нормального распределения, поскольку это позволяет найти наиболее вероятное значение из всех положительных и отрицательных чисел. О нормальном распределении вам нужно знать только то, что оно обеспечивает способ выбора случайного числа, имеющего шанс попасть между двумя любыми другими числами.)

Вероятность того, что число k попадет между написанными вами числами, честно говоря, небольшая. Но поскольку шанс все же есть, то, если мы будем играть достаточное количество раз, вероятность моего выигрыша превысит 50 процентов. Я не могу знать заранее, когда выиграю, а когда проиграю. Но я и не говорил, что это возможно. Я сказал лишь то, что смогу выиграть в более чем половине случаев. Если вы хотите сделать так, чтобы мои шансы оставались как можно ближе к 50 на 50, вам необходимо указывать числа, которые максимально близки друг к другу. Тем не менее, если эти числа не равны, всегда существует шанс того, что я выберу число, попадающее между ними, и до тех пор, пока этот шанс математически возможен, я буду выигрывать в эту игру чаще, чем проигрывать.

В предыдущей главе я ввел понятие числа , которое начинается с 3,14159 и показывает, сколько раз диаметр помещается на окружности. В данной главе мы познакомились с числом е, которое начинается с 2,71828 и представляет собой числовую сущность экспоненциального роста. Эти числа — наиболее часто используемые математические константы, о которых часто упоминают одновременно, хотя они появились в результате разных исследований и у них разные математические свойства. Любопытно, что эти два числа очень близки друг к другу и отличаются всего на 0,5. В 1859 году американский математик Бенджамин Пирс предложил обозначить число символом , а число е — символом , для того чтобы показать, что эти два числа в какой-то мере подобны друг другу. Однако это невразумительное обозначение так и не прижилось.

Обе константы — это иррациональные числа, другими словами, числа, десятичная часть которых содержит бесконечное количество никогда не повторяющихся цифр. Попытки найти особо элегантную арифметическую комбинацию этих двух чисел стали своего рода математическим состязанием. Мы никогда не найдем уравнения со строгим равенством, но:

4+5=e6,

что верно до семи значимых цифр;

e — = 19,999099979…

что очень близко к 20.

И самое впечатляющее уравнение:

e163 = 262537412640768743,99999999999925007…

что всего на одну триллионную меньше целого числа!

В 1730 году шотландский математик Джеймс Стирлинг открыл следующую формулу:

Эта формула позволяет рассчитать приближенное значение n! — факториала числа n, который, как мы уже видели, представляет собой результат умножения 1 2 3 4 … n.

Факториал — это простая операция, сводящаяся к умножению целых чисел друг на друга, поэтому несколько неожиданно видеть в правой части формулы квадратный корень, и е.

Когда n = 10, приближенное значение менее чем на 1 процент отличается от истинного значения 10! и чем больше число n, тем точнее становится приближенное значение в процентах. Поскольку факориалы — огромные числа (10! — это 3 628 800), представленная выше формула — это нечто потрясающее.

Между и е явно что-то происходит.

Леонард Эйлер раскрыл еще одну связь между этими двумя константами, даже более неожиданную и поразительную, чем формула Стирлинга. Но, прежде чем переходить к данной теме, нам необходимо познакомиться с очередной гласной, которую Эйлер ввел в наш математический алфавит.

Приготовьтесь к встрече с числом i.

7. Позитивная сила негативного мышления

Автор отправляется в путешествие по другую сторону ноля. Он должен объяснить, почему минус, умноженный на минус, дает плюс. Ему не удается сохранить связь с реальностью, и он погружается в Долину морского конька

Зимой 2007 года Национальная лотерея Великобритании ввела новые билеты. На них размещалось два числа, и люди выигрывали приз, если число слева оказывалось больше числа справа. Вы можете подумать, что все это предельно просто. Однако, поскольку эти билеты были оформлены в зимнем стиле, числа представляли собой температуру ниже нуля. Задача, таким образом, сводилась к сравнению отрицательных чисел, а для некоторых людей это оказалось весьма не просто. Многие игроки вообще не могли, например, понять, что –8 меньше, чем –6. После десятков жалоб такие билеты были сняты с продажи. «Они пытались обмануть меня рассказами о том, что –6 больше, а не меньше –8, но я этому не верю», — заявил один возмущенный игрок[120].

Проще всего посмеяться над людьми, не понимающими основ арифметики, однако не стоит с этим спешить. Отрицательные числа мучили наш разум столетиями и делают это до сих пор. Именно поэтому подземные этажи зданий принято обозначать буквами (например, LG — lower ground («подземный этаж») и B — basement («подвальный этаж»)) или алфавитно-цифровыми знаками (скажем, B1, B2 и B3), а не отрицательными числами (–1, –2 и –3). Когда мы датируем события, произошедшие до рождения Христа, например, когда Евклид написал свой труд Elements[121], мы предпочитаем говорить «в 300 году до нашей эры», а не «в –300 году нашей эры». А у бухгалтеров вообще множество способов избегать знака «минус»: записывать долги красным, прибавлять аббревиатуру DR (от debtor — «должник») или заключать неприятную сумму в скобки.

Ни древнегреческие, ни египетские, ни вавилонские математики не создали концепцию отрицательных чисел. В древние времена числа использовались для подсчета и измерения, а как можно подсчитать или измерить то, что меньше, чем ничего? Давайте попытаемся встать на место обитателей античного мира, чтобы понять, какой интеллектуальный прорыв им нужно было совершить. Мы знаем, что 2 + 3 = 5, потому что, когда у нас есть две буханки хлеба и нам дают еще три, у нас будет пять буханок. Мы знаем, что 2 1 = 1, потому что, когда, имея две буханки хлеба, мы отдаем одну, у нас остается еще одна. Но что значит 2 3? Если у меня есть только две буханки хлеба, я не могу отдать три. Однако предположим, что я все же могу это сделать — тогда у меня останется минус одна буханка. Что же значит «минус одна буханка»? Это не обычная буханка хлеба. Это, скорее, ее отсутствие, причем такое, что если к нему прибавить буханку хлеба, то будет получено «ничто». Неудивительно, что древние считали эту концепцию абсурдной.

Однако в древней Азии допускали существование отрицательных величин — правда, в определенной степени[122]. Ко временам Евклида у китайцев уже была система вычислений, в которой использовались бамбуковые палочки. Обычные палочки представляли положительные числа, их китайцы называли «истинными», а палочки, покрашенные в черный цвет, олицетворяли отрицательные числа, их называли «ложными». Как показано ниже, китайцы размещали палочки на разграфленной доске таким образом, чтобы каждое число занимало отдельную ячейку, а каждая колонка соответствовала одному уравнению. Опытный вычислитель решал уравнения, передвигая бамбуковые палочки. Если решение состояло из обычных палочек, это было истинное число, которое принималось. Если решение состояло из черных палочек, это было ложное число, и оно отбрасывалось. Тот факт, что китайцы использовали физические объекты для представления отрицательных величин, свидетельствовал о существовании этих чисел, хотя они и были всего лишь инструментами для вычисления положительных величин. Китайцы поняли одну очень важную истину: если математические объекты приносят пользу, не имеет значения, что они не согласуются с повседневным опытом. Пусть этой проблемой занимаются философы.

Китайцы раскладывали бамбуковые палочки на разграфленной доске; обычные палочки символизировали положительные числа, черные — отрицательные, что позволяло записывать и решать уравнения

Через несколько столетий в Индии математики нашли для отрицательных чисел материальный контекст — деньги. Если я одалживаю у вас пять рупий, у меня получается долг в пять рупий — отрицательная величина, которая станет нулевой только после того, как я верну вам эту сумму. Астроном VII века Брахмагупта установил правила арифметических операций с положительными и отрицательными числами, которые назвал «имуществом» и «долгом». Кроме того, он ввел число ноль в его современном понимании.

Долг минус ноль — это долг.

Имущество минус ноль — это имущество.

Ноль минус ноль — это ноль.

Долг, вычтенный из нуля, — это имущество.

Имущество, вычтенное из нуля, — это долг.

И так далее…

Брахмагупта описывал точное значение имущества и долга с помощью нуля и других девяти цифр, которые легли в основу десятичного представления чисел, используемого в настоящее время. Индийские числительные распространились на территории Ближнего Востока, Северной Африки, а к концу Х века — и в Испании. Тем не менее понадобилось еще три столетия, прежде чем отрицательные числа получили широкое признание в Европе. Такая задержка была обусловлена тремя причинами: историческая связь с долгами, а значит, и с порочной практикой ростовщичества; всеобщая подозрительность в отношении новых методов, приходящих из мусульманских земель; продолжительное влияние древнегреческой философии, согласно которой величина не может быть меньше, чем ничто.

Со временем счетоводы привыкли к использованию отрицательных чисел в своей профессии, математики же очень долго остерегались их. В XV и XVI веках отрицательные величины были известны как абсурдные числа (numeri absurdi)[123], и даже в XVII столетии многие считали их бессмысленными. В XVIII веке преобладал следующий аргумент против отрицательных чисел. Рассмотрим такое уравнение:

С арифметической точки зрения это правильное утверждение. Тем не менее оно парадоксально, поскольку гласит, что отношение меньшего числа (1) к большему (1) эквивалентно отношению большего числа (1) к меньшему (1). Этот парадокс стал предметом множества дискуссий, но никто так и не смог его объяснить. В попытках понять смысл отрицательных чисел многие математики, в том числе и Леонард Эйлер, пришли к невероятному выводу, что эти числа больше бесконечности[124]. Данная концепция вытекает из анализа такой последовательности:

Что эквивалентно ряду:

3,3; 5; 10; 20…

По мере уменьшения числа в нижней части дроби (знаменателя) от 3 до 2, а затем до 1 и 1/2, абсолютное значение дроби становится больше, а когда значения знаменателя приближается к нулю, значение дроби стремится к бесконечности. Была выдвинута гипотеза, что, когда знаменатель равен нулю, значение дроби бесконечно, а когда он меньше нуля (другими словами, когда это отрицательное число), дробь должна быть больше бесконености. В настоящее время мы избегаем этой парадоксальной ситуации, утверждая, что бессмысленно делить число на ноль. Дробь 10/0 не бесконечна; она «не определена».

В этом смешении разных мнений прозвучала одна четкая и понятная концепция, принадлежавшая английскому математику Джону Уоллису, который придумал эффективный способ визуальной интерпретации отрицательных чисел. В написанном в 1685 году труде A Treatise of Algebra («Трактат по алгебре») Уоллис впервые представил числовую ось (см. рисунок ниже), на которой положительные и отрицательные числа отображают расстояния от ноля в противоположных направлениях. Уоллис писал, что если человек отойдет от ноля вперед на пять ярдов, а затем вернется назад на восемь ярдов, то он «переместится на позицию, которая на 3 ярда дальше, чем ничто… А значит, 3 — это та же точка на линии, что и +3, но не вперед, как должно быть, а назад». Заменив концепцию количества концепцией позиции, Уоллис показал, что отрицательные числа нельзя считать «ни бесполезными, ни абсурдными». Как оказалось, это было явное преуменьшение. Понадобилось несколько лет на то, чтобы идея Уоллиса получила широкое распространение, но теперь, по прошествии времени, очевидно, что цифровая ось — самая успешная разъяснительная схема всех времен. У нее множество разных областей применения, от графиков до термометров. Теперь, когда мы можем увидеть отрицательные числа на числовой оси, у нас больше нет концептуальных трудностей с тем, чтобы представить себе, что это такое.

Страницы: «« 12345678 »»

Читать бесплатно другие книги:

Замечательные стихотворения для детей всех возрастов, размещённые в книге по временам года: лето — о...
Мы — чьи-то мысли, планы.Мы — чьи-то мечты, поэтому живем.В этой книге вы прочтёте о себе.Изобретате...
Наемный убийца Клод Финеас встречает демонессу по имени Рин, которая просит его вернуть ей утраченны...
Почему тоталитарные режимы, а так же А. Ахматова и В. Набоков, не любили психоанализ; парадоксы у О....
Вниманию читателя представляется одна из наиболее авторитетных книг, посвященных истории, истолкован...
Сборник рассказов представляет из себя удивительную палитру, многообразное смешение жанров, сюжетов,...