Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры Беллос Алекс

В математике доказательство методом индукции — это способ выяснить, когда закономерность будет продолжаться до бесконечности. Если у нас есть последовательность таких утверждений:

1) — первое утверждение верно;

И

2) — если n-е утверждение верно, то утверждение n + 1 тоже верно;

то мы можем сделать вывод, что все эти утверждения верны.

Доказательство методом индукции аналогично падению костяшек домино. Если их поставить в ряд и n-я костяшка упадет, она толкнет костяшку n + 1, а значит, для того чтобы упали все костяшки, достаточно всего лишь опрокинуть первую костяшку.

Но вернемся к исходной задаче. Для того чтобы доказать, что машинальный рисунок может быть двухцветным, нам необходимо доказать, что:

1) — рисунок, состоящий из одного ряда, может быть двухцветным;

2) — если рисунок, состоящий из n рядов, может быть двухцветным, то и рисунок с количеством n + 1 рядов тоже будет двухцветным.

Доказать истинность первого утверждения очень просто: достаточно провести через всю станицу прямую линию и заштриховать область с одной стороны. А вот для того, чтобы доказать истинность второго утверждения, понадобится немного поразмышлять.

Начнем доказательство с рассмотрения n + 1 линий, как показано на схеме 1 ниже. (Очевидно, что для иллюстрации данного примера для числа n нужно выбрать какое-то значение, поэтому мы должны проследить за тем, чтобы наше доказательство было применимо к любому числу n.)

Если удалить одну линию, у нас получится рисунок с количеством линий n, показанный на схеме 2. Предположим, рисунок с количеством линий n можно сделать двухцветным, как на схеме 3. Теперь давайте восстановим линию, убранную на первом шаге (схема 4), и с одной ее стороны поменяем цвет на противоположный, другими словами — белые фрагменты сделаем заштрихованными, а заштрихованные — белыми. В результате каждый сектор над линией расположен рядом с сектором под линией, имеющим другой цвет. Следовательно, у нас пролучился двухцветный рисунок с количеством линий n + 1 (схема 5).

Доказательство теоремы о двухцветном рисунке методом индукции

Иными словами, мы продемонстрировали, что второе утверждение истинно. Процесс доказательства методом индукции завершен: все рисунки могут быть двухцветными. (Это доказательство распространяется только на рисунки, образованные посредством вычерчивания линий на квадратном листе. То же самое касается и любого фигурного рисунка с «завитушками», когда перо начинает и прекращает двигаться в одной и той же точке, но по мере перемещения может рисовать петли, спирали и пересечения любой сложности. Однако это утверждение требует более сложного доказательства.)

Труд Евклида «Начала» стал самым важным текстом в истории математики, и не только потому, что он раскрыл информацию о простых числах, треугольниках и т. д., но и благодаря тому, как именно это было сделано. Красота этого текста состоит в его строгости. Евклид весьма скрупулезен. Он ничего не упрощает, не дает никаких оценок и не делает заявлений, которые не может доказать. Если вы согласитесь с тем, что десять исходных предположений Евклида верны, то вы должны принять и истинность всех 465 теорем, сформулированных в книге. «Начала» — это образец применения аксиоматического метода, свидетельство силы дедуктивного мышления.

Говорят, что «Начала» Евклида переиздавались на протяжении большего периода и в большем количестве экземпляров, чем любая другая книга, за исключением Библии. Это очень уместное сравнение, поскольку более двух тысячелетий труд Евклида считался священным текстом, а аксиоматический метод принимался в качестве догмы. Однако в XVII веке появились первые признаки «нечестивости». Евклид полагался на аксиомы и определения, которые по самой своей сути не требовали доказательств и, разумеется, не содержали внутренних противоречий. Но, как мы видели в предыдущей главе, бесконечно малой величине, или величине, которая представляет собой одновременно и нечто, и ничто, свойственна именно такая внутренняя противоречивость. Ньютон и его современники использовали концепцию бесконечно малых величин, поскольку она позволила им доказать множество новых теорем, хотя им и приходилось закрывать глаза на противоречие с догматами Евклида, которые это за собой влекло.

Однако со временем математики поняли: для того чтобы исчисление было свободно от внутренних противоречий, оно должно опираться на более прочный фундамент. Было решено положить в основу исчисления не бесконечно малые величины, а нечто более надежное — концепцию предела. После упрощения исходных предположений и уточнения определений родился новый раздел математики — математический анализ. Сейчас этим термином обозначаются все области, связанные с исчислением, непрерывностью и бесконечными процессами. Одним из первых знаковых достижений математического анализа стала теорема о промежуточном значении, о которой шла речь в начале главы, гласящая, что непрерывная кривая покрывает все точки, расположенные между ее минимумом и максимумом.

Присущая XIX столетию склонность к научной строгости нашла свое отражение не только в математическом анализе, но и в других областях, в частности в евклидовой геометрии. Внимательно проанализировав «Начала», немецкий математик Мориц Паш сделал невероятное открытие: в рассуждениях Евклида есть прорехи, которые до сих пор никто не заметил, несмотря на то что «Начала» — наиболее изученный учебник по математике за всю историю. Евклид считал само собой разумеющимся, что, если три разные точки лежат на одной прямой, значит, одна из них находится между двумя другими. Однако если бы Евклид придерживался собственных стандартов, ему следовало бы сформулировать это утверждение в виде аксиомы. Евклид совершил неосмотрительную ошибку, позволив своим глазам воздействовать на дедуктивный процесс. В 1899 году Давид Гильберт предложил новую, усовершенствованную евклидову систему, содержащую 21 постулат.

Числа тоже были тщательно проанализированы по-новому. Числа — это ядро всей математики, по сути — всей науки. Но что такое число и почему 1 + 1 = 2?

В 1879 году немецкий математик Готлоб Фреге опубликовал свой труд Begriffsschrift («Исчисление понятий»), в котором представил тщательно проработанную, имеющую собственные обозначения систему исчисления, позволяющую определить истинность и ложность утверждений. Это было рождение математической логики — использования математических рассуждений для анализа других математических рассуждений.

Фреге хотел дать четкий ответ на вопрос «Что такое число?». Для решения этой задачи он позаимствовал у своего современника Георга Кантора концепцию множества. В математике часто бывает так, что на первый взгляд простое слово означает нечто сложное. Но только не в случае с множеством. Множество — это всего лишь совокупность объектов, обладающих одним и тем же свойством. Множеством может быть ящик яблок, пелотон (лидирующая группа) велосипедистов или звездная галактика.

Фреге разработал систему, в которой числа определяются как множества, аксиомы записываются с использованием его системы исчисления понятий, а истинность арифметических законов может быть доказана. Он планировал свести арифметику к системе не допускающих двойного толкования логических операций, в основу которой положены исходные предположения, лишенные внутренних противоречий, — например «отрицание отрицания утверждения А означает утверждение А»[162]. Работа с такими концепциями, как числа и сложение, не вызывает никаких трудностей, поэтому вы можете подумать, что задача Фреге была не особо сложной. Но на самом деле она потребовала огромных умственных усилий. В отличие от всех своих предшественников, использовавших числа и арифметические операции в качестве кирпичей для строительства здания математики, Фреге сделал подкоп непосредственно под ее фундамент.

Готлоб Фреге опубликовал свою теорию в книге The Basic Laws of Arithmetic («Основные законы арифметики»), первый том которой вышел в 1893 году. Однако, когда второй том уже находился в типографии, Фреге узнал весьма неприятную новость. Профессор философии Кембриджского университета Бертран Рассел прислал ему письмо, в котором указывал на одно противоречие. Поскольку задача сведения арифметики к логике состояла в создании системы, полностью лишенной противоречий, найти хотя бы одно несоответствие было равносильно катастрофе. Фреге быстро написал к книге дополнение: «Вряд ли ученый может столкнуться с чем-либо более нежелательным, чем разрушение основ в тот момент, когда работа уже завершена». С тех пор слово «нежелательный», которое использовал тогда Фреге, называют величайшим преуменьшением в истории математики.

Рассел открыл проклятие самореференции (самоотносимости).

Ниже приведены некоторые из моих любимых утверждений, ссылающихся на самих себя[163].

предложение должно начинаться с большой буквы.

В вопросе «быть или не быть» скомбинированы два предложения.

В этом предложении!!! преждевременно поставлен знак препинания

Однако самое древнее самоотносимое предложение приписывают критянину Эпимениду, который сказал: «Все критяне лжецы». Эпименид не только ссылается сам на себя, но и сам себе противоречит. Если он говорит правду, значит, он лжет, а если лжет, тогда говорит правду. Высказывание Эпименида (которое назвали «парадоксом лжеца») получило множество новых интерпретаций. Дайте ответ «да» или «нет» на такой вопрос: «Будет ли следующее слово, которое вы скажете, словом “нет”?»

Бертран Рассел понял, что парадокс самореференции нанесет серьезный удар по проекту Фреге и, возможно, даже погубит его. Преимущество использования множеств в качестве основы арифметики состоит в том, что эту концепцию легко понять: множество — это просто совокупность объектов. Однако Рассел изобрел такое множество:

Множество всех множеств, которые не содержат себя в качестве своего элемента.

Большинство множеств не содержат себя в качестве своего элемента. Множество туфель не является туфлей. Но некоторые множества все же являются исключениями. Например, множество концепций — это тоже концепция. А теперь посмотрим на множество Рассела. Содержит ли оно себя? Если предположить, что да, мы придем к выводу, что не содержит, а если предположить, что нет, то мы сделаем вывод, что содержит! Это множество имеет противоречие. Рассел провел аналогию с брадобреем одной деревни, на стене дома которого висела табличка: «Я брею всякого, кто сам не бреется». Кто же бреет брадобрея? Если он сам бреется, значит, он не побреет себя, а если он сам не бреется, значит, он себя побреет. Мы имеем бесконечный цикл рассуждений, противоречащих друг другу.

Парадокс Рассела демонстрирует, что множества в том виде, как их представлял себе Фреге, нельзя использовать в качестве прочной основы для арифметики. Самореференция со свойственной ей внутренней противоречивостью способна испортить всю систему. Однако, вместо того чтобы отбросить проект Фреге как ошибочный, Рассел стал его величайшим сторонником. Мечта о том, чтобы поставить математику на надежную логическую основу, была слишком заманчивой, чтобы от нее отказываться. На протяжении следующих десяти лет Рассел вместе с Альфредом Нортом Уайтхедом работал над усовершенствованием этой системы. Рассел и Уайтхед согласились с предположением Фреге о том, что множество может стать подходящей основой для чисел. Но, чтобы избавиться от парадоксов самореференции, они создали строгую иерархию множеств. На ее первом уровне находятся объекты, такие как книги или кошки. На втором — множества объектов первого уровня, такие как книги на моей полке или кошки на моей улице. На третьем — множества объектов второго уровня, такие как полки с книгами по математике или лондонские кошки, сгруппированные по улицам. Парадокс Рассела не может возникнуть, поскольку то или иное множество может быть только членом множества верхнего уровня, а значит, не может содержать само себя.

Рассел и Уайтхед ввели систему обозначений, определения и аксиомы, чрезвычайно строго и тщательно сформулированные. Стремление ученых к простоте и понятности разъяснений привело к написанию одного из самых сложных и неудобочитаемых текстов за всю историю математики. Только на 379-й странице авторы смогли доказать, что 1 + 1 = 2. Когда они предложили опубликовать книгу Principia Mathematica («Принципы математики»), издатель отказался это делать, поскольку не смог найти читателей, способных ее понять. Написание этой книги потребовало таких огромных умственных усилий, что Рассел больше никогда ничего не писал по математике или логике.

Польский специалист в области логики Альфред Тарский предложил иерархию языка (во многом напоминающую иерархию множеств Рассела), которая позволяет решить парадокс лжеца[164]. В соответствии с ней существует язык уровня 1 и метаязык уровня 2 для описания утверждений на языке уровня 1, а также метаязык уровня 3 для описания утверждений на языке уровня 2 и т. д. Истинность или ложность утверждений можно описывать только на метаязыке следующего уровня, поэтому утверждение не может приписывать истинность или ложность самому себе. Как объяснил однажды Рассел, если бы Эпименид заявил: «Я говорю неправду уровня n», это действительно была бы ложь, но ложь уровня n + 1.

Комедианты используют метаязык так же, как и логики[165]. Если шутка не удалась, всегда можно выйти из ситуации с юмором, отпустив шутку по поводу неудавшейся шутки.

Книга Principia Mathematica так и остается непрочитанной. Тем не менее предпринятая в ней попытка создать свободную от парадоксов аксиоматическую основу арифметики была с энтузиазмом подхвачена другими учеными. Аксиоматическая теория множеств считается величайшим интеллектуальным достижением начала XX столетия[166], приведшим к появлению замечательных работ в области математики, логики и философии. Стандартная система аксиом получила название ZFC (сокр. от имен математиков Эрнста Цермело (Ernst Zermelo) и Авраама Френкеля (Abraham Fraenkel)) с аксиомой выбора. Аксиома выбора гласит, что при наличии бесконечного количества множеств, каждое из которых содержит не менее одного элемента, можно создать новое множество, включающее по одному элементу из каждого множества. На первый взгляд эта аксиома кажется вполне справедливой, хотя на самом деле она крайне противоречива. Одна из самых горячих дискуссий в теории множеств касалась именно того, стоит ли включать эту аксиому в систему, потому что из-за этого начнут происходить весьма странные вещи.

Стефан Банах, польский математик, который доказал теорему о бутерброде с ветчиной в Шотландском кафе, а также Альфред Тарский, специалист в области логики, предложивший расселовскую иерархию языка, доказали, что если считать аксиому выбора истинной, то истинной будет и следующая теорема:

Шар можно разделить на конечное количество фрагментов, из которых можно собрать две идентичные копии исходного шара.

Эта теорема более известна как «парадокс Банаха — Тарского». Слово «парадокс» используется здесь потому, что на первый взгляд теорема противоречит законам физики, хотя в ее доказательстве нет логических противоречий. В физическом смысле собрать два шара из фрагментов одного невозможно, поскольку эти фрагменты представляют собой не цельную структуру, а совокупность бесконечного количества точек. Тем не менее теорема поражает воображение. Из нее следует, что любой шар можно разделить на части и составить из них любой другой объект, а значит, из горошины можно сделать солнце. (Несмотря на столь невероятные выводы, сейчас большинство математиков принимают аксиому выбора.)

Если суть шутки состоит в неожиданных выводах, то парадокс Банаха — Тарского — самая смешная теорема в математике.

В конце 1970-х, когда мне было около восьми лет, мы перешли на уроках математики от чисел к множествам. Я хорошо помню, как это происходило. Овал с несколькими точками олицетворял собой одно множество, а второй овал с несколькими точками — другое множество. Нам следовало соединить точки одного множества с точками другого, что показывало, в каком множестве больше точек. Я так и не понял, в чем смысл этих упражнений, и мне кажется, учителя тоже не понимали. Примерно через год на уроках перестали говорить о множествах, и я снова встретился с ними уже на втором курсе университета. Если вы учились в школе в 60-х, 70-х или 80-х годах XX века, вполне вероятно, что вас тоже кратко знакомили с теорией множеств. Присутствие этой дисциплины в учебной программе связано с именем Николя Бурбаки, самого плодовитого математика ХХ столетия.

В 1939 году Бурбаки опубликовал свою первую книгу из масштабной серии под названием lments de Mathmatique («Начала математики»). «В прошлом считалось, что каждый раздел математики зависит от интуитивных знаний в этой области, на которых основаны концепции и истин, — писал он. — Однако в наши дни, как известно, можно, логически говоря, вывести практически всю человеческую математику из одного источника — теории множеств»[167]. Название этой серии содержало отсылку к Евклиду. Подобно тому как труд Евклида «Начала» формализовал математические знания древних греков в рамках системы аксиом, основанной на свойствах точек и линий, «Начала математики» Бурбаки формализовали современные математические знания в рамках аксиоматической системы, построенной на свойствах множеств. Выбор слова mathmatique (в единственном числе, в отличие от английского mathematics) подчеркивал убежденность Бурбаки в единстве этой области знаний. Серия «Начала математики» состояла из десятков книг общим объемом около 7000 страниц, причем не только по теории множеств, но и по таким дисциплинам, как алгебра, математический анализ и топология. Кроме того, Бурбаки была свойственна одна отличительная особенность, которая делала его уникальным среди современников. Такого человека не существовало.

В начале 30-х годов ХХ века несколько молодых французских математиков пришли к выводу, что университетские учебники устарели, и решили вместе написать новые. Они взяли для своей группы псевдоним Николя Бурбаки, по имени Шарля Дени Бурбаки — французского генерала, который в 1862 году отказался от греческого престола, а после унизительного поражения во Франко-прусской войне пытался застрелиться, но промахнулся. Ученые, вошедшие в состав этой группы, заявили о том, что Николя Бурбаки родом из Полдавии — страны, которая упоминается в книге о приключениях Тинтина The Blue Lotus[168][169]. Группа приняла кодекс секретности и ввела возрастное ограничение 50 лет. Подобно польским математикам, собиравшимся в Шотландском кафе во Львове примерно в тот же период, входившие в группу Бурбаки ученые получали удовольствие, смешивая веселье и науку. Во время одной из регулярных встреч в сельской местности несколько членов группы отправились к местному озеру и, раздевшись донага, прыгали в воду с криками «Бурбаки!»[170]

Однако подход Бурбаки к математике был совершенно серьезным. Группа разработала метод написания книг, согласно которому на создание одной книги требовалось несколько лет. После долгих дискуссий по поводу содержания каждого тома кто-то из членов группы составлял черновой вариант текста книги. На следующем собрании текст вычитывался буквально построчно, причем каждую строку должны были одобрить все члены группы. Стиль изложения материала тоже был уникальным. Цель всей серии книг состояла в том, чтобы вывести все из исходных принципов, не прибегая к каким бы то ни было физическим или геометрическим интуитивным данным. Иллюстрации не использовались, поскольку члены группы считали, что они могут вводить в заблуждение. «Строгость для математика — то же самое, что мораль для человека», — сказал один из основателей группы Андре Вейль. В книгах серии не было аналогий, отступлений, опущений, рисунков или упражнений для читателей. Требование об аксиоматической чистоте было настолько жестким, что в первой книге понадобилось две сотни страниц на определение числа 1, да и то в сокращенной форме. (В книге говорится, что на представление числа 1 в расширенной форме понадобилось бы много тысяч символов. В 1999 году британский специалист по теории множеств А. Р. Д. Матиас заявил, что на самом деле метод Бурбаки требует 4 523 659 424 929 символов и 1 179 618 517 981 связей между ними[171].)

У серии книг «Начала математики» была хорошо продуманная структура. Каждая книга могла содержать ссылки только на материал предыдущих книг и не должна была ссылаться на книги других авторов, что позволяло построить огромную логическую систему на основании лишь одной теории множеств. Хотя члены группы были очень молоды, все они уже добились значительных успехов в математике и самостоятельно опубликовали ряд работ. Андре Вейль, брат философа и общественного деятеля Симона Вейля, был, пожалуй, самым талантливым членом группы. В 1939 году, когда вышла первая книга серии «Начала математики», разразилась война, и Вейль уехал в Финляндию. Полиция произвела обыск в его квартире в Хельсинки и нашла там письмо, написанное по-русски (в котором шла речь исключительно о математике), и стопку визитных карточек, принадлежащих Николя Бурбаки, члену Королевской академии наук Полдавии. После этого Вейль был депортирован по обвинению в шпионаже. По возвращении во Францию его посадили в тюрьму за то, что он не явился для прохождения службы в армии. Но Вейлю понравилось сидеть в тюрьме. «Моя математическая работа продвигается лучше, чем в самых смелых мечтах, что меня немного беспокоит, — писал он жене. — Если я могу так хорошо трудиться только в тюрьме, не придется ли мне устраивать так, чтобы каждый год попадать сюда на два-три месяца?»

Вторая книга серии «Начала математики» вышла в свет в 1940 году, а третья — в 1942-м. После перерыва по причине войны в конце десятилетия было опубликовано еще несколько томов. Поскольку прежние члены группы достигли возрастного предела, в состав группы были включены новые члены. К 1950-м годам книги Бурбаки заняли доминирующие позиции в университетской математике во Франции и сохраняли за собой этот статус на протяжении следующих двух десятилетий. Эта математическая «секта» начала напоминать мафию, поскольку ее действующие и бывшие члены (в том числе ряд самых блестящих французских математиков) занимали высшие должности в университетах. После перевода книг Бурбаки на английский язык они оказали существенное влияние и на англоязычный мир.

Лучшее время для группы Бурбаки наступило в период эскалации холодной войны. Правительства стран Запада осознали, что им необходимо полностью изменить систему преподавания естественно-научных дисциплин, для того чтобы не отставать от Советского Союза, только что запустившего в космос первый спутник[172]. Идеология бурбакизма, гласившая, что абстрактные формальные системы важнее интуиции и решения задач, просочилась из университетов в школы. Политики и представители системы образования решили, что ответом на красную угрозу станет включение теории множеств в учебную программу. Преподавание математики было реорганизовано, в результате чего поколение школьников 1960-х и 1970-х годов изучало «новую математику» в лице теории множеств.

Со временем влияние Бурбаки в университетских аудиториях и школьных классах ослабло. Например, такие области исследований, как фракталы, полностью зависят от компьютеров и визуального отображения, поэтому пристрастие Бурбаки к структуре устарело. За последние десятилетия математика развивалась благодаря взаимодействию с другими науками, а не за счет самоизоляции от них. В итоге школьникам больше не преподают теорию множеств. Однако вопреки сообщениям о кончине Николя Бурбаки, которому скоро исполнится восемьдесят лет, он живет и здравствует.

Сейчас ядро группы состоит из пяти математиков. Я встретился с одним из них в кафе у Люксембургского сада в Париже. Кодекс секретности по-прежнему действует, поэтому мне разрешили рассказать только о том, что этот член группы носит бороду и был одет в рубашку пурпурного цвета и соломенную шляпу. Кроме того, он выдающийся ученый, известный профессор. Я спросил, сколько людей знают о его участии в группе Бурбаки. «Большинству моих коллег это хорошо известно, но я не признал бы этого. Многие не принимают наши идеи, — сказал он. — Некоторые заявляют, что группа Бурбаки бесполезна и должна прекратить свою деятельность».

Последняя книга из серии «Начала математики», посвященная алгебре, вышла в свет в 2012 году, а новая (о топологии) готовится к публикации в настоящее время. Группу Бурбаки обвиняют в том, что ее пристрастие к строгости фактически нанесло ущерб французской математике. Книги, публикуемые группой, трудны для восприятия, а значит, их нельзя эффективно использовать в качестве учебных посбий. Кроме того, они не оставляют места для творчества и интуиции. «Даже мои ближайшие коллеги убеждены в том, что это не те книги, которые нужны нынешним математикам», — признался мне человек в пурпурной рубашке. Я спросил его, согласен ли он с этим мнением. «Ответ неочевиден. Очевидно лишь то, что такая работа — когда мы собираемся все вместе, вычитываем строку за строкой и каждый имеет возможность высказать свои возражения и исправить ошибки — позволяет получить в итоге нечто особенное и, будем надеяться, стоящее. Идеи, изложенные в этих книгах, — это совокупный продукт многих людей. Математики не могут делать все исключительно своими силами».

Я спросил, не считает ли он устаревшим тот уровень строгости, которого придерживаются бурбакисты. «Думаю, такая строгость уместна сейчас даже в большей мере, чем раньше, — ответил он. — Существует разница между строгостью и сухостью. Мы стараемся быть строгими, но не сухими». В действительности этот член группы уверен в том, что современные университетские учебники кое-чем обязаны Бурбаки. «Сейчас признание того, что доказательство не является достаточно строгим по стандартам книги, — общепринятая практика. В каком-то смысле тот уровень строгости, которого придерживаются математики, именно такой [как у Бурбаки]». В то же время этот член группы согласен с критическими замечаниями в адрес первой книги. «Некоторые книги Бурбаки — просто хорошие. Некоторые чрезвычайно хорошие. Но теория множеств — полная ерунда». Когда я напомнил ему о том, как группа Бурбаки определяет единицу, было заметно, что ему неприятно об этом говорить. «Эта часть не выдерживает критики. Не нужно знать, что такое единица. Нужно знать, что можно делать с единицей».

Тем не менее мой собеседник сказал, что очень гордится членством в группе Бурбаки. Ему тридцать лет, и он как раз стал профессором, когда получил первое приглашение от Николя Бурбаки присутствовать на следующем собрании, которое предполагалось провести в шато у Луары. Он объяснил, что большинство математиков принимают такие приглашения, хотя немногочисленные женщины, получившие его, ответили отказом. Сейчас, будучи полноправным членом группы, этот человек считает своим историческим долгом помочь ей завершить ту работу, ради которой она была создана, — довести до конца публикацию книг серии «Начала математики». Запланировано выпустить четыре последние книги серии. Мой собеседник понимает, что эти книги вряд ли увидят свет до того, как ему исполнится пятьдесят лет и он выйдет из состава группы. Но он считает, что возрастное ограничение — это хорошо, поскольку поддерживает жизнеспособность группы.

Теория множеств — это один из подходов к построению основы для математики. Другой подход находится сейчас в процессе формирования и подразумевает использование компьютеров. Система для проверки доказательств — это элемент программного обеспечения, проверяющий правильность логических выводов, имеющихся в доказательстве[173]. Хотелось бы верить, что когда-нибудь компьютеры смогут доказать любое математическое утверждение[174]. Если вы захотите убедиться в том, что теорема верна, вам будет достаточно просто нажать кнопку.

Первой крупной теоремой, доказанной с помощью компьютера, стала теорема о четырехцветной карте, или теорема о четырех красках. Мы с вами уже удостоверились, что любой машинальный рисунок может быть двухцветным, другими словами, что мы можем заштриховать его фрагменты так, чтобы две смежные области всегда были разных цветов. В 1852 году проживающий в Лондоне выходец из Южной Африки Френсис Гатри раскрашивал карту графств Англии. Он обнаружил, что для раскраски карты таким образом, чтобы соседние графства имели разные цвета, достаточно четырех красок. Эксперименты показали, что четырех цветов хватает и для того, чтобы раскрасить так любую карту. Однако больше столетия никто не мог это доказать, пока в 1976 году Кеннет Аппел и Вольфганг Хакен из Иллинойского университета не сделали это, воспользовавшись суперкомпьютером для проверки всех вероятных конфигураций карт. Математики отреагировали неоднозначно[175]. В принципе должна существовать возможность проверить каждую строку доказательства. Но компьютер выполнил слишком большой объем вычислений, для того чтобы можно было их все проверить, а это противоречило эталону доказательства теорем, использовавшемуся со времен Евклида. Однако помимо сугубо философских возражений против такого метода доказательства теорем существовали и другие претензии практического плана. В программах всегда есть ошибки. Разве могли Аппел и Хакен быть полностью уверены в том, что в их программе их нет? Нет, не могли. На самом деле в их доказательстве до сих пор находят новые компьютерные ошибки, хотя все обнаруженные ошибки были исправлены. В 1995 году группа исследователей Принстонского университета составила усовершенствованное компьютерное доказательство теоремы о четырехцветной карте. А в 2004 году Джордж Гонтье из исследовательской лаборатории компании Microsoft в Кембридже (Англия) проверил его с помощью специальной программы, определяющей корректность доказательств, хотя для этого ему пришлось перевести все концепции на специальный язык программирования, который понимала эта программа. Но тогда возникает следующий вопрос: разве можно быть уверенным в том, что такая программа-помощник не содержит ошибок? Нет, полной уверенности в этом нет, однако ее уровень все же выше, чем в случае исходных доказательств, поскольку эта программа была многократно протестирована при выполнении многих других задач. В настоящее время доказательство теоремы о четырех красках — одно из наиболее тщательно проверенных в математике.

После первоначального сопротивления автоматизированным доказательствам теорем со временем большинство математиков все же приняли их. Некоторые даже мечтают о том, что однажды все теоремы будут переведены на универсальный компьютерный язык для проверки доказательств, что позволит создать гигантскую формализованную систему, содержащую все доказуемые математические знания, в которой каждое утверждение строго выводится из совокупности базовых строк компьютерного кода. Когда это произойдет, мы все должны, раздевшись донага, прыгнуть в озеро с криками «Бурбаки!».

Компьютеры изменили ход доказательства теорем. Кроме того, они стали катализатором для формирования новой, захватывающей области математики.

10. Соседи по клеткам

Автор совершает путешествие в мир клеточных автоматов. Он пытается понять смысл «Жизни» и беседует с человеком, который ищет вселенные у себя в подвале

В промозглый лондонский день я отправился на встречу с одним человеком, чтобы поговорить о космических кораблях. Пол Чэпмен сидел на террасе итальянского ресторана в темном пальто, а его панама сияла оранжевым цветом под излучением инфракрасного обогревателя. Темные брови нависали над большими очками без оправы, а лицо заросло взлохмаченной седой бородой. Пол принадлежит к единственной в своем роде группе людей, увлекающихся математической игрой под названием Game of Life («Жизнь»). Ему не терпелось рассказать мне о своем последнем открытии.

«Новость, достойная газетной статьи, — заявил Пол, вынимая из кармана черную записную книжку и разворачивая истрепанный лист бумаги. — Я ношу это с собой повсюду». Игру «Жизнь» изобрел сорок лет назад молодой преподаватель Кембриджского университета Джон Конвей, разработавший законы вымышленной вселенной, согласно которым конфигурации клеток квадратной решетки эволюционируют и мутируют самыми завораживающими и непредсказуемыми способами. Сейчас в этой вселенной существуют такие фигуры, как «фитили», «ружья», «паровозы» и «космические корабли». На листике Пола было изображение космического корабля «Джемини», состоящего почти из миллиона крохотных клеток и представляющего собой одну из самых крупных и сложных фигур, когда-либо построенных в игре «Жизнь». «Джемини» напоминал ромбовидный алмаз, образованный из нескольких «елочных» шаблонов. Пол нетерпеливо показывал на разные фрагменты этого корабля, объясняя, почему он такой особенный. «Джемини» — это первая самовоспроизводящаяся фигура, которая способна построить свою точную копию. Этот космический корабль живой. В конце концов жизнь породила жизнь. «Это удивительно, — воскликнул Пол. — За сорок лет мы еще не видели ничего подобного».

Мысль о том, что математическая квадратная решетка позволяет создать конфигурацию, достойную серьезных размышлений, восходит как минимум к так называемому решету Эратосфена, названному так по имени древнегреческого ученого-энциклопедиста, который, как мы с вами знаем, сделал первую достаточно точную оценку размеров Земли. Решето Эратосфена — это алгоритм поиска простых чисел. Мы начинаем отсчет по возрастанию с 1 и, достигнув первого подходящего числа, удаляем из списка все числа, кратные данному числу. (Этот метод очень похож на подход Джерри Ньюпорта, человека с синдромом гения, о котором шла речь в главе 1.) Первое простое число — 2, поэтому мы должны вычеркнуть из списка все четные числа. Второе простое число — 3, поэтому нам необходимо вычеркнуть все числа, кратные трем. Число четыре уже было вычеркнуто, поскольку оно четное, а значит, следующее простое число — 5 и т. д.

Решето Эратосфена для чисел от 1 до 100 можно представить в виде сетки с шестью рядами, как показано на рисунке ниже. Горизонтальные линии, проведенные по ряду после числа 2, а также по рядам, начинающимся с чисел 4 и 6, вычеркивают все четные числа, а линия после числа 3 — числа, кратные 3. Два набора диагональных линий вычеркивают числа, кратные 5 и 7. Больше никаких линий не нужно, поскольку, если в поисках простых чисел вы просматриваете список до числа n, вам нужно искать числа, кратные простым числам, которые не превосходят значения n[176]. В данном случае n = 100, поэтому мы можем прекратить поиск чисел, кратных простым, как только доберемся до числа 10.

Решето Эратосфена

Это очень красивая и наглядная решетка, так как она сразу же говорит вам, что все простые числа должны находиться в первом и пятом рядах, а значит, они все либо на единицу больше, либо на единицу меньше числа, кратного 6. Однако самый важный момент, на который необходимо обратить внимание, — это причина, вынуждающая нас отсеивать числа: простые числа не появляются в каком-либо предсказуемом порядке. Если бы мы продолжили строить эту решетку до бесконечности, они были бы разбросаны в случайном порядке по первому и пятому рядам. Тот факт, что простые числа настолько легко найти, но их распределение столь непредсказуемо, — одна из самых ранних и наиболее непостижимых неожиданностей в математике.

В 1963 году 54-летний Станислав Улам отвлекся от лекции, на которой присутствовал, и принялся машинально чертить что-то на листе бумаги. Он нарисовал сетку из горизонтальных и вертикальных линий и стал нумеровать образованные путем их пересечения клетки, начав с единицы в центре и двигаясь по спирали. Наверное, ему было действительно скучно, потому что после этого он отметил все простые числа кружочками. Мы знаем, что простые числа не подчиняются очевидной закономерности, так что такого там увидел Улам? Как ни странно, он заметил нечто весьма неожиданное. Простые числа выстраивались вдоль диагональных линий (см. рисунок ниже), создавая рисунок, известный сегодня как спираль Улама. Когда Улам запрограммировал компьютер на построение такой спирали от 1 до 65 000, там тоже образовались диагонали, а также горизонтальные и вертикальные теневые области. Спираль Улама позволяет сделать волнующее предположение о том, что за беспорядочным шумом можно обнаружить музыку.

Улам был одним из польских математиков, которые в 1930-х годах во Львове принимали участие в создании «Шотландской книги». В 1935 году Джон фон Нейман, математик венгерского происхождения из Института перспективных исследований в Принстоне, пригласил Улама в США, куда тот и переехал навсегда в 1939 году. Четыре года спустя фон Нейман сделал Уламу, работавшему тогда в Висконсинском университете, более интригующее предложение: перебраться в Нью-Мексико и присоединиться к нему в работе над неизвестным проектом. Улам взял в университетской библиотеке путеводитель по штату Нью-Мексико и увидел, что до него путеводитель брали его коллеги, которые исчезли куда-то без всяких объяснений. Выяснив, в каких областях они работали, он понял, что именно его просят сделать.

Так Улам присоединился к Манхэттенскому проекту в Лос-Аламосе, где сыграл ключевую роль в разработке термоядерного оружия, а также создал новый раздел математики. Он понял, что если поведение физической системы является слишком сложным, то для того, чтобы его прогнозировать, нужно предоставить компьютеру возможность сделать множество случайных оценок, а затем получить более точные показатели с помощью статистических методов. Во время одной из поездок на автомобиле Улам объяснил этот метод фон Нейману; тогда и было придумано для него название — «метод Монте-Карло». Например, для того чтобы определить вероятность того, что шарик рулетки остановится на черном, игроку не нужно решать уравнение — он может просто подсчитать, сколько раз шарик выпадает на черное после сотен случайных бросков. В настоящее время метод Монте-Карло является ключевым инструментом во многих областях науки. Но когда в Лос-Аламосе у Станислава Улама появлялось свободное время, он отдыхал, изобретая игры с одним участником, основанные на создании шаблонов из ячеек решетки. Изменение правил создания таких шаблонов позволяло строить фигуры, которые могли разрастаться и меняться весьма необычными способами.

Спирали Улама: числа от 1 до 100 (вверху) и от 1 до 65 000 (внизу)

Улам и фон Нейман были близкими друзьями, эмигрантами из Восточной Европы, выходцами из верхушки среднего класса с еврейскими корнями. Оба очутились в одинаковой политической ситуации, и оба обладали выдающимся интеллектом. Фон Неймана принято считать математиком, оказавшим заметное влияние на формирование облика современного мира: он один из создателей компьютеров, ядерной бомбы и теории игр (математики принятия решений). Личностные качества фон Неймана соответствовали его математическим достижениям. В Принстоне он славился как устроитель крупных вечеринок, во время которых часто удалялся в свой кабинет, потому что любил работать под шум таких гуляний.

Фон Нейман был очарован и одновременно напуган потенциальными последствиями, которые могли повлечь за собой создаваемые им машины. В период, наступивший после Второй мировой войны, в фантастических романах и голливудских фильмах изображалось будущее, где роботы захватили мир. Фон Нейман хотел выяснить, что понадобится машине, чтобы воспроизвести себя. Он провел мысленный эксперимент с участием плавающего в озере робота с глазом и механической рукой, умеющей брать необходимые комплектующие и строить новую версию себя. Однако этот эксперимент застопорился из-за механических осложнений. Улам выдвинул предположение, что, для того чтобы сосредоточиться исключительно на логических аспектах самовоспроизведения, вместо работы с реальной машиной фон Нейману следует проанализировать фигуры, образующиеся на решетке ячеек, как в пасьянсах, которые он раскладывал в Лос-Аламосе. В процессе обсуждения этой задачи двое ученых изобрели новую математическую концепцию — «клеточный автомат». По сути, это разграфленная на клетки поверхность, в которой поведение каждой клетки зависит только от состояния соседних клеток. Фон Нейман разработал клеточный автомат, в котором каждая клетка находилась в одном из 29 состояний, и придумал правила, призванные обеспечить самовоспроизведение исходного шаблона, состоящего из 200 000 клеток. Клеточные автоматы не привлекали к себе особого академического интереса до тех пор, пока на них не обратил внимание британский математик с еще более игривым разумом, чем у Улама.

В 160-х годах комната отдыха математического факультета Кембриджского университета напоминала группу продленного дня в школе. Преподаватели и студенты постоянно играли там в настольные игры и придумывали новые. Идей было так много, что один преподаватель даже вел файл под названием Games Without Names («Игры без названий») и сопутствующий файл — Names Without Games («Названия без игр»)[177]. В этой среде процветал Джон Конвей, ливерпульский фанатик игры в нарды и восходящая звезда математики. Одним из изобретений Конвея был клеточный автомат на квадратной сетке, которому он дал имя Game of Life («Игра “Жизнь”»). Однако слово «игра» не совсем соответствовало его сути, поскольку там не было победителей, проигравших и даже игроков. Игра «Жизнь» представляла собой двумерную вселенную, подчиняющуюся четырем законам. Смысл игры состоял в том, чтобы построить исходную конфигурацию, или первоначальный шаблон, а затем наблюдать за тем, как он эволюционирует.

В игре «Жизнь» клетка является либо живой, либо мертвой и подчиняется следующим правилам.

Рождение: мертвая клетка, имеющая ровно три живые соседние клетки, становится живой.

Выживание: живая клетка, имеющая две или три живые соседние клетки, продолжает жить.

Смерть от одиночества: живая клетка, у которой нет по соседству живых клеток или есть только одна такая клетка, умирает.

Смерть от перенаселенности: живая клетка с четырьмя или более соседними клетками умирает.

Примечание. У каждой клетки есть восемь соседей; к их числу относятся четыре смежные клетки и четыре клетки, с которыми она соприкасается по диагоналям в углах. Перечисленные выше законы применяются по отношению ко всем клеткам одновременно, и каждый раз, когда это происходит, появляется новое поколение клеток.

Вот и все. Больше в игре «Жизнь» делать нечего.

Конвей сформулировал правила рождения, смерти и выживания таким образом, чтобы шаблоны не погибали и не эволюционировали слишком быстро, но чтобы их поведение было как можно интереснее. Представьте себе одну живую клетку. Она умирает от одиночества в следующем поколении. Точно так же шаблон, состоящий из двух соседних клеток, погибает после смены поколения. Однако, когда мы начнем рассматривать фигуры, состоящие из трех живых клеток, эти организмы окажутся достаточно жизнеспособными, чтобы выжить — во всяком случае, на какое-то время. На представленном ниже рисунке показано, что происходит с конфигурацией клеток в виде шеврона, состоящей из трех живых клеток. (Живые клетки черные, мертвые — белые.) У двух живых клеток в основании шеврона есть только по одной живой соседней клетке, а значит, они умрут, когда мы применим к ним перечисленные выше законы. У живой клетки на вершине есть две живые соседние клетки, поэтому она выживает, а у мертвой клетки посредине три живые клетки по соседству, поэтому она становится живой. То есть в следующем поколении шеврон превращается в столбец из двух живых клеток, а еще в одном погибает.

Как эволюционирует шеврон

Судьба еще четырех исходных конфигураций из трех клеток (триплетов) показана на рисунке ниже. (На этом рисунке каждое новое поколение отображается ниже предыдущего. В действительности каждое новое поколение занимает те же клетки.) Ко второму поколению два триплета погибают. Однако квадрат из четырех клеток, который Конвей назвал «блоком», продолжает жить, оставаясь в неизменном виде во всех последующих поколениях. Конфигурация из выстроившихся в линию трех клеток, расположенная то вертикально, то горизонтально, известна как «мигалка». Фигуры, которые не меняются (подобные блоку) или находятся то в одном, то в другом фиксированном состоянии, называются устойчивыми конфигурациями.

Судьба триплетов

Как эволюционирует шеврон

Настоящее волшебство мы увидим при анализе эволюции пяти тетрамино (фигур, положенных в основу компьютерной игры «Тетрис»), состоящих из четырех живых клеток, примыкающих друг к другу. Блок, как мы уже заметили, остается в неизменном состоянии. Четыре другие фигуры представлены на рисунке ниже. Тетрамино в форме букв I и S превращаются через два поколения в устойчивую конфигурацию, получившую название «улей», а L-образное тетрамино трансформируется в улей через три поколения. С другой стороны, тетрамино в форме буквы T обладает взрывной энергией и через девять поколений эволюционирует в окончательную конфигурацию, состоящую из четырех мигалок, — «светофор».

Судьба тетрамино

Самой увлекательной особенностью игры «Жизнь» была ее непредсказуемость. Не было другого способа узнать, что произойдет даже с самыми простыми фигурами, кроме отслеживания их жизни на протяжении многих поколений, что Конвей и его коллеги делали вручную. Живые клетки были фишками, которые размещались на доске для игры го с разметкой 19 19 линий. Когда для шаблона требовалось больше места, на полу укладывали дополнительные доски. Были найдены новые устойчивые конфигурации, получившие такие названия, как «батон», «корабль», «лодка» и «змея». Иногда исходный шаблон погибал или быстро менялся, превращаясь в одну из известных устойчивых конфигураций, а иногда начинал жить своей жизнью, что приводило всех в сильное волнение. Например, пентамино в форме буквы R состояло всего из пяти клеток, но продолжало эволюционировать на протяжении десятков поколений, пока на 69-м поколении не произошло исключительное событие. Эта конфигурация произвела на свет фигуру из пяти клеток, скользившую по доске.

Новая фигура получила имя «глайдер» (ее поведение проиллюстрировано на рисунке ниже). Через два поколения конфигурация переворачивается на другую сторону, а еще через два снова поворачивается таким образом, что оказывается на одну клетку ниже и на одну дальше от исходной позиции. Глайдер продолжает смещаться на одну клетку вниз и одну вперед каждые четыре поколения. Он будет двигаться в одном и том же направлении по диагонали до бесконечности, если ничто не преградит ему путь. «Главный систематик» Конвей выделил в игре «Жизнь» новый вид фигур, подобных глайдеру, которые перемещаются по прямым линиям, и назвал их космическими кораблями.

Глайдер

В 1970 году журналист Мартин Гарднер написал об игре «Жизнь» в своей многолетней рубрике в журнале Scientific American, что способствовало превращению математической игры Конвея в одно из первых компьютерных увлечений, охвативших весь мир[178]. Отслеживание эволюции фигур в игре «Жизнь» на доске для го требовало больших временных затрат и не было защищено от ошибок. Компьютеры позволяли отслеживать конфигурации гораздо дольше; кроме того, когда сменяющие друг друга поколения клеток мелькали на экране, фигуры как будто оживали[179]. Решетка с разбросанными по ней живыми клетками представляла собой первичную среду обитания изменчивых, постоянно преобразующихся конфигураций. Например, R-образное пентамино искрилось и пенилось на протяжении целых 1103 поколений, оставляя после себя обломки в виде корабля, лодки, батона, четырех ульев, четырех мигалок, шести глайдеров и восьми блоков. Запрограммировать игру «Жизнь» не составляло труда, поскольку в ней было всего четыре правила; тем не менее эта игра демонстрировала слишком сложное поведение, и его еще не удавалось добиться на компьютерах. Создание шаблонов и наблюдение за их дальнейшей жизнью вызывали такую зависимость, что, по оценкам Гарднера, это обошлось американской экономике в миллионы долларов компьютерного времени. Один читатель рассказал Гарднеру, что установил под своим рабочим столом секретную кнопку, для того чтобы переключать компьютер на игру «Жизнь», когда коллеги выходят из кабинета.

В Массачуетском технологическом институте (МТИ) игра «Жизнь» стала образом жизни. Одна сплоченная группа склонных к анархии и веселью, но очень умных студентов поставила перед собой цель изучить эту игрушечную вселенную глубже, чем кто-либо другой[180]. Это были первые компьютерные хакеры, настоящие техногики[181]. Общинная, антиавторитарная позиция хакеров оказала огромное влияние на формирование зарождающейся компьютерной культуры Америки, задавая тон новаторам более позднего периода, таким как Стив Джобс и Билл Гейтс. «План состоял в том, чтобы просто собрать всю эту дичь и одомашнить ее», — объяснил Билл Госпер, король хакеров, который преподает сейчас математику в Лос-Альтосе. Госпер проводил целые ночи в компьютерном зале MIT, играя в «Жизнь», и так продолжалось почти два года.

Конвей опубликовал на страницах журнала Scientific American задачу и предложил за ее решение приз в размере 50 долларов. Существует ли конфигурация, которая продолжает расти и у которой общее количество живых клеток увеличивается бесконечно? Госпер нашел такую конфигурацию и получил приз. «Глайдерное ружье» — это фигура из 36 живых клеток, пульсирующая как бьющееся сердце, порождая новый глайдер через каждые 30 поколений. Эти глайдеры один за другим отдаляются от исходной фигуры по диагонали, подобно бесконечному потоку пуль, выстреливаемых из ружья. Открытие глайдерного ружья сместило фокус изучения игры «Жизнь» с зоологии на физику. Госпер и его друзья-натуралисты больше не занимались пассивным исследованием флоры и фауны, переключившись на баллистику и изобретение фигур, в состав которых входят глайдерные ружья, стреляющие в другие фигуры. Можно было выстрелить двумя глайдерами друг в друга таким образом, что оба исчезали, не оставив после себя никаких обломков, как будто каким-то волшебным образом растворяясь в воздухе. «Мы пытались найти способ создавать что-то новое, сталкивая глайдеры между собой и наблюдая, что из этого выйдет, — объяснял Госпер. — А затем возникал другой вопрос: что произойдет, если ударить глайдерами по фигурам, полученным в результате столкновения глайдеров?» В ходе поиска ответа на этот вопрос Госпер открыл новую устойчивую конфигурацию из семи клеток под названием «пожиратель». Когда глайдер сталкивается с пожирателем, первый исчезает, а второй восстанавливается до исходного состояния, что создает впечатление, будто он поглотил глайдер. Кроме того, пожиратель поглощает другие устойчивые фигуры, расположенные рядом с ним, всегда восстанавливаясь после первоначального взаимодействия.

Пожиратель был первым признаком того, что игре «Жизнь» можно найти применение в реальном мире, например в проектировании объектов, которые способны к самовосстановлению. Нельзя сказать, что Госпера интересовало именно это. Для него было важно то, что глайдерное ружье и пожиратель позволяют вывести игру «Жизнь» на новый уровень — уровень разработки больших проектов, в рамках которых огромные конфигурации можно было бы создавать из сотен глайдеров, скачущих между разными элементами, а пожирателей разместить таким образом, чтобы они подбирали ненужные обломки. Первой конфигурацией подобного типа, которую Госперу удалось составить, был так называемый размножитель — фигура, порождающая глайдеры. Он начинает где-то с 50 глайдеров и ускоряет их воспроизведение так быстро, что примерно на 6500-м поколении количество глайдеров превышает количество поколений.

По мере увеличения банка знаний любители игры «Жизнь» выстраивали все более удивительные конфигурации. Одна из моих любимых представляет собой имитацию решета Эратосфена — метода поиска простых чисел, используемого древними греками. Решето, смоделированное в игре «Жизнь», состоит в основном из ружей, глайдеров и пожирателей. Его исходная конфигурация включает 5169 живых клеток[182]. Основной элемент решета — ружье, выстреливающее фигуру из 9 клеток под названием «легкий космический корабль» в горизонтальном направлении, через равные промежутки времени. Глайдеры обстреливают космические корабли, из которых выживают только второй, третий, пятый, седьмой, одиннадцатый и т. д. — другими словами, корабли, порядковый номер которых — простое число. (Подробное разъяснение того, как это работает, можно найти в Приложении 8.)

Мне нравится решето, смоделированное в игре «Жизнь», поскольку из древнегреческого математического инструмента оно превратилось в межгалактическую перестрелку между флотилиями глайдеров и космических кораблей. Наблюдать за данной конфигурацией — это как будто смотреть батальную сцену в фантастической эпопее или, возможно, отслеживать эволюцию колонии муравьев, поведение которых носит сугубо математический характер. Не забывайте: как только вы построите исходную конфигурацию, вам не нужно вмешиваться в дальнейший процесс. Эта фигура может продолжать свою жизнь до бесконечности, отстреливая космические корабли и оставляя в живых лишь те из них, порядковый номер которых представляет собой простое число.

«Уровень мастерства реально поражает, — сказал Госпер о самых лучших конфигурациях. — Люди, которые пытаются [создавать фигуры], быстро осознают, насколько это сложно, а удачные образцы приводят их в неописуемый восторг. Для того чтобы сосредоточиться на игре в достаточной степени, нужно находиться почти в состоянии невменяемости». За период с семидесятых годов до наших дней построены сотни удивительных конфигураций, в том числе и вычисляющая значение числа , которую изобрел британский подросток по имени Адам Гаучер. К чему еще стремиться? «Жизнь — неистощимый источник вопросов и задач», — резюмировал Госпер.

Игра «Жизнь» подвергает сомнению наши предвзятые представления о том, как работает этот мир, поскольку она показывает, как простой набор локальных правил может генерировать невероятно сложное общее поведение. При взгляде на такую идеально интегрированную систему, как решето Эратосфена, удивляет то, что каждая клетка взаимодействует всего с восемью соседними клетками.

Игра «Жизнь» демонстрирует также существование разных реальностей на разных уровнях игры. Решето Эратосфена — это конфигурация, разработанная на основе физических свойств глайдерных ружей с использованием технологии столкновений и космических кораблей. Однако на более детальном уровне таких вещей, как «столкновение» или «космический корабль», нет. Есть лишь неподвижные клетки, которые могут быть либо «живыми», либо «мертвыми».

По мере создания все более сложных фигур возникает вопрос: каков предел того, что может сделать конфигурация в игре «Жизнь»? Да буквально все, на что способен ваш ПК, планшет или смартфон. Если задача выполнима с помощью компьютера, тогда это можно сделать и посредством конфигурации в игре «Жизнь».

Конвей доказал истинность этого утверждения, продемонстрировав, что можно создать компьютер «Жизни», другими словами — исходную конфигурацию живых клеток, имитирующую внутреннюю схему компьютера. Вам придется поверить мне на слово (или прочитать книгу по информатике), но внутренняя схема компьютера на базовом уровне состоит из следующих компонентов: проводники, логические элементы и регистр памяти. Генератор тактовых импульсов порождает электронные импульсы, представляющие двоичные числа. Наличие импульса — это 1, а его отсутствие — 0. Конвей понял, что глайдеры могут выполнять функции импульсов, передающихся по проводникам. Следовательно, поток глайдеров может представить любое число, состоящее из нолей и единиц, как показано на рисунке ниже. Поскольку глайдеры двигаются по диагонали, я разместил сетку под углом 45 градусов.

Поток глайдеров

Конвей разработал логический элемент простейшего типа, выполняющий операцию НЕ (операцию отрицания)[183]. Логический элемент — это устройство, имеющее несколько входов и выходов. У логического элемента, выполняющего операцию НЕ, только один вход и один выход. Сигнал на выходе противоположен сигналу на входе: он меняется с 1 на 0 и с на 1. Следовательно, логический элемент отрицания в игре «Жизнь» должен превратить наличие глайдера во входящем потоке в его отсутствие в исходящем потоке и наоборот. Конвей понял, что эту функцию может выполнить стратегически правильно размещенное глайдерное ружье, как показано на рисунке ниже. Входящий поток перемещается горизонтально, слева направо. Глайдерное ружье стреляет по глайдерам вертикально вниз. Если во входящем потоке появляется глайдер, его уничтожает глайдер, порожденный ружьем. Но если во входящем потоке глайдера нет, глайдер из ружья проходит невредимым, поскольку ему не с чем сталкиваться. Таким образом, исходящий поток содержит 1, если входящий поток содержит 0, и 0 — если 1. Это и есть логический элемент, выполняющий операцию НЕ. Исходящий поток находится под прямым углом к входящему потоку, но это не имеет значения, так как мы можем изменить направление потока в дальнейшем в случае необходимости.

Все логические элементы выполняют операции трех базовых типов: НЕ, И и ИЛИ. Конвей сконструировал также состоящие из ружей и пожирателей конфигурации, имитирующие логические элементы для операций И и ИЛИ. Он показал, что можно сделать так, чтобы потоки глайдеров меняли направление движения, что моделировало изгибы проводников. Конвей также продемонстрировал, как сделать потоки глайдеров разреженными, чтобы два потока могли пересечься, избежав при этом столкновения глайдеров, что изображало пересечение проводников. Кроме того, он показал, как сделать регистр памяти из блоков. Каждый блок представляет собой какое-то число в зависимости от его расстояния от определенной точки. Глайдеры, которые врезаются в блок, перемещают его ближе к этой точке или дальше от нее, меняя значение блока. Это подтвердило правильность выдвинутой Конвеем гипотезы: построив в игре «Жизнь» проводники, логические элементы и регистр памяти, он доказал, что игра, ставшая его математическим хобби, теоретически способна (при наличии достаточно большой сетки) имитировать любой существующий в нашем мире компьютер.

Получив приведенное выше доказательство, Джон Конвей потерял интерес к игре «Жизнь». (В 1986 году он переехал в Принстон, чтобы возглавить кафедру математики вместо Джона фон Неймана.) Однако многие ее поклонники были настолько ею увлечены, что у них появилась зависимость, которая со временем лишь усиливалась. Международное сообщество любителей игры «Жизнь» насчитывает около сотни членов; к их числу относился и Пол Чэпмен, решивший на рубеже столетий построить компьютер в игре «Жизнь». «Знать, что что-то можно сделать, и сделать это — совершенно разные вещи», — заявил он.

Логический элемент отрицания содержит ружье, которое выстреливает в глайдеры, движущиеся перпендикулярно входящему потоку

Подобно многим любителям игры «Жизнь», Пол не был научным сотрудником. В 1970-х он изучал математику в Кембридже (и слушал лекции Конвея), а затем стал консультантом по информационным технологиям. В настоящее время Пол живет в центре Лондона, неподалеку от ресторана, в котором мы с ним встретились. Он предпочел столик на улице, несмотря на плохую погоду, поскольку ему не нравился запрет на курение внутри заведения. Когда мы разговаривали, Пол скручивал собственные сигареты. «Я люблю “Жизнь” потому, что она полна сюрпризов, — признался он. — Каждый раз, когда вы ищете способ сделать что-то лучше, вы найдете десятки таких способов».

У обычного компьютера есть аппаратное и программное обеспечение; точно так же и созданная в игре «Жизнь» конфигурация, имитирующая работу ПК, имела «железо» и «программы». Первое моделировало кабели машины, а второе — программу, которую она должна читать. В своем прототипе компьютера в игре «Жизнь» Пол использовал не созданную Конвеем сеть из ружей, глайдеров и пожирателей, а более современную и эффективную технологию, основанную на исходном шаблоне из семи клеток под названием «Гершель». Его конфигурация состояла из нескольких миллионов живых клеток и программы, содержащей инструкции по поводу того, как вычислить сумму 1 + 2. «Для поиска суммы 2 + 3 понадобилось бы слишком много времени», — объяснил Пол. Конфигурация начиналась с космического корабля, поражающего устойчивую фигуру, которая порождала сигнал о столкновении с разными элементами, а те, в свою очередь, порождали другие сигналы, и маршрут перемещения сигналов по всей системе напоминал гигантскую игру в одну из разновидностей бильярда. В конце концов блок в регистре вывода показывал число 3. «Я был в восторге, — сказал Пол. — Если я могу сложить один и два, это говорит о том, что эта же машина может рассчитать миллионную цифру числа , управлять системой Windows или, если ввести правильные параметры, смоделировать жизненный цикл звезды!»

Безусловно, компьютер, построенный Полом в игре «Жизнь», был неприменим на практике для выполнения всех этих задач. Но он вернул «Жизнь» к ее истокам. Джон фон Нейман выдвинул идею клеточного автомата во время изучения процесса самовоспроизведения. Конфигурация Пола открыла заманчивую возможность создания самовоспроизводящихся сущностей в игре «Жизнь».

На первый взгляд фигуры, эволюционирующие на решетке игры «Жизнь», кажутся живыми, так как по мере смены поколений они трансформируются и меняют направление. Однако для того, чтобы некий объект действительно был живым, он должен обладать способностью к самовоспроизведению. Но что это такое? Глайдер, например, воспроизводит себя достаточно просто. Это состоящая из пяти клеток фигура, которая каждые четыре поколения возвращается в исходную форму, сместившись на одну клетку вниз и одну в сторону. Фон Нейман хотел знать, как машина может построить точную копию самой себя. Для того чтобы это понять, ему предстояло решить математическую головоломку, поскольку механическая сторона процесса самовоспроизведения содержит один логический парадокс.

Мы с вами уже говорили о том, что компьютеры состоят из аппаратного и программного обеспечения. Давайте назовем аппаратное обеспечение «конструктором», а программу, которую мы вводим в конструктор, чтобы он построил копию себя, — «макетом». Мы рассчитываем на то, что после ввода макета конструктор воспроизведет новый конструктор вместе с новым макетом, по сути, создав копии двух исходных элементов. Но здесь возникает вопрос: содержит ли макет инструкции относительно создания нового макета? Если да, тогда они должны также содержать инструкции по поводу создания нового макета, который, в свою очередь, должен содержать инструкции по поводу того, как создать инструкции в отношении построения нового макета — и так далее до бесконечности. В итоге мы получаем бесконечную регрессию инструкций, содержащихся в данном макете, что недопустимо, поскольку макет должен быть конечным. С другой стороны, если макет не включает никакую информацию о себе, машина не сможет себя полностью воссоздать, поскольку в новой машине нет макета. Прежде чем думать о технической стороне дела, фон Нейману следовало разобраться с математикой.

В итоге фон Нейман пришел к такому выводу: для того чтобы машина могла воспроизвести себя, необходимо ввести в систему новый элемент, который бы воссоздавал макет, другими словами — устройство для копирования макета. Таким образом, когда конструктор считывает макет, он строит новую машину, совершенную во всех отношениях, кроме одного — в ней нет макета. На последнем этапе устройство копирования должно создать копию макета и отправить ее в новую машину. Следовательно, самовоспроизводящаяся машина фон Неймана использует макет двумя разными способами: конструктор читает его как набор инструкций, а копировальное устройство создает его копию. Только применение макета один раз в качестве программы, а другой — в качестве объекта позволило решить чрезвычайно трудную проблему бесконечной регрессии.

Конфигурация, созданная фон Нейманом для своего первого клеточного автомата, состояла из конструктора, устройства копирования и макета. Теоретически он показал, что она способна к самовоспроизведению, но не продемонстрировал этого на практике, поскольку компьтеры тогда еще не были достаточно мощными для этого. Тем не менее работа фон Неймана оказала заметное влияние на целое поколение специалистов в области вычислительных машин и систем, философов и даже биологов, которые изучали в 1950-х годах механизм репродукции живых клеток. Когда на протяжении этого и следующего десятилетия им все же удалось раскрыть специфику данного механизма, они обнаружили, что фон Нейман прав! В свое время он создал абсолютно точную модель самовоспроизведения живых организмов. В каждой клетке есть макет (ее ДНК), содержащий закодированные инструкции по репродукции новых клеток. Однако в ДНК нет описания самой ДНК — та ДНК, которая появляется в новой клетке, представляет собой результат копирования (двойная спираль ДНК делится на две части, а ферменты создают две точные копии исходной ДНК). Подобно тому как машина фон Неймана прочитывает макет двумя способами, ДНК также ведет себя по-разному в процессе воспроизводства живой клетки.

Пол Чэпмен попытался построить самовоспроизводящуюся конфигурацию клеток, но не смог найти способ копирования макета. И вот в 2010 году канадский программист Эндрю Уэйд объявил о создании космического корабля «Джемини». «Когда я впервые увидел его, я пришел в восторг! — воскликнул Пол. — “Джемини” — это самая важная фигура за все сорок лет. И никто даже не знал, кто такой Эндрю Уэйд! Он просто написал об этом на доске объявлений!»

«Джемини» — первая самовоспроизводящаяся конфигурация в игре «Жизнь». Как показано на рисунке ниже, эта фигура имеет форму очень длинной и тонкой гантели, на концах которой находятся идентичные конструкторы (отсюда название «Джемини» — «близнецы»), а между ними на решетке размером 4 миллиона 4 миллиона клеток расположен макет, состоящий из глайдеров. Оригинальная идея Уэйда заключалась в том, чтобы вместо создания копий макета обеспечить его быстрое перемещение между двумя конструкторами. Когда макет достигает одного из конструкторов, он дает ему указание построить свою новую версию на 5120 клеток вверх и 1024 клетки в сторону и одновременно уничтожить себя. После этого макет отправляется в обратном направлении, где через миллионы клеток достигает противоположного конструктора и тоже дает ему указание построить свою новую версию на 5120 клеток вверх и 1024 клетки в сторону, а затем саморазрушиться. Этот цикл, после которого вся конфигурация смещается на 5120 клеток вверх и 1024 клетки в сторону, повторяется каждые 33,7 миллиона поколений. Поскольку конфигурация «Джемини» двигается, ее считают космическим кораблем, но она двигается не посредством кувырков, как это делает глайдер, а с помощью процесса самовоспроизведения. «Самое блестящее, что сделал Эндрю Уэйд, — сказал Пол, — это устранил этап создания копии [макета] и сделал так, что [макет] просто появляется как гром среди ясного неба, причем в самый подходящий момент для того, чтобы дать инструкции».

«Джемини» — это первый космический корабль, движение которого основано на самовоспроизведении

С «Джемини» связано еще одно важное достижение: это первый космический корабль, который перемещается наискось, то есть не в горизонтальном и не в вертикальном направлении и не под углом 45 градусов к сетке.

Пол показал мне лист бумаги с изображением одного из конструкторов «Джемини». Он с гордостью упомянул о том, что в его основу положен компьютер, созданный им в игре «Жизнь». Изображение конструктора напоминало кляксу, состоящую из группы серых шевронов в окружении крохотных точек. Я спросил Пола, есть ли у него изображение всего корабля «Джемини». Он ответил, что в этом нет смысла, поскольку в таком масштабе эта фигура была бы настолько разреженной, что оказалась бы практически невидимой. Почти вся конфигурация представляет собой поток глайдеров. Как ни странно, макет занимает намного больше места, чем конструктор. В клеточном автомате фон Неймана тоже присутствовал подобный дисбаланс: его конструктор помещается в сетку 97 170, тогда как макет имеет длину 145 315 клеток. Крупные конфигурации состоят в основном из пустого пространства. «Возможно, в игре “Жизнь” так много пустого пространства по той же причине, почему его так много в нашем мире, — пояснил Пол. — У атомов должно быть достаточно места для того, чтобы они выполняли свою работу».

Появление «Джемини» усилило ожидания в отношении следующего этапа исследования игры «Жизнь»[184]. Если исходная конфигурация порождает копии, в которых есть небольшие отличия от оригинала, это может обусловить дарвиновский естественный отбор. В 1982 году Джон Конвей выдвинул предположение о том, что если бы решетка игры «Жизнь» была достаточно большой и в исходном состоянии клетки располагались на ней в случайном порядке, то «через приличный промежуток времени появились бы разумные существа, способные к воспроизводству». Три десятилетия спустя эта гипотеза Конвея по-прежнему будоражит кровь любителям игры «Жизнь». Самую интересную работу выполняет Ник Готтс, специалист по комплексным системам из Абердина (Шотландия), который ищет новые конфигурации, заполняя сетку игры «Жизнь» живыми клетками в произвольном порядке. Он называет свой проект «рассеянной Жизнью», поскольку относительная доля живых клеток должна быть довольно низкой по сравнению с количеством мертвых клеток, иначе это приведет к слишком большому числу неконтролируемых взаимодействий. «В некоторых конфигурациях присутствует нечто, напоминающее естественный отбор, — объясняет Ник. — Есть конфигурации, регулирующие появление других конфигураций аналогичного типа. Я убежден, что, если бы моя программа выполнялась достаточно долго, вступил бы в действие закон естественного отбора».

Клеточные автоматы с более простой структурой, чем игра «Жизнь», могут демонстрировать столь же сложное поведение. Рассмотрим в качестве примера одномерный клеточный автомат: ряд клеток, в котором каждая клетка имеет только двух соседей. Кроме того, каждая клетка может быть либо живой, либо мертвой.

Возьмем следующее правило:

Если оба соседа клетки пребывают в том же состоянии, что и она сама, то клетка умирает в следующем поколении. В противном случае в следующем поколении она остается живой.

Это правило проиллюстрировано ниже. На рисунке показаны восемь возможных комбинаций клетки и двух ее соседей. Под каждой комбинацией изображено состояние клетки после смены поколения. В первой комбинации живая клетка находится в окружении двух живых соседних клеток. Значит, в следующем поколении она умрет. Вторая комбинация содержит живую клетку слева и мертвую справа, стало быть, средняя клетка останется в следующем поколении в живых. Если две соседние клетки одинакового цвета, внизу будет получена белая клетка. Если разного, нижняя клетка будет черной.

Чтобы понять суть этого правила, представьте себе группу людей, стоящих каждое утро в очереди на автобусной остановке, причем в одном и том же порядке. У каждого человека два соседа, по одному с каждой стороны. Пусть наше правило касается шляп: если оба ваши соседа носят шляпу, то шляпы — это слишком типичное явление, поэтому на следующий день вы шляпу не наденете. Если ни у одного из соседей шляпы нет, значит, они не в моде, поэтому на следующий день вы тоже шляпу не наденете. Однако если шляпу носит только один ваш сосед, то она еще не вышла из моды и не говорит о плохом вкусе. Данный клеточный автомат представляет собой модель изменения ежедневных предпочтений в ношении головных уборов.

Для того чтобы проиллюстрировать поведение одномерного клеточного автомата, давайте нарисуем ряд с одной живой клеткой (поколение 0), а затем применим указанное выше правило к каждой клетке для создания нового ряда, расположенного ниже (поколение 1). Затем применим это правило к каждой клетке данного ряда, чтобы получить следующий новый ряд (поколение 2), и т. д. На представленном рисунке показано, что при этом произойдет. (Обратите внимание, что вершина треугольника — это живая клетка первого ряда, а каждый новый ряд — следующее поколение, в отличие от игры «Жизнь» где вся сетка образует одно поколение. Я опустил на рисунке саму сетку, чтобы полученная конфигурация была видна более четко.) В итоге мы получим прекрасный математический зиккурат, известный как «треугольник Серпинского», — фрактальную структуру, состоящую из вложенных треугольников.

Существует 8 комбинаций клетки и ее соседей, а также два возможных состояния (живая или мертвая клетка), а значит, есть 28 = 256 разных наборов «генетических правил» для одномерных клеточных автоматов. Эти правила пронумерованы от 1 до 256. На представленном выше рисунке показано правило 90, порождающее упорядоченные фигуры. Другие правила, такие как правило 30, более причудливы. Это правило, а также конфигурация, которую оно порождает, начиная с одной живой клетки, проиллюстрировано на рисунке ниже. Данная конфигурация представляет собой совокупность упорядоченных и хаотичных фрагментов. Зигзагообразная корка на левой боковой поверхности демонстрирует упорядоченность. Однако по мере передвижения направо мы видим неупорядоченную бугристую поверхность, состоящую из треугольников самых разных форм и размеров.

На визитных карточках Стивена Вольфрама изображен рисунок фигуры, которую порождает правило 30. Когда я встретился с ним, он вынул такую визитку из бумажника и дал мне. Мы расположились в главном офисе его компании Wolfram Research, находящемся в городе Шампейн. У Вольфрама лицо обладающего необыкновенными математическими способностями ребенка, достигшего средних лет: круглое и бледное, с хохолками волос вокруг типичной профессорской макушки. Во время разговора он пристально всматривался куда-то, думая о чем-то своем, а его глаза за стеклами очков мерцали, подобно электронному дисплею, демонстрируя неустанную работу мозга. Вольфрам рано начал научную карьеру, опубликовав свою первую исследовательскую работу еще во время учебы в Итоне в 1970-х. Когда ему исполнилось немногим более двадцати лет, он уже работал в Институте перспективных исследований в Принстоне. Став одним из первых новообращенных в компьютерную веру, он разработал язык программирования, который лег в основу системы компьютерной алгебры Mathematica — пакета программ, позволяющих чертить кривые и решать уравнения. В настоящее время она широко используется в сфере образования и разных отраслях экономики. С 1987 года Вольфрам возглавляет компанию Wolfram Research, которая благодаря успеху системы Mathematica дала ему возможность проводить собственные научные исследования независимо от университетов.

Правило 30: его генетические законы, его эволюция после 50 поколений и эволюция после более 200 поколений

Вольфрам первым в восьмидесятых годах достаточно глубоко изучил одномерные клеточные автоматы; нумерация правил от 1 до 256 берет свое начало именно в его работе. Когда Вольфрам увидел правило 30, это было подобно удару молнии в его научной интуиции. «Это самое удивительное, с чем я когда-либо встречался в науке», — сказал он. Вольфрам был поражен тем, что такое простое правило способно сгенерировать столь сложную конфигурацию. Он внимательно проанализировал колонку, расположенную под исходной живой клеткой в первом ряду. Если взять за основу то, что живая клетка — это 1, а мертвая — 0, то эта колонка состояла из таких клеток: 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0… В этом не было никакой закономерности. К большому удивлению Вольфрама, стандартные статистические тесты показали, что это абсолютно произвольная последовательность. Правило 30 полностью детерминировано, однако конфигурация ячеек в центральном столбце настолько непредсказуема, что ее невозможно отличить от последовательного подбрасывания монеты. (Вольфрам запатентовал правило 30 как генератор случайных чисел и применил его в системе Mathematica.)

Внимание Вольфрама привлекло еще одно правило — правило 110. Оно формировало сетку ячеек, которая тоже представляла собой совокупность регулярных и случайных фигур. Вольфрам предположил, что данного уровня сложности достаточно для такой же имитации работы компьютера, на которую способна игра «Жизнь». В 2004 году Мэтью Кук доказал истинность предположения Вольфрама. Следовательно, теоретически единственный ряд клеток может сделать все, что и компьютер, используя всего один набор правил, определяющих, является ли клетка живой или мертвой, только на основании информации о состоянии двух ее соседей. Точно так же один ряд людей может сделать все, на что способен компьютер, воспользовавшись всего одним набором правил, определяющих, следует ли надевать шляпу или нет.

Клеточные автоматы — это дискретные математические модели, в которых фиксированные локальные правила генерируют неожиданно сложное поведение в более крупном масштабе. Вольфрам — один из главных сторонников той точки зрения, что клеточные автоматы — не только увлекательная математическая игра, но и способ объяснить сложность физического мира. Мысли Вольфрама по этому поводу изложены в книге A New Kind of Science («Новый вид науки»), которую он опубликовал за свой счет в 2002 году[185]. В частности, в ней Вольфрам утверждает, что информация, полученная благодаря анализу правила 30, открывает новую научную парадигму. Возьмем в качестве примера раковину ядовитой парчовой улитки, изображенную на рисунке ниже. Общепринятое представление об эволюции объясняет такой рисунок как результат естественного отбора. Но посмотрите на иллюстрацию правила 30! «Я считаю, что это просто удивительно, — говорит Вольфрам. — Достаточно всего лишь наугад выбрать эти простые [правила клеточных автоматов] — и вы получите нечто подобное [рисунку на этой раковине]».

Раковина парчовой улитки, или текстильного конуса

© iStock.com/busypix

Однако Вольфрам на этом не останавливается, поскольку убежден, что на базовом уровне Вселенная представляет собой клеточный автомат. Другими словами, он считает, что структура Вселенной аналогична решетке в игре «Жизнь», но существует вне пространства и времени. Следовательно, то, что происходит с вами сейчас, когда вы читаете эту книгу, — это энное поколение исходной конфигурации клеток, прошедших процесс эволюции в соответствии с небольшим набором локальных правил. Вольфрам поставил перед собой цель найти эти правила. «Если окажется, что они сводятся к трем строкам программы, а мы так и не начнем искать их в текущем столетии, это будет весьма досадно», — сетует он.

Вольфрам — не единственный ученый, который считает, что Вселенная может быть клеточным автоматом, но только он потратил массу времени и денег на попытки это доказать. Он систематически проводит испытания разных наборов правил, для того чтобы увидеть, какие вселенные они порождают. «Какое-то время у меня получалось нечто столь оригинальное, что я смог сказать: компьютер у меня в подвале ведет поиски Вселенной».

Вольфрам так описал свою стратегию: «Когда анализируешь разные наборы очень простых правил, становится очевидным, что некоторые из них безнадежны. Как будто вселенная погибает через два шага или же бесконечно расширяется таким образом, что ни один ее участок не имеет никакой связи с любым другим участком той же вселенной. Все это своего рода патология. И ты продолжаешь одолевать эти вселенные, а когда добираешься до тысячной, начинаешь находить такие, одолеть которые не так уж легко». Вольфрам добавил, что он находил вселенные, в чьем отношении «не было очевидно, что это не наша Вселенная», но отвлекался на выполнение задач, связанных с управлением компанией, и на другие проекты. Тем не менее он планирует возобновить охоту на вселенные в будущем. «Я надеюсь, что однажды на обороте моей визитной карточки будут написаны законы Вселенной, — смеется он. — Вот это была бы неплохая бизнес-услуга».

Является ли Вселенная клеточным автоматом или нет, но эта концепция все чаще используется в науке для моделирования самых разных феноменов, таких как транспортный поток, разрастание ряски на озере и рост городов. При этом в роли клетки может выступать отрезок дороги, фрагмент озера или участок земли. Существует еще одна область применения таких одномерных клеточных автоматов, ее открыл Крейг Лент из Университета Нотр-Дам, — квантово-точечные клеточные автоматы, в которых крохотные «квантовые точки» меняют свой электрический заряд исходя из конфигурации соседних точек. Лент надеется, что со временем эта нанотехнология займет место транзистора, поскольку транзистор, сделанный из квантовых точек, будет иметь гораздо меньшие размеры и выделять меньше тепла, чем обычный транзистор. Если квантово-точечная технология будет успешно разработана, то однажды клеточный автомат может появиться во всех электронных устройствах.

Джон фон Нейман и Станислав Улам разработали клеточный автомат для решения задачи, возникшей под влиянием реального мира: что понадобится машине для того, чтобы построить точную копию самой себя. От перспективы будущего, в котором есть самовоспроизводящиеся машины, кровь стынет в жилах. Однако Джон Конвей подхватил эту идею и превратил в причудливое и захватывающее математическое развлечение. Впоследствии идея клеточных автоматов была переосмыслена и нашла применение, не связанное с самовоспроизведением. Это хорошо знакомый процесс: математики живут задачами, существующими в реальном мире; играют с различными концепциями ради удовольствия, а затем для этих концепций (может, годы, столетия или даже тысячелетия спустя) обнаруживаются новые области применения. Дальнейшее развитие технологий невозможно без свежих математических идей, а наука обретает все большую способность объяснить суть того мира, в котором мы живем. В начале книги я говорил, что математика сродни шутке. Я хотел бы изменить эту формулировку. Математика — это игра и всегда ею была.

Математика — это игра жизни.

Глоссарий

Аксиома (axiom): утверждение, которое считается истинным и из которого выводятся другие утверждения.

Алгебраическое (полиномиальное) уравнение (polynomial equation): уравнение, содержащее постоянные и переменные, в котором используются только операции сложения, вычитания и умножения, а также возведения в степень. Все уравнения, изучаемые в школе, относятся к категории алгебраических уравнений.

Биссектриса (bisector): прямая, проходящая через вершину угла и делящая его пополам.

Быстрое преобразование Фурье (Fast Fourier Transform, FFT): алгоритм, позволяющий быстро рассчитать ряд Фурье.

Вершина (vertex): одна из угловых точек треугольника или любой другой фигуры, образованной прямыми линиями.

Гармонограф (harmonograph): чертежное устройство, в котором пишущий элемент совершает простые гармонические колебания минимум в двух непараллельных направлениях.

Геометрическое место точек (locus): кривая, состоящая из точек, удовлетворяющих определенному математическому условию.

Гипотеза (conjecture): недоказанное утверждение, которое предполагается истинным.

Гипотенуза (hypotenuse): сторона прямоугольного треугольника, лежащая против прямого угла.

Градиент (gradient): степень наклона, или скорость изменения расстояния по вертикали в зависимости от расстояния по горизонтали.

Двойной логарифмический масштаб (log-log scales): система координат, в которой обе оси размечены в логарифмическом масштабе.

Действительное число (real number): точки на числовой оси, которым соответствуют целые числа, простые дроби или такие числа, как и е, которые не могут быть записаны в виде простых дробей.

Дифференциальное уравнение (differential equation): уравнение, включающее в себя производные или интегралы.

Дифференцирование (differentiation): процесс преобразования функции в ее производную.

Доказательство (proof): логическое обоснование истинности теоремы.

e: константа экспоненциального роста, значение которой начинается с 2,718.

Закон Бенфорда (Benford’s law): явление, при котором во многих массивах данных, формирующихся естественным образом, вероятность цифры 1 на первом месте составляет 30,1 процента, цифры 2 — 17,6 процента и т. д.

Закон дистрибутивности (distributive law): основной закон арифметики, который гласит, что для любых чисел a, b и c верно равенство (a + b) c = ac + bc.

Закон масштабирования (scaling law): равенство, в котором одна переменная представляет собой размер объекта, а другая меняется в зависимости от этого размера.

i: символ для обозначения –1.

Интеграл (integral): формула вычисления площади под кривой, или скорости нарастания переменной величины.

Интегрирование (integration): процесс преобразования функции в интеграл.

Исчисление (calculus): обобщающий термин, которым обозначаются дифференцирование и интегрирование — математические инструменты, применяемые для анализа величин, меняющихся в зависимости друг от друга.

Касательная (tangent): прямая линия, прикасающаяся к кривой в одной точке.

Клеточный автомат (cellular automaton): математическая модель, состоящая из дискретных клеток, состояние которых меняется каждую единицу времени в зависимости от состояния соседних клеток.

Комплексное число (complex number): число, которое записывается в форме a + bi, где a и b — действительные числа, а i = –1.

Комплексная плоскость (complex plane): геометрическая интерпретация комплексных чисел, аналогичная декартовой системе координат, в которой на горизонтальной оси представлены действительные числа, а на вертикальной — мнимые.

Коническое сечение (conic section): одна из кривых, образованных путем пересечения секущей плоскости с конусом, — окружность, эллипс, парабола или гипербола.

Константа, постоянная (constant): величина с неизменным значением, в отличие от переменной, которая может принимать множество разных значений. См. также математическая константа.

Константа окружности (circle constant): другой термин для обозначения числа — отношения длины окружности к ее диаметру.

Константа экспоненциального роста (exponential constant): число, значение которого начинается с 2,718 и обозначается символом е.

Кривизна (curvature): показатель отклонения кривой от окружности.

Логарифм (logarithm): математическое определение логарифма и логарифмического масштаба содержится в Приложении 1.

Математическая константа (mathematical constant): фиксированное число, возникающее в математике естественным образом, например число или e.

Мнимое число (imaginary number): любое число, кратное i.

Многоугольник (polygon): двумерная фигура, контур которой представляет собой замкнутую ломаную линию.

Страницы: «« 345678910 »»

Читать бесплатно другие книги:

Замечательные стихотворения для детей всех возрастов, размещённые в книге по временам года: лето — о...
Мы — чьи-то мысли, планы.Мы — чьи-то мечты, поэтому живем.В этой книге вы прочтёте о себе.Изобретате...
Наемный убийца Клод Финеас встречает демонессу по имени Рин, которая просит его вернуть ей утраченны...
Почему тоталитарные режимы, а так же А. Ахматова и В. Набоков, не любили психоанализ; парадоксы у О....
Вниманию читателя представляется одна из наиболее авторитетных книг, посвященных истории, истолкован...
Сборник рассказов представляет из себя удивительную палитру, многообразное смешение жанров, сюжетов,...