Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры Беллос Алекс

Числовая ось

Немецкий философ Иммануил Кант тоже вступил в полемику по поводу отрицательных чисел, заявив в своем труде Attempt to Introduce the Concept of Negative Quantities into World-Wisdom («Опыт введения в философию понятия отрицательных величин»), что бессмысленно использовать против них метафизические аргументы[125]. Он доказал, что в реальном мире многое может иметь как положительное, так и отрицательное значение, подобно двум противонаправленным силам, воздействующим на объект. Отрицательное число представляет собой не отрицание числа, а скорее, сопоставимое противоположное.

Тем не менее даже в конце XVIII столетия еще оставались математики, глубоко убежденные в том, что отрицательные числа — это «специальный термин, лишенный здравого смысла; но, будучи однажды введенным в оборот, подобно многим другим выдумкам, находит своих самых рьяных сторонников среди тех, кто любит принимать все на веру и не терпит тяжелый труд серьезных размышлений»[126]. Уильям Френд, второй среди лучших студентов, изучавших математику в Кембридже, написал эти слова в 1796 году в книге, которая стала уникальной в математической литературе: это было введение в алгебру, не содержащее ни единого отрицательного числа.

Когда мы изучаем отрицательные числа в школе, нам не рассказывают всю эту предысторию. Мы принимаем отрицательные числа по аналогии с числовой осью, а затем узнаем поразительную новость:

Минус, умноженный на минус, дает плюс.

Вот это да! Числовая ось прекрасно справляется с визуальной репрезентацией отрицательных чисел, но она не дает представления о том, что происходит, когда мы умножаем их друг на друга. Математика становится еще сложнее.

Почему произведение двух отрицательных чисел равно положительному числу? Потому что это вытекает из правил умножения положительных чисел. Мы принимаем, что два отрицательных числа образуют положительное, поскольку это обеспечивает связность арифметических операций, а не потому, что в основе данной системы лежит какой-то смысл. Это необходимый структурный элемент того основания, которое не дает зданию чисел разрушиться. Рассмотрим числовую ось. Если я сделаю два шага вперед от 0, я попаду в позицию 2. Если я повторю эти два шага, я доберусь до 4, а если сделаю это еще раз, то достигну точки 6. Точно так же, если я перемещусь на две единицы назад от ноля, я попаду в точку 2, а если повторю эти шаги еще два раза, то выйду на 6.

Все эти операции можно записать в виде таких выражений:

2 + 2 + 2 = 6

2 2 2 = 6

Что эквивалентно следующим произведениям:

3 2 = 6

3 2 = 6

Эти выражения говорят нам о том, что если положительное число умножить на положительное, получится положительный результат, а если положительное число умножить на отрицательное, результат будет отрицательный. Для того чтобы выяснить, что произойдет в случае перемножения двух отрицательных чисел, давайте в последнем выражении подставим вместо числа 3 разность (4–1), что даст нам следующее уравнение:

(4–1) 2 = 6

Это уравнение можно записать так:

(4 2) + (1 2) = 6

Мы знаем, что согласно правилам выполнения арифметических операций с положительными числами, когда два члена выражения, взятые в скобки, умножаются на одно число, необходимо умножить каждый член выражения в скобках на это число отдельно. (Это правило известно как закон дистрибутивности.) Получается следующее уравнение:

8 + (1 2) = 6

Следовательно:

(1 2) = 2

Вот мы и пришли к тому, что искали. Минус, умноженный на минус, дает плюс.

Одна из причин того, почему нам так трудно понять принцип умножения отрицательных чисел на концептуальном уровне, состоит в том, что в жизни существует множество ситуаций, в которых арифметика создает неправильную модель. Не успел учитель объяснить нам эту идею, как нам рассказывают, что два заблуждения — еще не правда. В лингвистике двойное отрицание может быть либо отрицанием, либо утверждением, в зависимости от контекста и языка. Когда я изучал португальский, мне пришлось привыкать к тому, что на этом языке фразу I know nothing (одно отрицание) необходимо говорить так: no sei nada, или I don’t know nothing (двойное отрицание»). В данном случае два отрицания усиливают отрицание, а не нейтрализуют друг друга.

Безусловно, в английском языке двойное отрицание равносильно утверждению. Лингвист Джон Лэнгшо Остин однажды на конференции сказал, что ни в одном языке дважды повторенное утверждение не дает отрицания. Говорят, что сидевший в зале философ Сидни Мордженбессер произнес в ответ: «Да-да».

Одним из первых приверженцев индийской системы счисления, включавшей в себя ноль и отрицательные числа, был Мухаммад ибн Муса аль-Хорезми (около 750–850). Впоследствии латинские версии имени аль-Хорезми использовались для описания арифметических методов, которые он популяризировал; именно от его имен происходит и слово «алгоритм». Кроме того, аль-Хорезми разработал новый раздел математики — алгебру, название которой происходит от арабского слова al-jabr, что означает «восстановление». Алгебра — это язык уравнений, в котором для представления чисел используются такие символы, как x и y. В алгебре вопрос «Какое число, прибавленное к двум, дает ноль?» может быть выражен в виде задачи — найти x, когда:

x + 2 = 0

Ответ такой: x = 2. Независимо от того, считаете вы отрицательные числа имеющими смысл или нет, значение 2 — решение этого уравнения. Именно благодаря алгебре европейские математики эпохи Возрождения в конце концов включили отрицательные числа в определение числа. Какими бы абсурдными они ни казались, это все же были числа.

Вскоре алгебраисты столкнулись с еще одной проблемой. Пользуясь только положительными и отрицательными числами, а также четырьмя арифметическими операциями, такими как сложение, вычитание, умножение и деление, они обнаружили концепцию, которую не могли понять. Это было решение уравнения:

x2 = –1

Ответ — квадратный корень из минус единицы, или х = 1. Однако вот в чем проблема: какое число, умноженное само на себя, может быть отрицательным? Это точно не положительное число, поскольку произведение двух положительных чисел — положительное число. Это и не отрицательное число, так как произведение двух отрицательных чисел — тоже положительное число. Первым отицательные корни уравнений использовал Джероламо Кардано в 1545 году[127]. По его собственным словам, размышления о них приносили ему «умственные мучения», что неизбежно произойдет с каждым, кто еще не сталкивался с данным понятием. В итоге он просто проигнорировал его, заявив, что если решение уравнения — квадратный корень из отрицательного числа, то это «изящно не в меньшей степени, чем бессмысленно». Кардано открыл дверь в новый мир математики, а затем снова захлопнул ее.

Через несколько десятилетий соотечественник Кардано Рафаэль Бомбелли снова открыл эту дверь и робко вошел в нее. Квадратные корни из отрицательных чисел появлялись в алгебраических вычислениях все чаще и чаще, поэтому Бомбелли решил обращаться с ними как с положительными и отрицательными числами, складывая их, вычитая, умножая и деля при каждом их появлении. «Многие считали, что это безумная мысль, — писал он. — Создавалось впечатление, что вся эта область опирается на софистику, а не на истину». И все же квадратные корни из отрицательных чисел были не просто удобны, а давали возможность решать уравнения, которые раньше считались нерешаемыми. Если не задумываться о том, что значат квадратные корни из отрицательных чисел, они вполне могли вписаться в общую систему.

В 1637 году Рене Декарт назвал квадратные корни из отрицательных чисел «мнимыми», а столетие спустя Леонард Эйлер закрепил это понятие: «Все выражения типа –1, –2 и т. д. — это невозможные, или мнимые числа, поскольку они представляют собой корни из отрицательных чисел. В отношении таких чисел мы можем, в сущности, утверждать, что они не являются ни ничем, ни больше чем ничто, ни меньше чем ничто, а это неизбежно делает их мнимыми или невозможными». Эйлер обозначил число –1 специальным символом i (от англ. imaginary — «мнимый») и доказал, что квадратный корень из любого отрицательного числа может быть выражен в виде величины, кратной i[128]. Например, –4 равно 2i, поскольку –4 = (4 — 1) = 4 –1 = 2 i = 2i. В общем виде это можно записать так: —n = (n)i. Квадратные корни из отрицательных чисел (которые представляют собой величины, кратные i) известны под общим названием «мнимые числа».

Числа, не относящиеся к категории мнимых, называются действительными числами. Они действительные потому, что находятся на числовой оси, а значит, мы можем увидеть, что они и правда там есть. Числа 2, 3, 5, — 4 и — действительные числа, а 2i, 3i, 5i, –4i и i — мнимые. На самом деле множество мнимых чисел — это своего рода зеркальное отражение действительных чисел. Каждому действительному числу m соответствует мнимое число mi.

Когда действительное число прибавляется к мнимому, такая гибридная форма, как 3 + 2i, называется комплексным числом. Все комплексные числа имеют форму a + bi, где a и b — действительные числа, а i — это –1[129]. Поскольку прибавить действительное число к мнимому в общепринятом смысле нельзя, знак плюс используется исключительно для разделения двух частей числа. Считается, что комплексное число — это одно число, состоящее из двух частей — действительной и мнимой. Если действительная часть равна нулю, тогда все число мнимое; если мнимая часть равна нулю, тогда число действительное.

Значение концепции числа, используемой поначалу для подсчета физических объектов, было расширено посредством введения понятия отрицательных, а затем и мнимых чисел. В связи с этим возник закономерный вопрос о том, создаст ли алгебра еще более абстрактную категорию чисел. Например, что представляет собой квадратный корень квадратного корня из минус единицы? Если всерьез задуматься об этой концепции, сперва она перевернет ваш разум вверх дном, а затем вывернет наизнанку. Речь идет о решении уравнения:

или:

что эквивалентно:

x2 = i

Поражает тот факт, что решение этого уравнения представляет собой комплексное число[130][131]:

В XVIII веке математики поняли, что применение мнимых чисел позволяет решить любое уравнение. Это вывод оказался настолько важным, что его стали позиционировать как основную теорему алгебры. Уравнение, записанное с помощью комплексных чисел, всегда имеет решение в виде комплексных чисел. Дверь, в которую вошел Рафаэль Бомбелли, для того чтобы изучить квадратные корни отрицательных чисел, оказалась дверью в изолированную комнату. Но что это была за комната! Болезненные чувства, испытываемые математиками по отношению к мнимым числам, уступили место радости. В настоящее время концепция числа i считается вполне естественным и эффективным расширением числовой системы. Благодаря введению единственного символа математики получили изысканно самодостаточную абстрактную вселенную. Это была выгодная сделка!

Мнимые числа — главные герои двух самых известных примеров математической красоты. Один из них — картина (о которой мы поговорим немного позже), а другой — уравнение, известное как тождество Эйлера. В 2003 году, во время атаки экотеррористов на автосалон в Лос-Анджелесе, эту формулу нанесли спреем на бок внедорожника. Характер данного рисунка привел к аресту студента, изучавшего физику в Калифорнийском технологическом институте[132]. «Все должны знать тождество Эйлера», — объяснил он судье. Безусловно, студент был совершенно прав, но от разрисовывания автомобилей все же следует воздержаться. Тождество Эйлера — это «быть или не быть» математики, самая знаменитая формула и фрагмент культурного наследия, находящий отклик и за пределами своей области:

ei + 1 = 0

Это поразительное равенство. Оно объединяет пять самых важных чисел в математике: 1 — первое натуральное число; 0 — абстрактное представление понятия «ничего»; — отношение длины окружности к диаметру; е — экспоненциальная константа; i — квадратный корень из минус единицы. Все эти числа возникли в отдельных областях исследований и при этом образуют идеальное сочетание. Невозможно было даже представить себе столь безукоризненный синтез математической мысли. В математике красота — это изысканность формулировок и установление неожиданных связей. Не существует другого уравнения, которое было бы столь же кратким и в то же время столь же глубоким.

Но что же все-таки значит то, что у действительного числа (числа е) мнимый показатель степени (i)? В XIX столетии профессор математики Гарвардского университета Бенджамин Пирс ответил на этот вопрос так: «Мы не можем понять и не знаем, что это значит. Но мы доказали это, следовательно, оно должно соответствовать истине». Пирс был совершенно прав. Математика начинается с исходных предположений и приводит туда, куда они ведут. Именно поэтому она столь увлекательна. На самом деле Эйлер открыл эту формулу, позабыв о смысле. Поскольку тождество Эйлера — самое известное уравнение в математике, я бы оказал вам плохую услугу, если бы хотя бы кратко не рассказал эту историю.

Единственное, что вам понадобится в качестве подготовки, — принять без доказательства три следующих уравнения. Многоточия в конце означают, что правая сторона уравнения продолжается до бесконечности:

Если x равно 1, то первый ряд дает нам формулу расчета экспоненциальной константы е, о которой шла речь в предыдущей главе. (Помните, что факториал числа n, записываемый как n! означает, что это число умножается на все числа от 1 до n.) Следующие два бесконечных ряда — это синус и косинус em>x, тригонометрические функции, которые тоже должны быть знакомы вам по предыдущим главам. Однако, для того чтобы ряды синуса и косинуса пригодились нам здесь, необходимо использовать специальную единицу измерения — радиан, а не традиционную единицу — градус. Полный круг, или 360 градусов, — это 2 радиан, а половина круга, или 180 градусов, — радиан. (Радиан называется именно так, поскольку 1 радиан — это угол в центре круга, образующий дугу окружности, длина которой равна ее радиусу, как показано ниже. Радиан — более естественный способ измерения угла, чем градусная система, известная со времен Вавилона. Начиная с XVIII века математики отдают предпочтение измерению углов в радианах[133].)

Радиан

На интуитивном уровне невозможно понять, что означает возвести число (например, число е) в мнимую степень. Однако Эйлер понял, что это можно сделать алгебраическим способом, воспользовавшись представленным выше бесконечным рядом для ex. Например, если мы подставим ix вместо x, получится следующее уравнение:

Убрав скобки, получим такое уравнение:

Мы можем еще больше упростить это уравнение, поскольку по определению i2 = 1:

i3 = i i i = i2 i = –1 i = —i,

i4 = i2 i2 = –1 –1 = 1,

i5 = i4 i = 1 i = i,

i6 = –1

И так далее.

Другими словами, вместо членов ряда i2, i4, i6, i8 … мы можем подставить значения 1, 1, 1, 1 …, а вместо i3, i5, i7, i9 … — i, i, i, i … Следовательно, уравнение можно записать так:

Закономерность легче увидеть, если выделить мнимые члены жирным шрифтом:

Этот ряд можно преобразовать так:

Но ведь это в точности те же члены, что и в представленных выше уравнениях для косинуса и синуса x:

eix = cos x + i sin x

Возведение числа е в мнимую степень позволило Эйлеру найти тригонометрические функции. Другими словами, он взял две знакомые, но не связанные друг с другом концепции, перемешал их — и как по мановению волшебной палочки появилось нечто неожиданное: две еще более привычные концепции из области, которая считалась совершенно не имеющей отношения к данной ситуации. Занимаясь математикой, порой испытываешь ощущение, будто это алхимия.

В завершение Эйлер сказал: пусть x = , что в радианной мере эквивалентно 180 градусам. Поскольку cos = cos 180° = –1, а sin = sin 180° = 0, мнимый член ряда исчезает.

ei = cos + i sin

Это сокращается до следующей формулы:

ei = –1

Или:

ei + 1 = 0

По всей вероятности, именно благодаря революционной работе Эйлера с мнимыми числами они оказались в центре математики, где с тех самых пор и остаются. Но, несмотря на это, для Эйлера и его современников мнимые числа по-прежнему были экзотическими, непостижимыми чудовищами. Само их название, которое подразумевало, что они не существуют, являлось серьезным препятствием, мешавшим их полному принятию. В начале XVIII века Готфрид Лейбниц сказал, что –1 — это «почти что амфибия между бытием и небытием». Возможно, математика развивалась бы быстрее, если бы вместо термина «мнимые числа» в словарь вошло название «числа-амфибии».

Мы с вами уже знаем, что математики полностью освоились с концепцией отрицательных чисел лишь тогда, когда смогли увидеть их на бумаге в виде точек, отображенных на числовой оси. То же самое произошло и с мнимыми числами. Философские опасения по поводу комплексных чисел исчезли только после изобретения простого способа визуальной интерпретации этой концепции.

Представленная на рисунке ниже комплексная плоскость образована вертикальной числовой осью, на которой откладываются мнимые числа, и горизонтальной числовой осью, на которой откладываются действительные числа (как оси х и у в обычной системе координат). Комплексное число a + bi — это точка на комплексной плоскости с координатами (a, b) — a по горизонтальной оси, b — по вертикальной. На рисунке я отметил число 3 + 2i, другими словами — точку с координатами (3, 2). Комплексная плоскость — достаточно простая идея, но тем не менее все три ее автора независимо друг от друга работали где-то на периферии сообщества самых влиятельных математиков того времени: Каспер Вессель, землемер из Копенгагена; Жан Робер Арган, счетовод из Парижа, и аббат Эдриан-Кантен Буэ, французский священник, который сбежал от революции и поселился в городе Бат. Тот факт, что ни один из великих математиков той эпохи не предложил идею комплексной плоскости, говорит об их зависимости от доктрины о том, что мнимые числа существуют только в воображении.

Комплексная плоскость

Комплексная плоскость стала блестящим открытием. Она не только представляет собой схему, на которой может быть отмечено местоположение комплексных чисел, но и углубляет наше понимание того, как ведут себя эти числа.

Возьмем какую-либо элементарную сумму, скажем 1 плюс 3 + 2i. Ответ: 4 + 2i.

Или прибавим i к числу 3 + 2i. Ответ: 3 + 3i.

А теперь посмотрите на рисунок ниже. Прибавление 1 к точке 3 + 2i перемещает нас на одну единицу по горизонтальной оси, а прибавление i — на одну единицу вверх по вертикальной.

Чем больше единиц я прибавляю, тем дальше продвигаюсь по горизонтали, а чем больше i — по вертикали. На самом деле сложение комплексного числа a + bi эквивалентно перемещению на a единиц вдоль действительной оси и на b единиц вверх по мнимой оси. Такое геометрическое передвижение обозначается термином «параллельный перенос».

А теперь давайте перейдем к умножению комплексных чисел. Если мы возьмем число 3 + 2i и умножим его на 1, получится то же самое, 3 + 2i. Иначе и быть не может, ведь так всегда происходит с умножением на 1. Но когда мы умножим это число на i, произойдет нечто интересное. Давайте умножим 3 + 2i на i:

(3 + 2i) i = 3i + 2i2 = 3i — 2 = –2 + 3i

Посмотрите на представленный ниже рисунок. Точка 3 + 2i сместилась на 90 градусов относительно 0 против часовой стрелки.

Если мы умножим новую точку 2 + 3i на i, точка на комплексной плоскости, которую описывает это число, повернется на четверть оборота вокруг начала координат. Если мы умножим на i2 = 1, точка повернется на 180 градусов, если на i3 = i, точка повернется на 270 градусов, а если на i4 = 1, точка вернется в исходную позицию.

Теперь давайте возьмем произвольное положительное число a. Оно находится на действительной оси комплексной плоскости. Умножив a на 1, получим ответ: —a. Это число тоже размещено на действительной оси, но с противоположной стороны от 0. Умножим его на 1 еще раз, и оно вернется к значению a. Однако если мы умножим a на i, ответ будет ai. Число повернулось на90 градусов и теперь расположено на мнимой оси. Если мы снова умножим на i, число переместится в позицию — a, снова вернувшись на действительную ось. Таким образом, комплексная плоскость обеспечивает возможность представить умножение на отрицательные числа, которое сводится к перемещению вперед-назад, в виде умножения мнимых чисел посредством последовательности перемещений по кругу. Этот процесс не только позволяет глубже постичь сущность чисел, но и предоставляет в наше распоряжение мощный язык для описания вращающихся объектов.

Во многих областях науки, в том числе в физике элементарных частиц, электротехнике и радиолокации, комплексная плоскость используется для описания процесса вращения. В действительности волновое уравнение Шредингера (основное уравнение квантовой механики) содержит мнимое число i[134]. Это уравнение описывает вероятность обнаружения субатомной частицы в определенном месте. Разумеется, вероятность любого события должна находиться в пределах от 0 до 1, или от 0 до 100 процентов. Однако лучший способ понять зависимость между вероятностями частиц сводится к тому, чтобы считать эти вероятности числами на комплексной плоскости. В данном случае вместо сложения вероятностей как действительных чисел эти вероятности усиливают или нейтрализуют друг друга в зависимости от их относительного положения в процессе вращения.

Благодаря таким уравнениям, как уравнение Шредингера, физики теперь используют мнимые числа для описания природы самой материи. В итоге математикам больше не нужно терзаться по поводу того, есть ли у мнимых чисел какой-либо внешний смысл или нет. В наше время говорить, что число 2 + 3i находится на комплексной плоскости, так же естественно, как и то, что число 2 расположено на числовой оси.

Комплексная плоскость позволяет по-новому взглянуть на тождество Эйлера, но для этого я должен познакомить вас с альтернативной системой координат для комплексных чисел. Как мы уже видели, в стандартной системе комплексному числу a + bi соответствует точка на плоскости с координатами (a, b), где a — это расстояние от ноля вдоль горизонтальной оси, а b — расстояние от ноля вверх. Вторая система, в которой используются «полярные» координаты, описывает точку с координатами (a, b) как точку, которая находится под углом на расстоянии r от начала координат. Это похоже на то, как в боевике командир подводной лодки объявляет, что вражеский корабль замечен в r милях, азимут (разве что за исключением того, что мы измеряем углы в радианах, причем против часовой стрелки начиная с востока, а не по часовой стрелке с севера). На представленном ниже рисунке точка отображает комплексное число a + bi. Я отметил угол от горизонтали и расстояние r от начала координат, что образует прямоугольный треугольник с углом , гипотенузой r, прилежащей стороной a и противолежащей стороной b.

SOH-CAH-TOA!

Это мнемоническое правило для запоминания тригонометрических функций напоминает нам о том, что синус — это отношение противолежащей стороны к гипотенузе, а косинус — прилежащей стороны к гипотенузе. В данном случае это значит, что

Эти формулы можно записать так:

b = r sin ; a = r cos

Следовательно, наше комплексное число может быть выражено через r и :

a + bi = r cos + (r sin ) i

a + bi = r cos + ri sin

a + bi = r (cos + i sin )

Но постойте! Мы ведь знаем, что cos + i sin = ei. Следовательно, мы можем заменить те члены уравнения, которые стоят в скобках, и получить такую формулу:

a + bi = rei

Попытайтесь прочувствовать это уравнение. Комплексное число, которое находится на расстоянии r от начала координат, под углом радиан по отношению к горизонтальной оси, имеет форму rei. Немного выше в этой главе я задал вопрос, что значит число е в мнимой степени, но тогда это казалось непонятным. Сейчас мы нашли на него ответ. Когда число е имеет мнимую степень, такой член представляет собой невероятно эффективное обозначение позиции на комплексной плоскости.

Теперь давайте рассмотрим точку на комплексной плоскости с координатами (–1, 0), которая представляет комплексное число –1 + 0i, или просто 1. Как показано на рисунке ниже, эта точка находится на расстоянии в 1 единицу от начала координат под углом в радиан, а значит, мы можем записать ее как ei.

Мы с вами заново открыли тождество Эйлера! Формула, описывающая позицию точки 1 на комплексной плоскости, выглядит следующим образом:

— 1 = ei

Это уравнение можно преобразовать в такую форму:

ei + 1 = 0

Кроме того, поскольку точка i расположена на расстоянии в 1 единицу от начала координат под углом /2 радиан к горизонтали, мы можем сделать вывод, что i = ei/2, а так как i находится на расстоянии в 1 единицу от начала координат под углом 3/2 радиан, напрашивается вывод, что i = e3i/2.

Сделайте глубокий вдох. Сейчас мы используем эту информацию, чтобы ответить на потрясающий вопрос, который еще несколько страниц назад мог бы показаться полным бредом, граничащим с безумием: что представляет собой ii, или квадратный корень из минус единицы в степени квадратный корень из минус единицы?

Поскольку мы знаем, что ei/2 = i, мы знаем также, что:

Здесь i исчезает, оставляя после себя такое число, которое поняли бы даже древние греки. Только представьте себе!

Комплексная плоскость позволяет забыть беспокойную мысль о том, что i — это квадратный корень из отрицательного числа. Мы должны помнить только то, что комплексное число a + bi представляет собой точку на плоскости с координатами (a, b), где a и b — действительные числа, а также что сложение или умножение этих координат подчиняется определенным правилам. (Разумеется, эти правила основаны на свойствах квадратного корня из минус единицы, но сейчас нас должно интересовать не то, как они появились, а в чем их суть.) Вскоре математики задумались над тем, можно ли создать такие же правила для трехмерной системы координат, что позволило бы описывать вращения в пространстве подобно тому, как правила для комплексных чисел описывают вращения в двумерной системе координат. Больше всех проникся этой идеей ирландский математик Уильям Роуэн Гамильтон, но ему не удавалось найти ответ. И вот однажды в 1843 году, когда Гамильтон прогуливался с женой вдоль Королевского канала в Дублине, на него снизошло озарение, которое вылилось в знаменитый математический акт вандализма: Гамильтон нацарапал на стене моста Брумбридж такую формулу: i2 = j2 = k2 = ijk = –1. Сейчас на этом месте установлена памятная табличка.

Гамильтон понял, что невозможно найти математически допустимые правила для координат с тремя числами, но их можно применить для четырех чисел. Он назвал свое открытие «кватернионы». Подобно тому как комплексное число a + bi (где a и b — действительные числа, а i — 1) можно представить в виде точки на плоскости с координатами (a, b), кватернион a + bi + cj + dk, где a, b, c и d — действительные числа, а i, j и k равны –1, можно записать с помощью координат (a, b, c, d). Хотя каждая из мнимых единиц i, j и k равна –1, все же они разные, как следует из уравнения, записанного Гамильтоном на кирпичной кладке моста. Для того чтобы кватернионы работали, Гамильтону понадобилось еще одно странное правило, которое гласит, что порядок умножения мнимых единиц имеет значение. Например, i j = k, но j i = —k.

Кватернионы Гамильтона представляли собой весьма необычную концепцию, но все же позволили ему создать модель вращений в трехмерном пространстве. В кватернионе (a, b, c, d) числа (b, c, d) — это три координаты для трех размерностей пространства, тогда как число а отображает время. Эти новые числа так взволновали Гамильтона, что он посвятил их изучению большую часть оставшейся жизни.

Если концепция кватернионов кажется вам несколько странной, вы в этом не одиноки. Современники Гамильтона высмеяли его, и особенно Чарльз Доджсон, математик из Оксфордского университета, больше известный как Льюис Кэрролл. Его книги для детей «Алиса в Стране чудес» и «Алиса в Зазеркалье» славятся своими логическими головоломками и математическими играми. Однако совсем недавно один критик заявил, что в основе сюрреалистического юмора этих книг лежит не богатое воображение Доджсона, а его желание поглумиться над изменениями в математике викторианской эпохи, которых он не одобрял, что больше всего касалось тенденции к повышению уровня абстракции в алгебре. Мелани Бейли написала в своей статье, что глава A Mad Tea Party («Безумное чаепитие») — это сатира на кватернионы Гамильтона, и даже само название представляет собой игру слов, поскольку его можно интерпретировать как mad t-party, где t — научный символ для обозначения времени[135]. За чаепитием Безумный Шляпник, Мартовский Заяц и Мышь Соня вращаются вокруг стола, подобно мнимым числам i, j и k в кватернионе. Четвертый гость по имени Время отсутствует, поэтому на мытье посуды времени нет. Когда Мартовский Заяц сказал Алисе, чтобы она говорила то, что думает, Алиса ответила: «…Во всяком случае… что я думаю, то и говорю. В общем, это ведь одно и то же!» Но порядок слов в предложении все же меняет смысл, точно так же как порядок умножения i и j меняет результат.

Однако история показала, что Доджсон был неправ. Гамильтон расширил концепцию числа, включив в нее кватернионы, что разорвало связующую нить между числами и смыслом, существовавшую до этого. Теперь математики считают само собой разумеющимся создание новых типов чисел исключительно на основании формальных определений. Смысл может быть найден (как это произошло с комплексными числами, которые оказались точками на комплексной плоскости) или нет. Задача состоит в том, чтобы исследовать закономерность и структуру и понять, к чему это вас приведет.

К концу XIX века другие математические теории вытеснили кватернионы, но Гамильтон был бы безумно счастлив узнать, что на протяжении последних нескольких десятилетий они снова широко используются. Кватернионы применяются в процессе компьютерных расчетов трех осей вращения объектов, находящихся в полете, — продольной, поперечной и вертикальной. Различные организации и компании, работающие в таких отраслях, как аэронавтика и компьютерная графика, от NASA до Pixar, используют кватернионы в своем программном обеспечении.

Невозможно создать дееспособную систему счисления с пятью, шестью или семью упорядоченными действительными числами, но для восьми чисел такая система существует — она обозначается термином «октонион» и записывается как (a, b, c, d, e, f, g, h). Октонион — это идея, ждущая воплощения, и, скорее всего, ждать осталось недолго. Один из основных претендентов на роль «теории всего», объединяющей квантовую механику и Общую теорию относительности, — это М-теория, один из вариантов теории струн, в которой элементарные частицы атома считаются струнами[136] М-теория оперирует 11 измерениями, состоящими, по мнению ряда ученых, из восьми измерений октониона и трех пространственных измерений. Гамильтон записал свои идеи на кладке ирландского моста, но они, возможно, изначально вплетены в ткань мироздания.

Бертран Рассел, единственный математик, получивший Нобелевскую премию по литературе, описывал красоту математики так: «Математика, при правильном на нее взгляде, обладает не только истиной, но и высшей красотой — красотой холодной и суровой, подобно скульптуре, не обращенной ни к какой стороне нашей слабой натуры, лишенной украшений живописи и музыки и тем не менее утонченно чистой и способной к строгому совершенству, свойственному лишь величайшему искусству»[137]. Тождество Эйлера, совершенное и глубокое, полностью соответствует этому описанию. Математическая красота может быть и эстетичной, хотя Рассел не дожил до того дня, когда мог бы увидеть это воочию. В 1980 году, через десять лет после его смерти, на комплексной плоскости была открыта фигура, оказавшаяся настолько поразительной и неординарной, что это изменило ход наших мыслей не только в отношении математики, но и науки в целом.

Прежде чем рассказать об этом, я должен познакомить вас с концепцией итерации, которая представляет собой процесс многократного повторения одной и той же операции. Мы затронули эту тему в предыдущей главе, когда говорили о последовательности, каждый член которой в два раза больше предыдущего:

1, 2, 4, 8, 16, 32, 64, 128…

Вместо того чтобы записывать все члены последовательности, я мог бы определить ее как итерацию x 2x, в которой первый член равен 1:

1 2

2 4

4 8

И так далее.

Итеративность этого процесса обусловлена тем, что результаты каждого действия (в данном случае удвоения) используются в качестве исходных данных для следующего действия. Итерация — это система с обратной связью: число, полученное на выходе, снова подается на вход, обеспечивая получение нового числа, и т. д.

А теперь давайте рассмотрим простую итерацию x x2.

Если мы начнем с 1, то получим следующие значения:

1 12 = 1

1 1

1 1

Другими словами, эта последовательность состоит из бесконечного количества единиц.

Если начнем с 2, последовательность будет такой:

2 22 = 4

4 16

16 256

256 65536 …

Эта последовательность стремится к бесконечности.

Если же последовательность начинается со значения 0,1, тогда мы получим:

0,1 (0,1)2 = 0,01

0,01 0,0001

0,0001 0,00000001 …

Эта последовательность стремится к нулю.

Мы можем обобщить поведение всех чисел, принимающих участие в этой итерации. Если положительное число n больше 1, его квадрат n2 больше n, а значит, числа, полученные посредством итерации, становятся все больше. Если положительное число n меньше 1, тогда n2 составляет долю от n, то есть числа, полученные посредством итерации, все время уменьшаются и стремятся к нулю. Поскольку квадрат отрицательного числа — это положительное число, все числа меньше 1 стремятся к бесконечности, а все отрицательные числа от 1 до 0 — к нулю.

Назовем числа, которые стремятся к бесконечности, словом «беглецы», а числа, которые не делают этого, — словом «узники». В случае итерации x x2 мы видели, что число 2 — это беглец, а числа 1 и 0,1 — узники. В оставшейся части главы мы будем искать узников любой итерации, которых обозначим как «множество узников». В итерации x x2 множество узников — это числа от 1 до 1; на представленном ниже рисунке они отмечены жирной линией.

Множество узников итерации x x2

Рассмотрим новую итерацию x x2 + c, где c — исходное значение итерации. Другими словами, наша система с обратной связью поглощает немного больше информации, чем обычно. Она начинает с числа c, возводит его в квадрат и прибавляет c, возводит результат в квадрат и прибавляет c, возводит результат в квадрат и прибавляет c и т. д. Это небольшое изменение правил влечет за собой серьезные последствия в плане определения того, какие исходные значения относятся к узникам, а какие — к беглецам.

Начнем с числа 1, которое, как мы выдели выше, является узником в итерации x x2. В случае итерации x x2 + c оно становится беглецом (обратите внимание, что мы начинаем с 1, а значит, c = 1):

1 12 + 1 = 2

2 22 + 1 = 5

5 26

26 677 458330 …

А теперь давайте посмотрим, что произойдет с числом 2, которое является беглецом в итерации x x2. В случае итерации x x2 + c оно превращается в узника (обратите внимание, что мы начинаем с 2, значит, c = 2):

— 2 –22 — 2 = 2

2 22 –2 = 2

2 2

2 2

Оказывается, в итерации x x2 + c множество узников содержат числа от 2 до 0,25, как показано на рисунке ниже.

Множество узников итерации x x2 + с

Теперь поиграем в игру «узники против беглецов» на комплексной плоскости — системе координат, в которой каждая точка определяется комплексным числом. Для начала давайте вспомним, как на комплексной плоскости выполняется операция умножения: умножение на число i эквивалентно повороту против часовой стрелки на 90 градусов. В более общем виде, когда два комплексных числа умножаются друг на друга, углы, которые образуют соответствующие точки с горизонтальной осью, необходимо сложить, а расстояния от начала координат — умножить. (Обозначим комплексные числа символом z, а не a + bi.) На представленном ниже рисунке комплексное число z1 находится под углом градусов к горизонтали, на расстоянии r, а число z2 — под углом градусов к горизонтали, на расстоянии R. Таким образом, комплексное число z1 z2 расположено под углом + градусов по отношению к горизонтальной оси, на расстоянии r R. Теперь становится понятно, почему умножение на i — это четверть оборота. Число i — это точка на комплексной плоскости с координатами (0, 1), одна единица вверх по мнимой оси, под прямым углом к горизонтали. Следовательно, умножение комплексного числа, представленного соответствующей точкой на комплексной плоскости, на число i, сводится к повороту на 90 градусов против часовой стрелки и умножению расстояния этой точки от начала координат на 1, значит, расстояние остается прежним — это и есть математическое описание четверти оборота.

Умножение на комплексной плоскости

Что происходит с комплексными числами в итерации z z2?

Начнем с мнимого числа i:

i i2 = –1

— 1 1

1 1

Следовательно, i принадлежит множеству узников.

Существует более быстрый способ обнаружить множество узников на комплексной плоскости с использованием информации об умножении комплексных чисел. При умножении двух комплексных чисел мы суммируем углы и умножаем расстояния. Следовательно, для возведения комплексного числа в квадрат необходимо удвоить его угол и возвести в квадрат расстояние. Рассмотрим единичную окружность — с радиусом 1 и центром в начале координат. Все точки такой окружности находятся на расстоянии 1 от начала координат, а это значит, что квадрат любой из этих точек расположен на расстоянии 12 = 1 от начала координат. Другими словами, квадрат числа, соответствующего точке на единичной окружности, остается на единичной окружности. Тогда в случае итерации z z2 все точки на окружности должны принадлежать к множеству узников. Аналогичным образом, если расстояние от точки до начала координат меньше 1, квадрат числа, соответствующего этой точке, находится ближе к началу координат и в процессе итерации будет приближаться к нему все больше. Следовательно, все точки, которые расположены внутри единичной окружности, тоже принадлежат к множеству узников. С другой стороны, если расстояние от точки до начала координат больше 1, квадрат числа, соответствующего этой точке, находится дальше от начала координат и в процессе итерации будет отдаляться от него все больше и больше. Таким образом, в случае итерации z z2 множество узников представляет собой единичный круг, показанный на рисунке ниже.

Множество узников в итерации z z2

Теперь приготовьтесь к самому интересному. Нам необходимо определить множество узников в итерации z z2 + c, где c — начальное значение итерации. Давайте подумаем, что означает эта итерация на комплексной плоскости. Мы берем точку c, затем возводим ее в квадрат, что поворачивает ее вокруг начала координат и возводит в квадрат ее расстояние от начала координат. Затем мы прибавляем c, что смещает эту точку на комплексной плоскости на расстояние c. После этого новая точка поворачивается, а ее расстояние от начала координат возводится в квадрат, прежде чем она будет снова смещена на расстояние c. Таким образом, данная итерация представляет собой бесконечное чередование таких операций, как вращение, смещение и перенос в каждой точке на комплексной плоскости. Посредством логических умозаключений невозможно определить, как будет выглядеть множество узников в данном случае. Единственный способ — выполнить итерации для огромного количества точек, что до появления компьютеров было неосуществимо.

В 1979 году работавший в компании IBM французский математик Бенуа Мандельброт заинтересовался итерацией z z2 + c. Его первые распечатки показали множество узников в форме капли с крохотными разводами, напоминающими маленькие брызги, отделившиеся от основной капли. Мандельброт оставил своим ассистентам записку, в которой предупреждал, что эти дефекты появились не из-за ошибки компьютера, и просил не удалять их с распечаток. Увеличив степень детализации этих участков, Мандельброт увидел, что они состоят из удивительных узоров, соединенных с множеством узников крохотными ответвлениями. Постепенно сформировалась полная картина множества узников. Она напоминала жука-долгоносика с игольчатым панцирем и не походила ни на одну известную геометрическую фигуру.

Множество узников в итерации z z2 + с: множество Мандельброта

© Брайан Поллок

На первый взгляд множество Мандельброта (именно так назвали эту фигуру) выглядит уродливо и даже пугающе. Но если присмотреться к нему поближе, то можно увидеть его замысловатую красоту. На представленных ниже рисунках показаны детализированные изображения «Долины морского конька» — так называется фрагмент множества Мандельброта между головой и телом «жука». Расположенные по периметру бугорчатые выступы образуют ажурный «огуречный» орнамент со спиралями, напоминающими хвост морского конька. Внутри этих спиралей еще больше спиралей, затем еще спирали внутри спиралей — и так до тех пор, пока не появится миниатюрное множество Мандельброта, запечатленное в этой фигуре как насекомое в капле янтаря. «Он [фрактал] не оставляет места для скуки, посколькувсе время появляется что-то новое, но и не дает нам заблудиться, так как нечто знакомое возвращается снова и снова», — писал Мандельброт. Процесс изменений носит безмерно глубокий и широкий характер: на какой бы фрагмент границы множества вы ни посмотрели, увеличение уровня детализации раскроет бесконечно меняющийся ландшафт. Битва между узниками и беглецами так идеально сбалансирована, что вихри схваток между ними можно обнаружить в каждой точке, в любом масштабе.

Страницы: «« 23456789 »»

Читать бесплатно другие книги:

Замечательные стихотворения для детей всех возрастов, размещённые в книге по временам года: лето — о...
Мы — чьи-то мысли, планы.Мы — чьи-то мечты, поэтому живем.В этой книге вы прочтёте о себе.Изобретате...
Наемный убийца Клод Финеас встречает демонессу по имени Рин, которая просит его вернуть ей утраченны...
Почему тоталитарные режимы, а так же А. Ахматова и В. Набоков, не любили психоанализ; парадоксы у О....
Вниманию читателя представляется одна из наиболее авторитетных книг, посвященных истории, истолкован...
Сборник рассказов представляет из себя удивительную палитру, многообразное смешение жанров, сюжетов,...