Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры Беллос Алекс
Как умножить два числа с помощью параболы
Мебиус представил свою оригинальную машину умножения в 1841 году в ссылке к статье, опубликованной в августовском номере журнала Journal fr die reine und angewandte Mathematik («Журнал чистой и прикладной математики»), и больше никогда не упоминал об этом методе. Однако идею решения арифметических задач с помощью геометрии впоследствии переосмыслил молодой французский математик Морис д’Окань[87]. Он обнаружил, что кроме операции умножения можно, построив прямую линию между двумя точками на графике и записав ответ, выполнять и многие другие операции. В 1891 году д’Окань ввел термин «номограмма» для обозначения любой таблицы, которую можно использовать для таких вычислений, и сам составил множество таких таблиц. Каждая номограмма подходит для вычислений лишь по одной формуле. На представленном ниже рисунке изображена составленная в 1921 году номограмма для формулы расчета скорости перемещения потока воды через прямоугольное отверстие в плотине, где V — это скорость потока, h1 и h2 — высота верхнего и нижнего края отверстия. Прямая линия, проведенная через точки h1 и h2, пересечется с вертикальной линией в точке, соответствующей искомому значению V. Все, что необходимо для решения этого громоздкого уравнения, — линейка и твердая рука. Номограммы помогли избавиться от трудоемких вычислений, затратных по времени. Они широко применялись в инженерном и военном деле до 1970-х годов, когда электронный калькулятор в одночасье сделал их устаревшими. Гениальные, практические и зачастую красивые номограммы вышли из употребления, а номография стала забытым искусством.
До изобретения карманного калькулятора широко использовались вспомогательные вычислительные инструменты под названием «номограммы». Эта номограмма, составленная в 1921 году, вычисляет скорость потока воды в водосливе плотины
Из книги: Rodolphe Soreau, Nomographie, Chiron, 1921
Гипербола выделяется на фоне остальных конических сечений, поскольку состоит из двух частей. Для того чтобы понять, почему так происходит, мы должны вернуться к первоначальному определению конических сечений. Если нарисовать рисунок, отображающий весь процесс построения гиперболы, то на нем было бы видно, что на самом деле наш нож рассекает двойной конус, когда один конус расположен в перевернутом виде над другим идентичным конусом[88]. В случае эллипса и параболы угол наклона секущей плоскости указывает, что эта плоскость никогда не достигнет верхнего конуса. Хотя, как показано на рисунке 1 ниже, в случае гипербол секущие плоскости всегда пересекают как верхний, так и нижний конусы, образуя при этом две симметричные U-образные ветви.
Благодаря гиперболе в геометрии появилась совершенно новая концепция — асимптота (еще один термин, введенный Аполлонием), прямая линия, к которой другая кривая приближается бесконечно близко, но никогда с ней не соприкасается. Как показано на рисунке 2, гипербола ограничена двумя пересекающимися асимптотами. Каждый незамкнутый фрагмент кривой постоянно приближается к асимптоте, но никогда не пересекается с ней. «Я уверен, что если бы геометр сознавал безнадежное и отчаянное стремление гиперболы соединиться со своими асимптотами, — писал испанский философ Мигель де Унамуно, — то он охарактеризовал бы гиперболу как живое и трагическое существо!» Гиперболы часто встречаются в быту. Как показано на рисунках 3 и 4, это могут быть дугообразные волны на заточенном карандаше (кончик — это конус, а плоская боковая сторона — секущая плоскость), а также тень, отбрасываемая лампой (пучок лучей света — это конус, а стена — секущая плоскость).
Гиперболы Асимптоты
У гиперболы два фокуса, как и у эллипса. Ее можно представить себе как эллипс, вытянутый до бесконечности в одном направлении, а затем развернутый в обратном направлении. Кроме того, гиперболу можно определить по свойствам двух ее фокусов, как это было сделано и в отношении эллипса. Гипербола — это путь, пройденный точкой, расстояния от которой до двух фокусов образуют постоянную разность, тогда как в случае эллипса они образуют постоянную сумму. На верхнем рисунке a — это расстояние от произвольной точки P до одного фокуса, а b — расстояние от точки P до другого фокуса. Гипербола — это геометрическое место точки P, для которой разность (a — b) имеет постоянное значение. Кроме того, гиперболу можно определить и через поведение лучей света. Лучи света от источника, находящегося в одном из фокусов, отражаются вовне гиперболичекого зеркала в направлении, противоположном другому фокусу, как показано на нижнем рисунке. Телескоп Ричи-Кретьена, наиболее распространенный тип больших астрономических телескопов, содержит именно гиперболические зеркала.
Геометрия гиперболы
Выше я уже предложил вам способы построения эллипса и параболы, поэтому считаю своим долгом сделать это и для гиперболы. На этот раз нам предстоит создать трехмерную модель. Мы сделаем гиперболоид — фигуру, напоминающую популярный в 1970-х годах пластиковый табурет, имеющий форму, которую можно получить посредством вращения гиперболы вокруг своей оси, как показано ниже на рисунке слева. Для создания данной конструкции нам понадобятся два круга из картона и несколько кусков проволочной нити (струны). На первом этапе, как показано на среднем рисунке, необходимо протянуть нить от одного круга к другому таким образом, чтобы образовать фигуру в форме цилиндра. На втором этапе (рисунок справа) нужно повернуть один из кругов. Полученная в итоге фигура и есть гиперболоид.
Гиперболоид и способ его построения с помощью проволочной нити
В XVII веке молодой английский профессор астрономии Кристофер Рен увидел в витрине магазина плетеную корзину, напоминающую своими очертаниями ту модель, которая показана на рисунке выше[89]. Эта корзина навела его на мысль об одном поразительном свойстве гиперболоида: имея гладкую изогнутую поверхность, он состоит исключительно из прямых линий. Рен сразу же понял, как можно использовать это свойство для создания гиперболоидов из твердого материала с помощью прямой лопатки. Представьте себе, что на гончарном круге находится кусок глины цилиндрической формы. Разместите лопатку по диагонали к цилиндру таким образом, чтобы она немного погрузилась в глину. Удерживая лопатку в одном положении, сделайте один оборот гончарного круга — и цилиндр из глины превратится в гиперболоид. Рен заинтересовался изготовлением гиперболоидных линз для телескопов. Он даже не подозревал, что спустя столетия его открытие данного свойства гиперболоида найдет свое применение в архитектуре — области, в которой сам Рен получит впоследствии гораздо большую известность.
В XIX веке французский преподаватель математики Теодор Оливье создал несколько моделей гиперболоидов и других трехмерных конических фигур для использования в качестве учебных пособий[90]. Сделанные из каркасов из дерева и металла, а также цветных проволочных нитей (струн), они стали весьма популярны в университетах. Некоторые из моделей Оливье были выставлены в лондонском Музее истории науки. В 1930-х годах британский художник Генри Мур посетил этот музей и пришел в такой восторг от увиденных моделей, что начал использовать проволочные нити в своих скульптурах. «Меня взволновало не научное назначение моделей, а возможность посмотреть сквозь эти струны, как через птичью клетку, и увидеть одну форму внутри другой», — объяснил он. Струнные модели Оливье — прекрасные объекты, завораживающие подобно оптической иллюзии, представляя кривые поверхности, образованные, как становится очевидным при ближайшем рассмотрении, прямыми линиями. (В конце XIX столетия личную коллекцию моделей Оливье выкупил Колледж Союза в городе Скенектади, в котором много лет спустя Арт Фриго создал свою игру «эллиптипул».)
Охлаждающие башни в виде гиперболоидов
© Kletr/Shutterstock.com
В представленной выше проволочной модели верхний круг вращается по часовой стрелке, поэтому на передней наклонной плоскости куски проволочной нити наклонены следующим образом: \. Если повернуть этот круг на аналогичный угол в противоположном направлении, получится идентичный гиперболоид, но наклон проволочной нити будет таким: /. Для того чтобы плетеная корзина в форме гиперболоида была прочной, ее следует изготовлять из прутьев лозы, переплетенных в обоих направлениях. Более крупные гиперболоидные конструкции, выполненные в виде решетки из стальных балок, невероятно устойчивы. Это и есть способ создания больших криволинейных конструкций с использованием только прямых балок. Первым гиперболоидным сооружением в архитектуре была 37-метровая водонапорная башня в Нижнем Новгороде, построенная в 1896 году; впоследствии появилось много сооружений подобного типа. Бетонные охлаждающие башни электростанций имеют форму гиперболоида, как и телебашня Гуанчжоу высотой 600 метров — четвертое по высоте автономное сооружение в мире.
Я рассказал о гиперболе в последнюю очередь, хотя это именно то коническое сечение, с которым мы уже встречались. Когда две величины обратно пропорциональны друг другу, как было с частотностью употребления слов в романе Джеймса Джойса «Улисс» и их порядковым номером в списке, их математическую зависимость можно представить в таком виде: , где k — это константа. Данное уравнение описывает гиперболу, в которой в качестве асимптот выступают горизонтальная и вертикальная оси. Многие законы природы включают в себя обратно пропорциональные величины — например закон Бойля — Мариотта, который гласит, что давление газа обратно пропорционально его объему. Следовательно, гиперболы широко распространены в науке. Даже такой общеизвестный статистический термин, как «длинный хвост», используется во многих случаях как эвфемизм для замещения гиперболы и ее асимптоты.
Кривая — это гипербола
Мы начали эту главу с определения конических сечений как фигур, образующихся в результате рассечения конуса секущей плоскостью, а затем проанализировали свойства каждой фигуры в отдельности. А завершим последним, всеобъемлющим определением: конические сечения — это кривые, для которых отношение расстояний до точки (фокуса) и до прямой (директрисы) представляет собой постоянную величину. Если отношение расстояния от кривой до точки к расстоянию от кривой до прямой линии больше 1 (а это значит, что кривая всегда пропорционально ближе к директрисе, чем к фокусу), мы имеем гиперболу, как показано на рисунке ниже. Когда это соотношение равно 1 — параболу, а когда оно меньше 1 — речь идет об эллипсе. Данные соотношения известны как эксцентриситеты каждой кривой, поскольку они показывают степень их отклонения от окружности. На представленном ниже рисунке изображены три кривые с общим фокусом F и общей директрисой. Эксцентриситет эллипса составляет 0,75, гиперболы — 1,25.
Гипербола A1/A2 = k > 1
Парабола B1/B2 = 1
Эллипс C1/C2 = k < 1
Окружность Эксцентриситет=0
Конические сечения: семейство эксцентриков
А теперь представьте, что вы — астроном, а размещенный выше рисунок — модель Солнечной системы. Пусть F — это Солнце. Конические сечения с фокусом в точке F и есть совокупность всех возможных орбит небесных тел.
Планеты вращаются вокруг Солнца по эллипсам: у орбиты Земли эксцентриситет 0,0167, что очень близко к окружности. Чем быстрее объект перемещается по своей орбите, тем больше ее эксцентриситет. Например, орбитальная скорость кометы Галлея в два раза больше орбитальной скорости Земли. Орбита кометы напоминает доску для серфинга, на одном конце которой находится Солнце; именно поэтому на протяжении всех 75 лет, требующихся комете Галлея для прохождения орбиты, она находится слишком далеко, чтобы увидеть ее невооруженным глазом. Эксцентриситет орбиты кометы Галлея — 0,967, что близко к параболе. Когда эксцентриситет орбиты кометы равен 1, она представляет собой параболу, а это значит, что комета пройдет рядом с Солнцем только один раз за время своего существования, после чего покинет Солнечную систему навсегда. Если эксцентриситет орбиты кометы больше 1, эта орбита является гиперболой. Однако такие кометы — крайне редкие явления, а орбитальная скорость тех, которые обнаружены, незначительно превышает скорость, необходимую для того, чтобы отклониться от эллиптической орбиты. Комета C/1980 E1, замеченная в 1980 году, перемещается по орбите с эксцентриситетом 1,057 — это самый большой эксцентриситет из всех когда-либо зарегистрированных.
Представьте, что директриса и фокус F на рисунке зафиксированы. Посмотрим, что произойдет с коническими сечениями в случае изменения эксцентриситета. Когда он равен нулю, кривая представляет собой окружность с центром в фокусе F. Теперь медленно увеличим эксцентриситет от 0 до 1. Появляется эллипс, который становится все больше и больше. Поскольку точка F зафиксирована, другой фокус, обозначенный как f, начнет медленно смещаться вправо по мере увеличения эллипса. Как только эксцентриситет достигнет значения 1, эллипс превратится в параболу, а точка f станет бесконечно удаленной. Если сделать эксцентриситет больше 1, кривая превратится в гиперболу, а в левой части рисунка появится второй фокус f. По мере дальнейшего роста эксцентриситета все полученные кривые будут гиперболами, а фокус f будет смещаться все дальше вправо. В своем труде The Optical Part of Astronomy («Оптика в астрономии») Иоганн Кеплер впервые высказал идею о том, что конические сечения могут превращаться друг в друга так, как это показано выше. Подобно многим другим идеям Кеплера, эта имела переломное значение, поскольку позволила по-новому взглянуть на две концепции, над которыми веками бились философы: непрерывность и бесконечность. Это был важный шаг на пути к новому способу выполнения математических вычислений. Мы вернемся к великому немцу и его пониманию данных концепций чуть позже, при обсуждении исчислений бесконечно малых величин.
Конические сечения — одно из величайших наследий древнегреческой математики: простые в описании, поддающиеся наблюдению повсюду, они положены в основу прекрасных теорий и нашли неподвластное времени применение во многих областях. Возможно, у вас создалось впечатление, что окружность — наименее интересная разновидность эллипса. Но это далеко не так. Окружность сама по себе заслуживает отдельной главы.
5. Движение по замкнутому кругу
Автор исследует вращение: крутит колесо, качает маятник, приводит в движение пружину и ударяет по камертону
Окружность, простейшая из всех двумерных фигур, представляет собой геометрическое место точек, равноудаленных от центра. Она — воплощение геометрического совершенства: сглаженная со всех сторон, гармоничная и симметричная. Однако если мы разделим расстояние вокруг окружности (длину окружности) на расстояние поперек окружности (длину диаметра), то получим нечто поразительное:
3,141592653589793238462643383279502884197169399375105820974944592307816406286208…
Это число, равное отношению длины окружности к ее диаметру, является постоянной величиной для всех окружностей, а его десятичные цифры образуют бесконечный ряд без какой-либо закономерности. В XIX веке это число получило собственное имя — «пи», а также символ — и стало межкультурной иконой, самой знаменитой константой в науке и метафорой для обозначения непостижимости Вселенной. Все изучают его в школе, а для многих это единственное, что они помнят из математики.
Но вот что я вам скажу.
Пи — неправильное число.
Безусловно, оно рассчитано верно. Очевидно, что отношение длины окружности к длине ее диаметра — это и есть представленное выше число, которое начинается с 3,14. Пи — неправильное число потому, что оно совершенно не подходит для описания окружности. Пи — это самозванец, ложный идол, не заслуживающий международного признания.
Во всяком случае, так считал американский математик Боб Пале в 2001 году[91]. Он заявил, что куда более подходящей константой для описания окружности было бы отношение длины окружности к радиусу, поскольку радиус, или расстояние от центра окружности до любой ее точки, — гораздо более фундаментальная концепция, чем диаметр. Многие с ним согласны, в том числе и я[92]. Посмотрите на определение окружности. Окружность — это фигура, образованная путем вращения фиксированного отрезка (радиуса) вокруг центра. Диаметр — это производная концепция. Математике свойственно неизменное стремление к элегантности, ясности и корректности, именно поэтому так неуместно то, что самое знаменитое число в математике не отражает истину об окружностях самым понятным, изящным и корректным способом. (В школе нам объясняют, что такое диаметр, исключительно для того, чтобы мы поняли концепцию числа , однако, усвоив ее, мы больше не возвращаемся к диаметру. Математики считают само собой разумеющимся, что диаметр — это радиус, умноженный на два.)
В 2010 году предприниматель из Кремниевой долины Майкл Хартл усилил настроения против числа , окрестив отношение длины окружности к радиусу греческой буквой («тау»). Тау равно двум пи, поскольку диаметр окружности в два раза больше радиуса. Другими словами, число равно:
= 2 = 6,283185307179586476925286766…
Как и в случае , количество десятичных цифр в этом числе бесконечно и не подчиняется ни одной известной закономерности.
В «Манифесте о числе тау» (Tau Manifesto) Хартл призывает молодых математиков заменить на в своей работе[93]. Для начала во всех научных трудах можно было бы делать такое вступление: «Для удобства примем, что = 2». Хартл предупреждает, что борьба будет долгой, поскольку противник достаточно силен благодаря столетиям пропаганды. «Хотя некоторые условные обозначения неуместны, отменить их фактически невозможно, — пишет он. — [Однако] переход от к может… произойти постепенно; в отличие от переопределения, это не должно происходить сразу».
Символ уместен втройне[94]. Он похож на с одной ногой, так что если рассматривать эти символы в качестве дробей, в которых количество ног — это знаменатель (число под линией дроби), то действительно равно двойному , поскольку величина, деленная на 1, равна удвоенной величине, деленной на два. При этом можно рассматривать как сокращение от turn («поворот, перемена»), точно так же как «пи» первоначально было сокращением от слова periphery (греч. «окружность»). А еще подобно тому как обозначение «пи» вызывает вкусные ассоциации со словом pie («пирог» — блюдо, которое чаще всего готовят в форме круга), «тау» ассоциируется со словом «Tao» («Дао») — духовный путь, один из важнейших элементов китайской философии, обозначаемый символом и выражающий гармонию и движение в пределах круга.
В «Манифесте о числе тау» в непринужденной форме говорится о серьезных вещах. Сущность окружности состоит в повороте радиуса, а не в ее ширине. На самом деле динамические свойства окружности, примером которых служит колесо, — это базовые механические принципы, лежащие в основе цивилизации. В этой главе вы узнаете, что три самых важных свойства окружности — это вращение, вращение и еще раз вращение.
Так давайте начнем.
Траектория движения точки на катящемся колесе не похожа, пожалуй, ни на одну кривую из увиденных нами ранее. Во всяком случае, так воспринял эту кривую Галилей, который назвал ее циклоидой и был первым, кто тщательно ее изучил. Вполне естественно, что Галилея, отца современной математики, очень интересовали кривые, образующиеся в результате механического движения. Хоть колесо катится и плавно, но все же создает кривую с острыми выступами (перегибами) в тех местах, где меняет направление. Каждая аркатакой кривой соответствует одному полному обороту колеса, представляющему собой завершенный цикл. Циклоида напоминает скорее не кривую, а череду спящих черепах.
Циклоида
На представленном выше рисунке обозначены позиции точки на каждой четверти оборота колеса; здесь отчетливо видно, что точка проходит большее расстояние, находясь в верхней половине колеса. В процессе перемещения колесо совершает два типа движений: горизонтальное движение по поверхности земли и вращательное движение вокруг центра колеса, причем движения обоих типов по-разному сочетаются друг с другом на протяжении цикла. Если колесо вращается с постоянной скоростью, точка на нем достигает максимальной скорости по отношению к земле на вершине циклоиды, а минимальной — в точке перегиба, где скорость становится равной нулю и сразу же снова начинает увеличиваться. Поразительно то, что у любого движущегося колеса (даже колеса автомобиля, мчащегося со скоростью 200 миль в час) точка контакта с землей неподвижна. Художники знают, что верхняя половина движущегося колеса перемещается быстрее, чем нижняя, поэтому рисуют верхнюю часть расплывчатой, а нижнюю — более четкой. Точно так же спицы колеса движущегося велосипеда видны ближе к земле, где они вращаются достаточно медленно, чтобы их можно было заметить.
Колесо поезда состоит из двух частей: диска, который опирается на рельсы, и реборды, или обода, провисающего сбоку. Точка на ободе описывает кривую, образующую обратную петлю, находясь ниже уровня рельсов, как показано на рисунке. Следовательно, у колес всех поездов есть момент, когда колесо движется в направлении, противоположном движению поезда.
Траектория движения точки на колесе поезда
За всю историю математики ни одна кривая не была объектом столь пристального внимания, как циклоида в XVII столетии. Ее форма была так изящна, а споры между ее поклонниками — настолько ожесточенными, что она заслужила репутацию «Елены Прекрасной геометров»[95]. Галилей, самый главный поклонник этой кривой, использовал прикладные методы в процессе ее изучения. Он вырезал пластину в виде циклоиды из куска материала и вычислил, что она в раз тяжелее, чем пластина из того же материала, вырезанная в форме образующей окружности. Из этого Галилей сделал вывод, что площадь под кривой в раз больше площади круга. Он получил очень близкий, но все же неправильный результат. Эта площадь больше ровно в три раза, что доказал впоследствии французский математик Жиль Персонн Роберваль.
Роберваль (1602–1675) доказал много теорем о циклоиде, но не опубликовал ни одной из них. Для того чтобы сохранить место профессора математики в самом престижном учебном заведении страны Коллеж де Франс, он должен был предоставлять лучшее решение задачи, которая публично объявлялась один раз в три года. Поэтому у Роберваля не было стимула делиться своими результатами, поскольку ими могли бы воспользоваться потенциальные соперники, внимательно следившие за его работой. Должность Роберваля обеспечивала ему престиж и деньги, но лишила собственного научного наследия. Его можно отнести к числу великих французских математиков, о которых помнят меньше всего. Известно, что Роберваль был очень вспыльчив и расстраивался, когда другие ученые обнародовали результаты, которые он уже давно получил. Когда в 1644 году друг Роберваля, итальянец Эванджелиста Торричелли, опубликовал свой первый труд о циклоиде, разъяренный Роберваль отправил ему письмо с обвинениями в плагиате. Торричелли умер три года спустя от тифа, но ходили слухи, что его смерть связана с измучившими его угрызениями совести из-за обвинений в подобном бесчестии.
Однажды вечером в Париже в 1658 году Блез Паскаль лежал без сна в своей постели, терзаемый жестокой зубной болью. Будучи в прошлом знаменитым математиком, к тому времени он отказался от занятий этой наукой, чтобы сосредоточиться на теологии и философии. Пытаясь отвлечься от зубной боли, Паскаль решил поразмышлять о циклоиде. Боль прошла как по волшебству. Разумеется, он подумал, что это сам Бог призывает его продолжить изучение этой божественной кривой. Паскаль усердно работал над ней целых восемь дней, доказав за данный период много новых теорем. Однако, вместо того чтобы опубликовать, он сделал их темой международного состязания. Паскаль призвал своих коллег найти доказательство некоторых из полученных им результатов, пообещав сорок испанских золотых монет в качестве награды за первое место и двадцать — за второе. Вызов Паскаля приняли только два математика — Джон Уоллис в Англии и Антуан де Лалубер во Франции. Однако в представленных ими доказательствах были ошибки, поэтому Паскаль не присудил премию никому и опубликовал собственные результаты в виде небольшой книги, что привело обоих ученых в ярость. Кроме того, Паскаль получил письмо от Кристофера Рена, в котором шла речь об одном неизвестном Паскалю факте. Рен нашел ответ на, пожалуй, самый главный вопрос, касающийся циклоиды: какова ее длина? Рен доказал, что длина циклоиды ровно в восемь раз больше радиуса образующей окружности. Разумеется, когда Роберваль узнал об этом, он был возмущен и настаивал на том, что именно он это доказал много лет назад.
Интерес к циклоиде возрос еще больше, когда Христиан Гюйгенс открыл одно ее удивительное механическое свойство. В рамках работы над созданием часов нового типа голландский ученый экспериментировал с маятниками. Обычный маятник — это кусок нити с шаром у одного конца, как показано на рисунке ниже. Траектория движения шара представляет собой фрагмент окружности, причем чем дальше маятник отклоняется от вертикального положения, тем больше времени занимает одно полное колебание. Однако, для того чтобы использовать маятник для отсчета времени, Гюйгенсу было нужно, чтобы шар совершал колебания за одинаковые промежутки времени, независимо от амплитуды. Размышляя над задачей, поставленной его другом Паскалем, Гюйгенс понял, что для этого траектория движения шара должна представлять собой не что иное, как перевернутую циклоиду (см. второй рисунок), и что этого можно добиться, разместив две «щеки» в форме циклоиды у вершины маятника[96]. Когда маятник совершает колебание, его нить огибает каждую из «щек», меняя первоначальную круговую траекторию движения шара на траекторию в форме циклоиды. Как бы далеко от центра ни отклонялся шар циклоидального маятника, время его возвращения в начальную точку останется неизменным.
Обычный маятник и маятник, совершающий колебания между двумя циклоидами
Поражает еще один аспект данного свойства циклоиды. Представьте себе два шара, движущихся по совершенно гладкой, не создающей трения кривой в форме перевернутой циклоиды, как показано на рисунке ниже. Для того чтобы достичь нижней точки циклоиды, обоим шарам требуется одинаковое время, независимо от исходных позиций. Шар, находящийся выше, начал двигаться по более крутому склону, чем шар, расположенный ниже на кривой, что придало первому шару большее ускорение, а значит, и более высокую скорость. Эти два шара столкнутся в самой нижней точке кривой. Когда циклоиду объявили «кривой равных времен» (таутохроной, от греч. tautochrone: tauto — «тот же» и chrone — «время»), ученые пришли от нее в неописуемый восторг.
Траектория спуска шаров за равное время
История с циклоидой достигла своего апогея в конце XVII столетия. В новом научном журнале Acta Eruditorum, выходившем в Лейпциге, была опубликована статья, провозглашавшая следующее:
Я, Иоганн Бернулли, обращаюсь к самым выдающимся математикам в мире. Ничто так не привлекает интерес умных людей, как подлинная сложная задача, вероятное решение которой может принести славу и остаться вечным памятником… Если кто-то предоставит мне решение предложенной задачи, я публично объявлю его достойным всяческих похвал.
Задача, о которой говорил Бернулли и на которую о уже знал ответ, сводилась к поиску траектории наискорейшего спуска. Другими словами, какой формы должна быть горка, не создающая трения, для того чтобы объект прошел путь от одной точки к другой за кратчайшее время? Искомую кривую обозначили термином «брахистохрона» (греч. brachistochrone, от brachistos — «кратчайший» и chronos — «время»). Бернулли утверждал, что эта траектория не является прямой линией и представляет собой хорошо известную кривую. Если вы еще не догадались, вот вам ответ: эта кривая — циклоида. На представленном ниже рисунке показана траектория наискорейшего спуска из точки А в точки В и С. Поскольку циклоида имеет лишь одну форму, масштаб этой кривой необходимо изменить в зависимости от относительного положения начальной и конечной точек. Кривая либо только опускается (как в случае перемещения из точки А в точку В), либо сначала опускается, а затем поднимается (как при перемещении из точки А в точку С). Когда траектория опускается и поднимается, преимущества более крутого и длинного спуска компенсируют эффект замедления на повышающемся участке кривой в конце пути. Если сделать модель перевернутой циклоиды и пустить по ней шар, скажем из точки А в точку В, одновременно запустив шар и по прямой линии (обозначенной на рисунке пунктиром), ведущей из точки А в точку В, эффект будет просто поразительным, даже если вы заранее знаете, какой шар станет победителем в этой гонке. По сравнению с шаром, стремительно спускающимся по циклоиде, шар на наклонной прямой как будто катится по грязной дороге. Начиная с XVIII века для демонстрации брахистохроны в университетах и музеях начали сооружать деревянные циклоиды. С их помощью можно было демонстрировать и таутохрону. Для этого достаточно было разместить по одному шару с каждой стороны перевернутой циклоиды, и, независимо от того, с какой точки начнется движение этих шаров, они столкнутся друг с другом в самой нижней точке кривой.
Траектория наискорейшего спуска
Спустя полгода Бернулли получил всего один правильный ответ на свою задачу, который дал его немецкий друг Готфрид Лейбниц. Поэтому Бернулли опубликовал в журнале Acta Eruditorum еще один призыв к ученым предложить решение поставленной задачи, отметив неспособность сделать это даже со стороны тех, кто «заявляет, будто посредством особых методов… не только постиг самые сокровенные тайны геометрии, но и необъяснимым образом расширил ее границы». Это была колкость в адрес Исаака Ньютона и его метода флюксий — нового, очень мощного математического инструмента, который обеспечивал решение таких задач, как задача о брахистохроне (мы поговорим об этом методе в одной из следующих глав). Бернулли отправил Ньютону экземпляр журнала Acta Eruditorum, чтобы тот непременно прочитал статью и получил сообщение. В то время Ньютону было больше пятидесяти лет; он уже не преподавал в Кембриджском университете, а управлял Королевским монетным двором, расположенным в Лондонском Тауэре. Ньютон прочитал письмо Бернулли по возвращенни с работы домой и, несмотря на усталость, не ложился спать до тех пор, пока в 4 часа утра не нашел решение. «Я не люблю… когда иностранцы поддразнивают меня тем, что связано с математикой», — проворчал он. Ньютон отправил свой вариант решения задачи, не назвавшись. Говорят, что, прочитав письмо Ньютона, Бернулли произнес фразу: «Ex ungue leonem» («Узнаю льва по когтям его»).
Так циклоида, уже ставшая к тому времени предметом жарких споров, оказалась причиной первого столкновения в величайшем противостоянии, разгоревшемся в научных кругах в эпоху Просвещения. С математической точки зрения флюксии Ньютона были эквивалентом исчисления бесконечно малых величин Лейбница. Как мы с вами увидим, между этими двумя учеными возник жесткий конфликт по поводу первенства, на целое столетие настроивший научные круги Англии и остальной части Европы друг против друга. Однако эго этих двух ученых не смогло лишить циклоиду присущего ей шарма. На титульной странице собрания сочинений Бернулли размещен рисунок, на котором пес ласково смотрит на изображение знаменитой кривой, а надпись в верхней части рисунка гласит: Supra invidiam («Выше зависти»).
© The British Library Board, 48.d.13.16, vol. 2, h2 page
Поскольку циклоида — это путь наискорейшего спуска, можно предположить, что именно такой должна быть форма рампы для скейтбординга. Тем не менее, насколько мне известно, существует всего одна такая рампа, построенная французским художником Рафаэлем Заркой в 2011 году в Нью-Йорке, в рамках проекта, объединившего в себе физику, скульптуру и городское пространство. Однако скейтбордистам она не понравилась, так как вызывала непривычные ощущения. «Если бы я был абсолютно круглым шарикоподшипником, брошенным с верхнего края рампы в форме циклоиды, вероятно, я смог бы лучше оценить подъем и спуск, — сказал автор книги о скейтбординге Тед Барроу. — Но, поскольку я скейтбордист, приложивший немало усилий к выработке навыков, которые целиком и полностью сводятся к попыткам сохранить равновесие и НЕ упасть с доски в момент увеличения скорости, весь мой опыт больше связан с корректировкой скорости и выполнением движений в соответствии с причудливыми изгибами стен, а не поисками пути наискорейшего спуска». Барроу прибавил, что рампа для скейтбординга в форме циклоиды вряд ли приживется.
Циклоида относится к семейству кривых, называемых рулеттами, образованных путем перемещения точки, расположенной на движущемся колесе. Рулетты бывают самых разных форм. Траектория точки на колесе, перемещающемся по окружности с таким же радиусом, называется кардиоидой, поскольку она похожа на сердце (рисунок 1). Нефроида (напоминает пару почек (рисунок 2)) — это траектория точки на колесе, перемещающемся по окружности с радиусом в два раза больше радиуса колеса. Фигура в форме контура ягодиц в чашке чая, поставленной возле ярко освещенного окна, образуется в результате отражения горизонтальных лучей света от внутренней стороны круглой чашки (рисунок 3).
Кардиоида
Нефроида
Чашка чая
© Алекс Беллос
Первое устройство — «геометрическое перо», изобретенное итальянцем Джиамбаттистой Суарди в XVIII веке, — создавало кривые как в эстетических, так и в научных целях и рисовало именно рулетты. Оно состояло из штатива с вращающимся рычагом и установленным на нем зубчатым колесом, в котором было закреплено перо. «Пожалуй, нет ни одного инструмента, способного начертить так много кривых, как геометрическое перо», — с восторгом сказал Джордж Адамс-младший, специализирующийся на изготовлениии инструментов при дворе короля Георга II. Рисунки, выполненные с помощью такого устройства, получались причудливыми и магическими. В XIX столетии Петер Губерт Девинь из Вены разработал устройство для рисования рулетт и назвал его спирографом; оно позволяло чертить такие кривые на медной гравировальной доске посредством алмазного резца. Спирограф использовался для создания сложных рисунков, которые наносились на банкноты с целью предотвращения их подделки. В 1965 году на рынке появилась игрушка «спирограф», представлявшая собой пластмассовую пластину с вырезанными в ней кругами и набором зубчатых колес меньшего диаметра с отверстиями внутри. Спирограф до сих пор остается для многих детей элементом обряда посвящения в умники.
Одна из моих любимых математических головоломок сводится к перекатыванию одной монеты вокруг другой[97]. Положите две одинаковые монеты с изображением королевы рядом друг с другом на стол, разместив их короной вверх, как показано на рисунке ниже. Прокрутите левую монету вокруг правой. В какую сторону будет направлена корона, когда монета окажется с правой стороны?
Перекатывание монет
Когда мне задали этот вопрос впервые, я предположил, что монета окажется в перевернутом положении, поскольку она прошла только половину пути вокруг неподвижной монеты. Но я ошибался. Королева делает полный оборот, что на первый взгляд противоречит здравому смыслу. Монета с королевской скоростью перемещается вокруг другой монеты, как будто отчаянно пытаясь сохранить достоинство, снова заняв строго вертикальное положение. Дело в том, что траектория движения монеты формируется благодаря свойству, присущему всем рулеттам: они представляют собой результат движения в двух независимых направлениях. В данном примере монета вращается вокруг себя и вокруг другой монеты. На каждый градус перемещения левой монеты вокруг правой приходится два градуса ее вращения вокруг себя.
Рулетты образуются в случае подвижного колеса. Однако кривые можно получить и посредством вращения колеса вокруг неподвижного центра. Такие кривые проще рулетт, поскольку формируются благодаря движению только в одном направлении — вокруг центра.
Возьмем точку на ободе колеса, вращающегося против часовой стрелки, как показано на рисунке 1 ниже. Если нанести на график высоту этой точки в зависимости от угла поворота, отмеченного на горизонтальной оси, получится кривая под названием синусоида, или синусоидальная волна. Я указал на рисунке положение точки при угле поворота 0, 45, 90, 225 и 270 градусов. Синусоида достигает максимума, когда угол поворота составляет 90 градусов, затем возвращается к горизонтальной оси при 180 градусах, после чего опускается ниже горизонтальной оси, а когда точка совершает полный оборот, возвращается в исходное положение. Если колесо продолжит вращаться, кривая будет повторяться с каждым новым оборотом, создавая симметричные волнообразные колебания до бесконечности.
Наверное, вам интересно знать, почему у названия этой волнистой линии один корень со словом «синус», которым обозначается соотношение между двумя сторонами прямоугольного треугольника, ведь между волнами и треугольниками нет ничего общего. Однако все это обретает смысл, если мы вспомним, что концепция синуса связана, прежде всего, с окружностью: это не что иное, как полухорда, что прекрасно видно на рисунке 2, где в окружности размещен прямоугольный треугольник. Предположим, длина гипотенузы равна 1, тогда синус угла рассчитывается по формуле:
Первым синусоиду нарисовал Жиль де Роберваль в XVII столетии и назвал ее «кривой, сопутствующей циклоиде»[98]. Эта «спутница» займет впоследствии исключительное место в сердцах (и мыслях) ученых и математиков.
Изменение высоты вращающейся точки по отношению к углу поворота порождает синусоидальную волну
Синусоида — это кривая, которую называют периодической волной, поскольку она повторяется вдоль горизонтальной оси снова и снова. Синусоида — простой тип периодических волн, так как образующая ее окружность является простейшей геометрической фигурой. Однако, несмотря на то что синусоида представляет собой базовую концепцию, она моделирует множество физических явлений. Мир — настоящий карнавал синусоид. Изменяющееся во времени вертикальное положение груза, перемещающегося вместе с пружиной вверх и вниз, — это синусоида, как показано на левом рисунке ниже[99]. Груз движется с максимальной скоростью в середине периода колебания и замедляет движение в момент достижения верхней и нижней точек, что создает легко узнаваемую кривую (на рисунке отображено небольшое количество колебаний, ввиду того что горизонтальная ось здесь ограничена). Изменяющееся во времени горизонтальное положение маятника, колеблющегося из стороны в сторону с небольшой амплитудой, тоже образует синусоиду. Представьте себе, что шар маятника наполнен мелким песком и он просачивается через отверстие в нижней точке шара, как показано на рисунке снизу. Маятник, качающийся с севера на юг, оставит след в виде синусоидальной волны на ленте конвейера, движущейся с востока на запад. Говорят, что такие объекты, как пружина и маятник, колебания которых изменяются с течением времени по синусоидальному закону, совершают простое гармоническое колебание.
Подвешенный на пружине груз и колеблющийся маятник совершают простое гармоническое колебание
Мы уже видели, какие красивые рисунки образуют рулетты. То же самое можно сказать и о синусоидах. В 1840-х годах шотландский математик Хью Блэкберн экспериментировал с маятником, шар которого был наполнен песком. Он решил подвесить этот шар на двух шнурах, свисающих в форме буквы Y и прикрепленных друг к другу кольцом в точке r, как показано на рисунке ниже. Удерживая кольцо в неподвижном состоянии, Блэкберн качнул маятник слева направо. Затем он отпустил кольцо и толкнул его вперед, тем самым создав колебание вперед-назад. Таким образом, шар маятника двигался под воздействием двух перпендикулярных колебаний, что давало весьма впечатляющий результат. Эти два конкурирующих синусоидальных колебания отталкивали и притягивали друг друга, совершая своего рода математическое па-де-де, вычерчивающее под маятником удивительно замысловатый рисунок из песка. Через какое-то время предприимчивые производители инструментов начали выпускать устройства под названием «гармонографы», в которых два маятника совершают колебания пишущим пером в двух направлениях одновременно. Пользователь гармонографа мог скорректировать длину маятников, установить амплитуду их колебаний, а затем отпустить, разместив перо над листом бумаги. Перо начинало вращаться и делать петли, воспроизводя прекрасные геометрические формы, которые, несмотря на механическую природу, почему-то казались живыми.
Y-образный маятник Блэкберна. Рисунок взят из научно-популярного издания 1879 года
Из книги: Alfred Marshall Mayer, Soundby, Macmillan and Co., 1879
Гармонограф викторианской эпохи представлял собой нечто среднее между ящиком письменного стола и старинными часами[100]. Как результат, так и сам процесс движения пера, создававшего все эти изображения, оказывал гипнотическое воздействие. Затухание колебаний, обусловленное потерей энергии из-за трения, образовывало кривые, которые закручивались по спирали внутрь по мере их приближения к неподвижной точке равновесия. Некоторые более крупные устройства могли поддерживать колебания на протяжении часа и даже больше, прежде чем маятники останавливались.
Гармонографы стали настолько популярны, что обусловили появление и других устройств, работающих по тому же принципу: симпалмограф, пендулограф, двойной маятник и маятник, совершающий гармонические колебания в четырех направлениях. В начале ХХ века был создан генератор сложных гармонических колебаний Крейтона и фоторатиограф, чертивший кривые на фотобумаге с помощью движущегося светового пучка. В 1950-х годах художник Джон Уитни собрал гармонограф из военного утиля, оставшегося после Второй мировой войны. Он купил блок управления зенитной артиллерийской батареей М5 (большой металлический ящик со множеством ручек и рычагов, представлявший собой первый аналоговый компьютер, который использовался для расчета направления выстрелов по вражеским самолетам) и переделал его так, чтобы вращающиеся детали могли передвигать пишущий элемент по закону простого гармонического колебания в двух направлениях. Уитни мог корректировать скорость и размах колебаний синусоиды в электронном режиме, что позволяло ему в гораздо большей степени контролировать процесс и устраняло последствия затухания колебаний. С помощью этого устройства Уитни создавал удивительные изображения, которые стали одними из самых известных за всю историю математического искусства, поскольку были использованы в заставке и на постерах к фильму Альфреда Хичкока Vertigo («Головокружение»), снятому в 1958 году. Закручивающиеся в водоворот, вызывающие головокружение концентрические петли являлись прекрасной визуальной метафорой для истерзанного внутреннего ира главного героя киноленты. Однако Уитни знаменит не только этими изображениями, а и тем, что его электронный гармонограф был также первым устройством для создания компьютерной анимации.
Красивые вибрации: фигуры, созданные гармонографами
© Карл Симс, www.karlsims.com
Примерно в тот период, когда гармонографы вошли в моду в викторианских салонах, один парижский физик понял, что можно создавать аналогичные фигуры с помощью двух камертонов и пучка света[101]. Демонстрации, устраиваемые Жюлем Антуаном Лиссажу, относятся к числу самых красивых экспериментов XIX столетия. Когда камертон издает звук, его металлические зубцы колеблются согласно закону простого гармонического движения. Лиссажу прикрепил к одному камертону небольшое зеркальце и направил на него луч света таким образом, чтобы он отражался на экране в виде светового пятна. Когда камертон начинал вибрировать, пятно вытягивалось в горизонтальную линию. Пятно света очень быстро перемещалось то в одну, то в другую сторону, однако наблюдатели воспринимали это движение как линию, поскольку изображение каждого пятна сохраняется в нашей зрительной системе на долю секунды дольше, чем находится там на самом деле. Затем Лиссажу добавил еще один камертон, к которому тоже было прикреплено зеркало. Второй камертон размещался перпендикулярно первому с тем, чтобы луч света отражался зеркалом первого камертона, колеблющегося в одном направлении, на зеркало второго камертона, колеблющегося в перпендикулярном направлении, после чего попадал на экран. Другими словами, камертоны вели себя так же, как и маятники в гармонографе, перемещая луч света под воздействием двух конкурирующих гармонических колебаний. Однако вместо колебаний один раз в секунду или что-то около этого камертоны колебались с частотой сотни раз в секунду. Публика видела на экране поразительные изображения, известные в наше время как фигуры Лиссажу.
Разные системы расположения камертонов образуют разные кривые. Если два одинаковых камертона издают звук одной и той же высоты, то их синусоиды идентичны, а полученная кривая представляет собой одну из кривых в первом ряду на рисунке ниже: эллипс, прямую линию или окружность. Форма кривой зависит от того, в какой момент начинается каждое колебание по отношению к другому колебанию. Лиссажу корректировал данный процесс, меняя расстояние между камертонами. Если частота колебания одного камертона в два раза больше частоты колебаний другого, полученная кривая относится ко второму ряду изображений — это может быть парабола или кривая в форме восьмерки. В оставшихся рядах представленного ниже рисунка показаны фигуры Лиссажу для других целых значений соотношения между частотами синусоид. Если соотношение частот нельзя описать двумя целыми числами, луч света не вернется в исходную позицию, и полученное изображение будет нечетким.
Фигуры Лиссажу — иллюстрация из книги, опубликованной в 1875 году. В левом столбце изображений для каждого ряда указано соотношение частот синусоид
Из книги: John Tyndall, Sound (Third Edition), Longmans, Green and Co., 1875
От частоты колебания камертона зависит, какую ноту он издает. Например, при частоте 262 колебания в секунду он издает ноту «до» третьей октавы. Таким образом, благодаря экспериментам Лиссажу у музыкантов появился новый, более эффективный способ калибровки камертонов: вместо того чтобы определять их настройку на слух — использовать зрение. Квалифицированные специалисты применяют пучки света в своих мастерских. Если у двух камертонов отличается высота звука, значит, частота колебаний у них тоже разная, поэтому двойное отражение луча света дает размытую картинку. Специалисты выбирают один камертон в качестве эталона, а второй обрабатывают до тех пор, пока рисунок на стене не превратится в эллипс — это подтверждает, что оба камертона звучат на одной ноте.
Фигуры Лиссажу — результат сложения двух взаимно перпендикулярных гармонических колебаний. Можно ли суммировать синусоиды, колеблющиеся вдоль одной и той же оси?
Разумеется, можно! И это приводит нас к одной из самых красивых и полезных теорем в математике. Для того чтобы вам было легче воспринимать дальнейший материал, позвольте мне объяснить три концепции, неразрывно связанные с изучением волн: частота, амплитуда и фаза. Частота — это количество колебаний, которые совершает волна за определенный промежуток времени; амплитуда — расстояние по вертикали между вершиной и впадиной волны; фаза — показатель позиции волны по горизонтали.
Вооружившись данными концепциями, мы можем дать математическое описание синусоид, которые представлены на рисунке ниже:
1) — это уже знакомая нам синусоида, описываемая уравнением y = sin x;
2) — если увеличить частоту в два раза (а это значит, что волна повторяется дважды за тот же период, за который исходная волна образуется только один раз), уравнение кривой будет выглядеть так: y = sin 2x;
3) — если удвоить амплитуду (то есть высота волны увеличивается в два раза), уравнение становится следующим: y = 2sin x;
4) — если изменить фазу, сместив волну влево на четверть ее длины, получим косинусоиду, которой соответствует уравнение y = cos x.
Все волны, образованные в результате изменения частоты, амплитуды и фазы синусоиды, тоже являются синусоидами. Частоту, амплитуду и фазу легче себе представить, вспомнив о том, что синусоиду создает перемещение точки по окружности: частота зависит от скорости перемещения точки, амплитуда — от радиуса окружности, а фаза — от исходной позиции точки;
5) — здесь я сложил синусоиду с косинусоидой. Складывая две волны, мы просто суммируем значения по вертикали в каждой точке горизонтальной оси. При этом происходит настоящее волшебство: результат сложения синусоидальной и косинусоидальной волны — это тоже синусоида, хотя и с другой фазой и амплитудой, равной корню из двух. В действительности сложение двух синусоид с одинаковой частотой всегда в результате дает синусоиду, независимо от значений их амплитуды и фазы.
Иными словами, если синусоиду прибавить к любому количеству синусоид с такой же частотой, но другими амплитудой и фазой, полученная кривая останется синусоидой — как фантастический монстр, всегда возвращающийся в свое первоначальное обличье. В ближайшее время мы вернемся к математике точек, перемещающихся по окружности, а пока давайте сделаем небольшое отступление и поговорим о перевороте иного типа — французской революции.
В 1798 году тридцатилетний профессор Политехнической школы в Париже Жозеф Фурье получил от министра внутренних дел срочное сообщение, в котором говорилось, что страна нуждается в его услугах и он «должен быть готов отправиться в путь по первому приказу»[102]. Через два месяца Фурье отплыл из Тулона в составе военной флотилии из 25 000 моряков под командованием генерала Наполеона Бонапарта, необъявленной целью которого было завоевание Египта.
Фурье был одним из 167 выдающихся ученых, входивших в состав египетской экспедиции. Их присутствие отображало идеологию научного прогресса, исповедуемую Великой французской революцией. Кроме того, Наполеон, будучи сам страстным поклонником математики, любил окружать себя людьми, разделявшими его взгляды. Говорят, что, когда французские войска добрались до Великой пирамиды в Гизе, Наполеон сел в тени у ее подножия, быстро что-то записал в своем блокноте и заявил, что в пирамиде достаточно камня для того, чтобы построить стену высотой три метра и толщиной один метр, которая окружила бы всю Францию[103]. Главный математик Наполеона Гаспар Монж подтвердил правильность сделанных генералом расчетов[104].
В Египте Фурье выполнял много разных административных функций, в том числе постоянного секретаря Каирского института — центра культурного наследия, созданного по аналогии с Французским институтом в Париже. В институте было принято решение упорядочить информацию обо всех научных и археологических открытиях; впоследствии собранные материалы вышли в виде 37-томного издания Description de L’gypte («Описание Египта»), предисловие к которому написал Фурье. По сути, Жозеф Фурье был отцом египтологии.
По возвращении Фурье из Египта Наполеон назначил его префектом расположенного в Альпах департамента Изер со столицей Гренобль. Фурье всегда отличался слабым здоровьем и очень сильной чувствительностью к холоду, поэтому никогда не выходил из дома без пальто даже летом и часто приказывал прислуге носить за ним еще одно пальто про запас. Фурье постоянно поддерживал в комнатах очень высокую температуру. В Гренобле его научные исследования тоже были связаны с теплом. В 1807 году он опубликовал труд под названием On the Propagation of Heat in Solid Bodies («О распространении тепла в твердых телах»), в котором рассказал об одном удивительном открытии, касающемся синусоид.
Знаменитая теорема Фурье гласит: любую периодическую волну можно построить посредством сложения синусоид. На это несколько неожиданное утверждение современники ученого отреагировали с большим недоверием. Многие волны совершенно не похожи на синусоиды — например, прямоугольная волна (см. рисунок ниже), которая напоминает зубцы ограды замка и состоит из прямых линий, тогда как синусоида представляет собой непрерывную кривую. И все же Фурье оказался прав: прямоугольную волну можно построить из одних только синусоид.
Вот как это сделать. На рисунке ниже размещены три синусоиды: элементарная синусоида, волна поменьше с частотой в три раза больше и третью амплитуды и еще более мелкая волна с частотой в пять раз больше и амплитудой в пять раз меньше. Эти три волны можно описать следующими уравнениями: sin x, и .
Я начал суммировать волны, представленные на рисунке. Сначала элементарную синусоиду, sin x. Сумма sin x + являет собой волну, которая похожа на ряд коренных зубов. Сумма sin x + + — это волна, напоминающая нить лампы накаливания. Прибавляя к данной последовательности следующие члены ряда, мы будем все больше приближаться к прямоугольной волне:
В пределе, прибавив бесконечное множество членов ряда, мы получим прямоугольную кривую. Просто поразительно, что кривую столь строгой формы можно построить с использованием исключительно волнообразных колебаний. Любую периодическую волну, состоящую из зубчатых линий, сглаженных кривых или даже их сочетания, можно создать с помощью синусоид.
Сумма синусоид, образующих эту волну, называется рядом Фурье[105] Это чрезвычайно полезная концепция, поскольку она позволяет интерпретировать непрерывную волну в категориях дискретных сигналов. Например, члены ряда для прямоугольной волны могут быть представлены в виде гистограммы, как показано на рисунке ниже.
На горизонтальной оси отложены частоты составляющих синусоид, а на вертикальной — их амплитуды. Каждый столбик представляет синусоиду, причем самый левый — это синусоида, имеющая основную («фундаментальную») частоту. График такого типа обозначается термином «частотный спектр волны», или «преобразование Фурье».
Теорема Фурье стала одним из самых важных математических открытий, сделанных в XIX веке, поскольку позволила моделировать явления из многих областей (от оптики до квантовой механики и от сейсмологии до электротехники) в виде периодических волн. В большинстве случаев лучший способ изучения подобных волн сводится к их разбиению на простые синусоиды. В частности, такая область естествознания, как акустика, целиком и полностью построена на практическом применении открытий Фурье.
Звук — это вибрация молекул воздуха. Они вибрируют в направлении распространения звука, как показано на рисунке ниже на примере кларнета, поочередно образующего области сжатия и разрежения. Изменение давления воздуха в любой точке с течением времени представляет собой периодическую волну.
Как видите, звуковая волна, создаваемая кларнетом, имеет сложную зубчатую форму. Однако, согласно теореме Фурье, ее можно разложить на сумму синусоид, частота которых кратна основной частоте первого члена ряда. Другими словами, волну можно представить в виде спектра частот с разной амплитудой. На рисунке частотный спектр кларнета отображен в виде гистограммы.
Звуковая волна и частотный спектр кларнета
Помните: зубчатая волна и гистограмма представляют один и тот же звук, просто эта информация закодирована разными способами. На графике волны на горизонтальной оси отложено время, тогда как на гистограмме — частота. Инженеры-звукотехники говорят, что звуковая волна находится во временной области, а результат ее преобразования — в частотной.
Частотная область предоставляет нам всю информацию, которая необходима для воссоздания звука кларнета с помощью камертона. Каждый столбик гистограммы обозначает синусоиду, колеблющуюся с определенной частотой. Вспомните об экспериментах Лиссажу с камертонами, о которых шла речь выше. Создаваемая камертоном звуковая волна — это синусоида. Следовательно, для воспроизведения звука кларнета нужно сделать так, чтобы специально подобранные камертоны издавали звук, частота и амплитуда которого описываются соответствующим элементом гистограммы. Точно так же частотный спектр скрипки представляет собой подробную инструкцию по использованию камертонов для воссоздания звука скрипки. Различие между тембром ноты «до» третьей октавы кларнета и скрипки обеспечивается колебанием одной группы камертонов с разными относительными амплитудами. Таким образом, исходя из теоремы Фурье, теоретически возможно сыграть все сочинения Бетховена с помощью камертонов так, что их звучание будет неотличимо от исполнения тех же произведений симфоническим оркестром.
Когда мимо Dolby Laboratories в Сан-Франциско проезжает пожарная машина, все сотрудники компании (особенно «золотые уши», то есть те, кто обладает исключительным слухом) закрывают руками уши, пытаясь защитить свой слух от вредного шума. Компания Dolby завоевала хорошую репутацию благодаря выпуску систем шумопонижения для киноиндустрии, а сейчас разрабатывет программы для обеспечения высокого качества звучания бытовых электронных устройств, целиком и полностью основанные на синусоидах.
Возможность перевести звуковую волну из временной в частотную область дает следующее преимущество: многие задачи, которые трудно выполнить в одной области, гораздо проще решить в другой. Любой звук, воспроизводимый цифровыми устройствами (телевизором, телефоном или компьютером), хранится в виде данных в частотной, а не временной области. «Звуковая волна похожа на макаронину, — сказал мне старший директор отдела по разработке звуковых технологий Бретт Крокетт. — Ее невозможно ухватить». Данные о частотах гораздо легче сохранить, поскольку они представляют собой совокупность дискретных значений. Помогает также и то, что наш слух воспринимает не все частоты. «[Слух] не нуждается в полной картине», — добавил Крокетт. Программное обеспечение Dolby превращает звуковые волны в синусоиды, а затем отбрасывает несущественные синусоиды, чтобы записать максимально качественный звук и сохранить его в виде как можно меньшего количества информации. Когда она воспроизводится в виде звука, диапазон оставшихся частот конвертируется в звуковую волну во временной области.
Хоть все это звучи достаточно просто, на практике фильтрация синусоид из частотного спектра — чрезвычайно сложная задача. Во-первых, в основе этого процесса лежит так называемое быстрое преобразование Фурье — компьютерный алгоритм, конвертирующий волны в их частоты в режиме реального времени. Во-вторых, разные инструменты, музыкальные стили и голоса требуют разных решений. Труднее всего правильно воспроизвести звукоряд, содержащий гармоники, поскольку его частотный спектр напоминает частокол: амплитуды разных частот имеют одинаковую высоту, что приводит к удалению даже тех частот, которые можно услышать. В компании Dolby используют самые современные технологии, для того чтобы точно воспроизвести невероятно прекрасную песню Moon River («Лунная река»), написанную Генри Манчини в 1961 году. «Золотые уши» Бретта Крокетта оценивают новую технологию Dolby по тому, насколько правдиво она воссоздает гармонический рифф, записанный более чем полстолетия назад.
Жозеф Фурье был первым человеком, преобразовавшим периодическую волну в диапазон частот. Гораздо позже биологи выяснили, как именно работает ухо. Отдел внутреннего уха, отвечающий за восприятие и распознавание звуков, называется улиткой и представляет собой свернутый спиралью, заполненный жидкостью канал, мембрана которого покрыта волосковыми клетками. Волоски вибрируют в соответствии с частотой входящей звуковой волны, причем волоски, вибрирующие на самых низких частотах, находятся у одного конца улитки, а на самых высоких частотах — у другого конца. Если развернуть спираль улитки в прямую линию, она выглядела бы как горизонтальная ось результата преобразования Фурье. Природа выделяет частоты звуковых волн с тех самых пор, как у живых существ появились уши, чтобы слышать.
В этой главе шла речь о математических аспектах хождения по замкнутому кругу. Но давайте разорвем его и посмотрим, что происходит с вещами, которых становится все больше, больше и больше?
6. Все о числе е
Автор изучает пропорциональный рост. Он беседует с ученым из Колорадо, ставшим звездой YouTube, и рассказывает биографию числа, лежащего в основе капитализма, каталонской архитектуры и поисков спутника жизни
В Боулдере я навестил автора лекции, с которой он выступил, пожалуй, наибольшее количество раз за всю историю науки[106]. Альберт Бартлетт, почетный профессор физики Колорадского университета, впервые прочел лекцию Arithmetic, Population and Energy («Арифметика, население и энергия») в 1969 году[107]. К тому времени, когда я с ним встретился, он выступил с ней уже 1712 раз и, несмотря на то что ему почти 90 лет, продолжал читать ее примерно по 20 раз в год. Бартлетт был высоким мужчиной крепкого телосложения с величественной осанкой, носившим галстук «боло» в стиле Дикого Запада с пряжкой, украшенной звездами и планетами. В своей знаменитой лекции Бартлетт не предвещающим ничего хорошего тоном заявляет о том, что величайший недостаток рода человеческого состоит в его неспособности понять суть экспоненциального роста. За последние годы это простое, но мощное послание сделало Бартлетта звездой интернета: видео его лекции под названием The Most IMPORTANT Video You’ll Ever See («Самое важное видео, которое вы когда-либо увидите»), выложенное на YouTube, получило более 5 миллионов просмотров.
Экспоненциальный (или пропорциональный) рост имеет место в случае, если какая-то величина постоянно увеличивается пропорционально ее значению, например путем удвоения:
1, 2, 4, 8, 16, 32, 64…
Или посредством умножения на три:
1, 3, 9, 27, 81, 243, 729…
Или даже посредством увеличения всего лишь на один процент:
1; 1,01; 1,0201; 1,0303; 1,0406; 1,05101; 1,06152…
Все эти числа можно представить и в таком виде:
20, 21, 22, 23, 24, 25, 26…
30, 31, 32, 33, 34, 35, 36…
1,010; 1,011; 1,012; 1,013; 1,014; 1,015; 1,016…
Маленькое число, расположенное вверху справа от числа нормального размера, называется показателем степени (экспонентой) и указывает, сколько раз необходимо умножить нормальное число на себя. Последовательности, в которых величина растет со скоростью, пропорциональной ее значению, демонстрируют экспоненциальный рост, так как у каждого очередного члена ряда показатель степени увеличивается на единицу.
Когда величина растет по экспоненциальному закону, то чем больше она становится, тем быстрее увеличивается, поэтому всего после нескольких шагов она может достичь ошеломляющего значения. Давайте посмотрим, что произойдет с листом бумаги, если складывать его вдвое. В результате каждого очередного сгибания лист становится толще в два раза. Поскольку толщина листа бумаги составляет примерно 0,1 миллиметра, вследствие каждого сгибания она будет увеличиваться так:
0,1; 0,2; 0,4; 0,8; 1,6; 3,2; 6,4…
Это та же последовательность, что и размещенная выше, каждый член которой в два раза больше предыдущего, но со смещением десятичного знака на одну позицию. Поскольку стопка бумаги все время утолщается, каждое очередное сгибание требует больших усилий, и к седьмому разу согнуть бумагу уже практически невозможно. В этот момент толщина бумаги в 128 раз больше одного листа, что эквивалентно толщине 256-страничной книги.
Но продолжим процесс, чтобы увидеть (по крайней мере, теоретически), насколько увеличится толщина стопки бумаги в сложенном состоянии. Сложив бумагу еще шесть раз, мы получим стопку высотой в один метр. Еще шесть сгибаний дадут нам стопку высотой с Триумфальную арку, а после очередных шести она поднимется в небо на 3 километра. Какой бы обычной ни казалась процедура удвоения, ее многократное применение дает невероятный результат. После 42 сгибаний наша бумага оставит позади Луну, а всего после 92 достигнет края обозримой Вселенной.
Но Альберта Бартлетта интересуют не столько другие планеты, сколько планета, на которой мы живем. В своей лекции он объяснил суть экспоненциального роста с помощью невероятно убедительной аналогии. Представьте себе бутылку с бактериями, численность которых увеличивается в два раза каждую минуту. В 11 часов утра в бутылке находится всего одна бактерия, а через час, к полудню, бутылка будет полностью заполнена бактериями. Анализ данного процесса в обратном порядке показывает, что в 11:59 бутылка заполнена бактериями наполовину, в 11:58 — на четверть и т. д. «Если бы вы были обычной бактерией, живущей в этой бутылке, — спрашивает Бартлетт, — в какой момент времени вы поняли бы, что свободного пространства вот-вот не останется?» В 11:55 бутылка кажется почти пустой: она заполнена всего на , или около 3 процентов, что оставляет 97 процентов свободного места для роста популяции. Осознают ли бактерии, что они всего в пяти минутах от стопроцентной заполненности бутылки? Бутылка Бартлетта — это предостережение жителям Земли. Если население планеты будет увеличиваться по экспоненте, свободного места на ней не останется гораздо быстрее, чем кажется.
Возьмем в качестве примера историю города Боулдер. За период с 1950 года (когда туда переехал Бартлетт) по 1970 год численность его населения в среднем ежегодно увеличивалась на шесть процентов. Для того чтобы определить численность населения к концу первого года, необходимо первоначальное значение умножить на 1,06, к концу второго года — на (1,06)2, к концу третьего года — на (1,06)3 и т. д., а значит, здесь мы имеем экспоненциальную последовательность.
На первый взгляд кажется, что сами по себе шесть процентов — не так много, но за два десятилетия это привело к увеличению численности населения города более чем в три раза, с 20 000 до 67 000 человек. «Это ужасающий рост, — сказал Бартлетт, — и с тех пор мы делаем все возможное, чтобы замедлить его» (в настоящее время население города составляет почти 100 000 жителей). Страстное желание Бартлетта объяснить людям суть экспоненциального роста обусловлено его решимостью сохранить качество жизни в родном городе, расположенном в горах.
Важно помнить, что если процентный рост за единицу времени представляет собой постоянную величину, то он подчиняется экспоненциальному закону. Следовательно, если даже рассматриваемая величина начинает расти достаточно медленно, этот рост резко ускорится, и в ближайшее время значение величины станет настолько большим, что поначалу это покажется противоречащим здравому смыслу. Практически все экономические, финансовые и политические показатели (такие как объем продаж, прибыль, курс акций, ВВП и численность населения) рассчитываются в виде относительного изменения за единицу времени, а значит, экспоненциальный рост очень важен для понимания того, как устроен наш мир.
Так было и полтысячелетия назад, когда озабоченность проблемой экспоненциального роста привела к использованию арифметического эмпирического «правила 72», впервые упомянутого в трактате Луки Пачоли Summa de arithmetica, geometria, proportioni et proportionalit («Сумма арифметики, геометрии, дробей, пропорций и пропорциональности»), который стал математической библией эпохи Возрождения. Если рост той или иной величины подчиняется экспоненциальному закону, значит, существует определенный промежуток времени, за который ее значение удвоится (этот период обозначается термином «период удвоения»). «Правило 72» гласит, что величина, растущая на Х процентов каждый период времени, увеличится в два раза примерно за периода. (В Приложении 5 я объясню, как работает это правило.) Следовательно, если численность населения растет на 1 процент в год, она удвоится за , или 72 года. Если город растет на 2 процента в год, количество его жителей увеличится в два раза за , или 36 лет; если на 6 процентов (как в случае Боулдера), на это уйдет , или 12 лет.
Период удвоения — это полезная концепция, поскольку она позволяет легко заглянуть в будущее и прошлое. Если численность населения Боулдера увеличится в два раза через 12 лет, значит, она вырастет в четыре раза через 24 года, а через 36 лет будет уже в восемь раз больше. (Разумеется, при условии сохранения темпов роста на одном уровне.) Точно так же можно рассчитать и темпы роста численности населения, имевшие место ранее: при шести процентах роста этот показатель составил бы половину текущего значения 12 лет назад, четверть текущего значения — 24 года назад и восьмую часть — 36 лет назад.
Преобразование процентного изменения в период удвоения позволяет лучше понять, насколько быстро увеличивается значение того или иного показателя. Это делает правило 72 просто незаменимым для понимания сути экспоненциального роста. Я помню, как отец объяснял мне это правило, когда я был совсем юным, а ему рассказывал о нем его отец, который, будучи торговцем одеждой в лондонском Ист-Энде в те времена, когда еще не было калькулятора, полагался на это правило в своей трудовой жизни. Согласно ему, если вы возьмете кредит под 10 процентов годовых, ваш долг увеличится в два раза примерно через семь лет и в четыре раза — через четырнадцать.
Интерес Альберта Бартлетта к экспоненциальным процессам вскоре вышел за рамки проблем перенаселенности, загрязнения и транспортных заторов в Боулдере, поскольку те аргументы, которые он приводил в муниципалитете, были в равной степени применимы и ко всему миру. Земля не выдержит количества населения, численность которого растет по экспоненте каждый год, — во всяком случае, ее ресурсов не хватит надолго. Взгляды Бартлетта сделали его современным Томасом Мальтусом. Томас Мальтуc — английский священник, еще две сотни лет назад утверждавший, что увеличение численности населения повлечет за собой голод и болезни, поскольку экспоненциальный рост количества людей не может быть уравновешен соответствующим ростом производства продуктов питания. «Мальтус прав! — убежден Бартлетт. — Он ничего не знал о нефти и механизации, но его идеи абсолютно верны. Он понимал, чем экспоненциальный рост отличается от линейного роста. Население способно увеличиваться быстрее, чем объем ресурсов, необходимых для выживания». А еще он добавил следующее: «Из каких бы предположений вы ни исходили, численность населения достигнет катастрофической отметки уже в середине текущего столетия, через 40 лет от нынешнего момента».
Бартлетт относится к числу лекторов, способных завладеть вниманием аудитории. Он мастерски превращает то головокружение, которое вы испытываете при попытках понять суть экспоненциального роста, в страх неотвратимого апокалипсического будущего. Выступления Бартлетта весьма занимательны еще и потому, что он использует различные инструменты из области физики (такие как выделение сущности проблемы, локализация универсального закона) в дискуссиях, в которых доминируют, как правило, экономисты и социологи. Больше всего Бартлетта возмущают экономисты; их он обвиняет в коллективном отрицании проблемы. «Они создали общество, в котором рост численности населения необходим для обеспечения роста занятости. Однако такой рост не оправдывает себя и приведет в итоге к катастрофе». По мнению Бартлетта, единственно приемлемое для общества решение — избавиться от пагубного пристрастия к экспоненциальным процессам.
Оппоненты Бартлетта утверждают, что наука найдет способ и дальше увеличивать производство продуктов питания и энергии, как это удавалось до сих пор, а также что уровень рождаемости и без того падает во всем мире. Но Бартлетт считает, что они не осознают главного. «Чаще всего экономисты заявляют, что я не понимаю сути проблемы и что все гораздо сложнее тех простых вещей, о которых я говорю. Но я отвечаю на это так: если вы не понимаете простых аспектов, вы не сможете понять и более сложных!» А затем он, ухмыльнувшись, сказал: «Но меня им не переубедить. Рост численности населения или рост потребления ресурсов выдержать невозможно, точка. Конец дискуссий. Это неоспоримый факт, если только вы не намерены оспаривать законы математики».
Бартлетт называет нашу неспособность понять суть экспоненциального роста самым большим недостатком человечества. Но почему нам так трудно это понять? В 1980 году психолог Гидеон Керен из Института восприятия в Голландии провел исследование, в ходе которого попытался выяснить, есть ли какие-либо культурные различия в ошибочных представлениях об экспоненциальном росте[108]. Он предложил группе канадцев составить прогноз стоимости стейка, растущей на 13 процентов в год. Участникам эксперимента сообщили данные о цене в 1977, 1978, 1979 и 1980 годах, когда она составляла 3 доллара, и попросили определить, какой она будет через 13 лет, в 1993 году. Средняя оценка составила 7,7 доллара, примерно половину от правильного ответа — 14,7 доллара, что было существенно меньше реального значения. Затем Керен поставил тот же вопрос группе израильтян, назвав цену в местной валюте — израильских фунтах: в 1980 году один стейк стоил 25 израильских фунтов. Средняя оценка цены стейка в 1993 году составила в этом случае 106,4 фунта, что снова было ниже правильного ответа в размере 122,4 фунта, но все же гораздо ближе к нему. По мнению Керена, израильтяне лучше справились с поставленной задачей, потому что их страна переживала период, когда годовой темп инфляции равнялся почти 100 процентам по сравнению с 10 процентами в Канаде. Исследователь пришел к выводу, что, столкнувшись с более высоким экспоненциальным ростом, израильтяне стали гораздо чувствительнее к нему, хотя их оценки тоже оказались занижены.
В 1973 году Дэниел Канеман и Амос Тверски продемонстрировали, что люди называют намного меньшие числа, оценивая результат умножения 1 2 3 4 5 6 7 8, чем результат умножения 8 7 6 5 4 3 2 1, хотя на самом деле эти произведения идентичны. Это позволило сделать следующий вывод: наши сждения зависят от порядка прочтения чисел[109]. (Медианный ответ по возрастающей последовательности был 512, а убывающей — 2250. На самом деле обе оценки существенно меньше правильного ответа — 40 320.) Результаты исследований Канемана и Тверски позволяют понять, почему мы всегда будем недооценивать экспоненциальный рост: первые члены любой последовательности как будто привязывают нас к себе, «ставят на якорь», причем этот эффект наиболее заметен в случае возрастающей последовательности.