Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной Сасскинд Леонард
Электрические силы не являются ни самыми сильными, ни самыми слабыми из негравитационных сил. Большинство обычных частиц взаимодействуют посредством так называемого слабого взаимодействия. Хорошим примером являются нейтрино, участвующие только в слабых (не считая гравитационных) взаимодействиях. Слабые силы на самом деле не так уж и слабы, но они действуют только на очень малых расстояниях. Два нейтрино должны оказаться невероятно близко друг от друга, чтобы провзаимодействовать, – примерно на расстоянии одной тысячной диаметра протона. Если они находятся на таком расстоянии, то величина слабого взаимодействия между двумя нейтрино будет примерно такой же, как и величина электромагнитного взаимодействия между двумя электронами, но в обычных условиях сила слабого взаимодействия составляет лишь небольшую часть от силы электромагнитного. Слабые силы настолько малы, что рождаемые в недрах Солнца нейтрино легко проходят сквозь всю толщу Солнца и сквозь Землю без сколько-нибудь заметного возмущения. На самом деле они могут пройти через слой свинца толщиной в один световой год.
Наконец, мы подошли к самому сильному из всех взаимодействий, которые удерживают вместе частицы, составляющие атомное ядро. Ядро состоит из электрически нейтральных нейтронов и положительно заряженных протонов. В ядре нет никаких отрицательных зарядов. Почему же оно не взрывается? Потому что протоны и нейтроны притягиваются друг у другу с силой, примерно в 50 раз превышающей их электростатическое отталкивание. Кварки, составляющие отдельные протоны, притягиваются друг к другу с ещё большей силой. Почему же протоны и нейтроны наших тел не притягиваются с такой же огромной силой к протонам и нейтронам Земли? Потому что ядерные силы, так же как и слабые, являются короткодействующими. Они способны преодолеть электрическое отталкивание протонов, только когда протоны находятся близко друг от друга. Стоит частицам удалиться одна от другой более чем на пару диаметров протона, и сильное взаимодействие становится незначительным. В основе сильного взаимодействия лежат силы, действующие между кварками – элементарными частицами, из которых состоят адроны.
Я часто испытываю дискомфорт, своего рода смущение, когда мне приходится рассказывать о физике элементарных частиц «мирянам». Со стороны она выглядит мусорной свалкой, разнородной коллекцией фундаментальных частиц, массы которых не подчиняются никаким закономерностям; и, управляя всем, торчит четвёрка сил некстати, в причинах коих сил ни смысла нет, ни стати. Является ли Вселенная «элегантной», как утверждает Брайан Грин? Насколько я могу судить, нет. Во всяком случае, глядя на Законы Физики элементарных частиц. Но в контексте бесконечного разнообразия Мегаверсума существует некоторая закономерность: все силы и большинство элементарных частиц являются абсолютно необходимыми. Стоит хотя бы немного изменить любой из законов или любое из свойств любой частицы, и жизнь в том виде, в каком мы её знаем, станет невозможной.
Происхождение теории струн
Теоретическая физика высоких энергий в 1960-х годах оперировала весьма необычной идеологией. В чём-то эта идеология созвучна идеям физиолога Б. Ф. Скиннера, гуру бихевиоризма, утверждавшего, что только внешнее поведение человека может служить объективным материалом для изучения человеческого мышления. Согласно Скиннеру, физиолог не должен иметь дела с внутренним психическим состоянием человека. Он зашёл настолько далеко, что утверждал, будто такой вещи, как внутренний психологический мир, вообще не существует. Задача физиолога состоит в наблюдении, измерении и фиксации внешнего поведения субъекта без каких бы то ни было попыток судить о его внутренних чувствах, мыслях или эмоциях. Для бихевиориста человек представляет собой чёрный ящик, преобразующий сигналы от органов чувств на входе в поведение на выходе.
Физический бихевиоризм называется теорией S-матрицы. В начале 1960-х, когда я ещё был студентом, многие продвинутые теоретики в Беркли считали, что физики не должны пытаться объяснить внутреннее устройство адронов, а вместо этого рассматривать набор законов адронной физики как чёрный ящик, называемый матрицей рассеяния, или просто S-матрицей. Подобно бихевиористам, защитники S-матрицы требовали, чтобы теоретическая физика строго ограничивалась областью экспериментальных данных и не занималась спекуляциями относительно ненаблюдаемых (как тогда считалось) явлений, будто бы имеющих место на абсурдно малых расстояниях, например внутри протона.
На вход чёрного ящика подавался специфический набор частиц, сталкиваемых друг с другом. Это могли быть протоны, нейтроны, мезоны и даже атомные ядра. Каждая частица характеризовалась импульсом, спином, электрическим зарядом и другими индивидуальными свойствами. Эти частицы исчезали внутри метафорического чёрного ящика, а затем на выходе регистрировался другой набор частиц – результат столкновения, опять же каждая со своими индивидуальными свойствами. Догма Беркли запрещала заглядывать внутрь чёрного ящика в попытке узнать устройство его механизма. Всё, что мы имели, – только сходный и конечный наборы частиц. Этот подход полностью соответствовал тому, чем занимались экспериментаторы на ускорителях, имея пучки высокоэнергетичных частиц на входе и данные детекторов, регистрирующих продукты столкновений, на выходе.
S-матрица – это просто таблица квантово-механических вероятностей. Вы имеете входные данные, а S-матрица сообщает вам вероятности того, что вы можете получить на выходе. Таблица вероятностей зависит от направлений и энергий входящих и выходящих из чёрного ящика частиц, и, согласно превалирующей идеологии середины 1960-х годов, теория элементарных частиц должна быть строго ограничена изучением зависимости S-матрицы от этих переменных. Всё остальное было запрещено. Идеологи решили, что они лучше знают, как лучше для науки, и превратились в стражей научного пуризма. Теория S-матрицы была здоровым напоминанием о том, что физика является эмпирической наукой, но, как и в случае с бихевиористами, философия S-матрицы завела их слишком далеко. По мне, это всё походило на засовывание удивительного цветного мира в серый унылый стерилизатор бухгалтерских таблиц. И я взбунтовался. Но у меня не было подходящей для бунта теории.
В 1968 году молодой итальянский физик Габриэле Венециано жил и работал в Израиле в институте Вейцмана. Он не был идеологически подкован в вопросах теории S-матрицы, но его занимала одна имеющая отношение к S-матрице математическая задача. Существовали определённые технические требования, которым должна удовлетворять S-матрица, но никто до того времени не мог написать ни одного удовлетворяющего этим требованиям математического выражения. Венециано пытался найти хотя бы одно. Его попытка завершилась блестящим успехом. Он получил чрезвычайно аккуратный результат, известный сегодня как «амплитуда Венециано». Но это не было изображением внутреннего строения каких-то частиц или визуализацией процессов столкновения. Амплитуда Венециано была красивым математическим выражением – элегантной математической таблицей вероятностей.
Процесс открытия теории струн, который в определённом смысле все ещё продолжается, изобиловал поворотами судьбы, предательствами фортуны и интуитивными озарениями. Моё собственное участие в нём началось где-то в конце 1968 или в начале 1969 года. Я начал уставать от проблем элементарных частиц; особенно досаждали мне адроны, концепция которых, казалось, мало что может предложить в плане новых глубоких принципов. Я нашёл метод S-матрицы скучным и начинал подумывать о том, чтобы заняться соединением квантовой механики и гравитации. Соединение общей теории относительности с принципами квантовой механики казалось гораздо более интересной задачей, несмотря на то что все имевшиеся экспериментальные данные касались исключительно адронов. Но как раз в это время меня посетил в Нью-Йорке мой израильский друг Гектор Рубинштейн, который был чрезвычайно воодушевлён работой Венециано.
Сначала я не особо заинтересовался. Адроны были тем, о чём я хотел забыть, но из вежливости я согласился выслушать Гектора.
Гектор был настолько возбуждён, объясняя мне идеи итальянца, что я не вполне улавливал детали. Насколько я мог понять, Венециано придумал формулу для описания того, что произойдёт при столкновении двух адронов. Наконец, Гектор записал уравнение Венециано на доске в моем офисе. Это был финальный аккорд. Уравнение оказалось чрезвычайно простым и имело некоторые особенности, показавшиеся мне подозрительно знакомыми. Я, помню, спросил Гектора, не представляет ли это уравнение описание какой-то очень простой квантово-механической системы, потому что оно выглядело так, будто бы имело отношение к гармоническим осцилляторам. Гектор не знал, какая физическая картина могла бы стоять за этим уравнением, поэтому я просто записал его на листке бумаги, чтобы не забыть.
Я был достаточно заинтригован, чтобы отложить размышления о квантовой гравитации и дать адронам ещё один шанс. Как оказалось, мне не суждено было вернуться к гравитации в течение последующих лет. Я несколько месяцев обдумывал это уравнение, прежде чем увидел то, что стояло за ним в действительности.
Термин гармонический осциллятор применяется физиками ко всему, что способно вибрировать, дрожать, колебаться или вообще совершать периодические движения туда-сюда. Ребёнок, качающийся на качелях, и грузик, колеблющийся на пружине, являются примерами типичных гармонических осцилляторов. Вибрирующая скрипичная струна или даже воздух, через который проходит звуковая волна, – это тоже гармонические осцилляторы. Если колеблющаяся система очень мала, например если это атом или молекула, то её поведение определяется законами квантовой механики, и энергия такого осциллятора может изменяться только дискретными порциями. Я упомянул гармонический осциллятор в беседе с Гектором, потому что уравнение Венециано напомнило мне о математических свойствах квантово-механического гармонического осциллятора. Я представил себе адрон в виде двух грузиков, соединённых пружиной, совершающих гармонические колебания, сближаясь и удаляясь. Я играл с запретным плодом, пытаясь изобразить внутреннее устройство элементарной частицы, и отдавал себе в этом отчёт.
Танталовы муки, которые я испытывал от ощущения близости ответа и невозможности его ухватить, сводили меня с ума. Я испробовал все варианты квантово-механических осцилляторов, пытаясь подобрать такой, который вписался бы в уравнение Венециано. Мне удалось написать уравнения, очень похожие на уравнения Венециано, описывающие разные варианты моделей грузиков на пружинках, но все они не годились. В течение этого периода я потратил много часов собственного времени, работая на чердаке своего дома. Возвращаясь оттуда усталым и раздражительным, я ругался с женой и игнорировал детей. Мне не удавалось выкинуть это уравнение из головы даже во время обеда. И вдруг, в один из вечеров, без всякой уважительной причины на меня на чердаке снизошло озарение. Я не знаю, что вызвало к жизни эту мысль: ещё минуту назад я представлял себе пружину и вдруг увидел вместо неё эластичную струну, натянутую между двумя кварками и имеющую много различных мод колебаний. В одно мгновение я понял, что весь трюк состоит в том, чтобы заменить математическую пружину непрерывной натянутой струной. На самом деле слово струна тогда не пришло мне на ум. Я подумал о резиновом кольце. Если разрезать резиновое кольцо, оно превратится в резинку с двумя свободными концами. На каждый из концов я мысленно поместил по кварку, точнее, кварк на один конец и анти-кварк на другой.
Я быстро сделал несколько расчётов в своей записной книжке для проверки идеи, хотя уже знал, что это будет работать. Это было потрясающе просто. Уравнение Венециано для S-матрицы оказалось точным описанием столкновения двух резинок. Почему эта мысль раньше не приходила мне в голову?
Ничто не приносит такую радость, как новые открытия. Это случается нечасто даже у величайших физиков. Вы говорите себе: «Сейчас я – единственный человек на планете, который это знает. Скоро об этом узнает и остальная часть мира, но на данный момент я – единственный». Я был молод и неизвестен и жаждал славы. Но я не был единственным.
Примерно в то же самое время один физик из Чикаго проделал те же самые вычисления. Ёитиро Намбу был намного старше меня и уже давно являлся одним из самых выдающихся физиков в мире. Он родился в Японии и пришёл в Чикагский университет молодым физиком сразу после Второй мировой войны. Намбу был звездой и обладал репутацией человека, способного разглядеть некоторые вещи намного раньше всех остальных. Позже я узнал, что ещё один физик в Дании обдумывал весьма схожие идеи. Я не буду отрицать, что был разочарован, узнав, что я не одинок в своей «резиновой» теории, но мысль о том, что я оказался в одной компании с Великим Намбу, тешила моё самолюбие.
Современная теория струн занимается недостижимой унификацией квантовой механики и гравитации, о которую тщетно физики бились своей коллективной головой на протяжении большей части XX века. Другими словами, это теория о том, что представляет собой мир в сказочно крошечном масштабе планковских размеров – 10–33 сантиметра. Как я уже рассказал, она началась с гораздо более скромной задачи – описания внутренней структуры адронов. В следующей главе мы увидим, как теория струн переродилась в гораздо более глубокую фундаментальную теорию, но давайте начнём с её более ранней инкарнации.
Адроны являются очень маленькими объектами, они примерно в сто тысяч раз меньше атомов. Диаметр адрона составляет порядка 10–13 сантиметра. Для того чтобы удержать кварки на таких малых расстояниях, требуются колоссальные силы. Адронные струны – резинки в моём воображении – хотя и микроскопически малы, тем не менее невероятно прочны. Если бы было возможно прикрепить один конец мезона (одного из типов адронов) к автомобилю, а другой к подъёмному крану, то адронная струна, удерживающая кварки в мезоне, легко выдержала бы вес автомобиля. Относительно масштабов, достижимых в сегодняшних экспериментах, адронные струны не слишком малы. Современные ускорители позволяют исследовать материю на в сто, а то и в тысячу раз меньших расстояниях. Просто для сравнения позвольте мне забежать вперёд паровоза и показать, что представляет собой прочность струны в её современной инкарнации. Для того чтобы удерживать частицы на расстоянии порядка планковской длины, струна должна быть примерно в 1040 раз сильнее, чем адронная струна. Одна-единственная струна была бы способна выдержать вес всей нашей Галактики, если мы могли бы каким-то образом сумели сосредоточить всю массу Галактики вблизи поверхности Земли.
Все адроны подразделяются на три семейства: барионы, мезоны и глюболы. Наиболее известными адронами являются нуклоны – обычные протоны и нейтроны. Они принадлежат к первому семейству – барионам.[71] Все барионы состоят из трёх кварков. Кварки соединяются друг с другом, как предполагается, тремя струнами на манер боласа гаучо: три струны соединены концами в центре, а к свободным концам прикреплены три кварка. Единственное, что неверно в аналогии с боласом, – это то, что адронные струны, в отличие от верёвок, эластичны, они могут растягиваться подобно идеальной резиновой нити. Но поскольку обычные протоны и нейтроны представляют собой самую низкоэнергетическую конфигурацию «боласа», то их можно рассматривать как три кварка, соединённых очень короткими нерастяжимыми нитями.
Кварки на концах струн могут двигаться множеством способов. Например, «болас» может вращаться вокруг центральной точки, где соединяются концы струн, и в этом случае центробежная сила будет растаскивать кварки в разные стороны. Вращение требует энергии (вспомните E = mc2), а это значит, что вращающийся адрон будет тяжелее невращающегося. На физическом жаргоне частица, обладающая дополнительной внутренней энергией, называется возбуждённой. Кварки могут образовать возбуждённое состояние адрона и не вращаясь. Примером такого состояния могут служить колебательные движения кварков в направлении центра. Вдобавок и сами струны могут вибрировать наподобие гитарных. Все эти движения или, по крайней мере, косвенные свидетельства таких движений регулярно наблюдаются в реальных экспериментах с нуклонами. Барионы действительно ведут себя как эластичный квантовый болас.
Что же означает в данном случае «квантовый»? Квантовая механика подразумевает, что энергия (масса) любой колебательной системы может добавляться или отниматься только неделимыми дискретными порциями. На заре экспериментальной адронной физики исследователи не предполагали, что различные квантовые состояния осциллирующей системы представляют собой один и тот же объект, поэтому они давали каждому энергетическому уровню собственное имя, принимая эти уровни за разные элементарные частицы. Протоны и нейтроны являются барионами с наименьшей внутренней энергией. Более массивные состояния получили замысловатые имена, многие из которых уже ничего не говорят современным молодым физикам, поскольку для них это не более чем возбуждённые состояния нейтрона и протона. Поняв суть, физики навели, наконец, порядок в существовавшем до этого зоопарке частиц.
Следующим у нас идёт мезон – частица, которую я изучал на чердаке моего дома в 1969 году. Мезоны устроены гораздо проще, чем барионы. Каждый мезон состоит из кварка и антикварка, соединённых одной струной. Подобно барионам мезоны обладают вращательными и колебательными квантовыми состояниями. Расчёт, который я сделал тогда на чердаке, описывал основной процесс взаимодействия между двумя мезонами-струнами.
При столкновении двух мезонов может произойти несколько различных событий. Поскольку квантовая механика предсказывает только вероятности событий, невозможно заранее предсказать, по какому пути будет разворачиваться история столкновения. Самым вероятным и самым неинтересным вариантом будет прохождение мезонов друг сквозь друга, несмотря на то что при этом и струны, соединяющие кварки и антикварки, тоже пройдут друг сквозь друга. Но существует другая, более интересная возможность: мезоны могут слиться вместе, образовав новый мезон, в котором кварк и антикварк соединены более длинной струной.
Представьте каждую струну в виде группы танцоров, взявшихся за руки, чтобы образовать цепочку. У танцоров, находящихся на конце цепочки, одна рука свободна, а у танцоров в середине цепочки обе руки заняты. На рисунке изображены две цепочки, летящие друг к другу. Единственный способ, которым они могут провзаимодействовать, состоит в том, что танцор на конце одной цепочки возьмёт за свободную руку танцора на конце другой. После этого обе группы танцоров образуют единую цепочку. В этой конфигурации танцоры качаются друг относительно друга в сложном танце, до тех пор пока где-то в середине цепочки один из танцоров не отпустит руку своего соседа. Тогда цепочка снова распадётся на две независимых цепочки, и они продолжат своё движение в новом направлении, удаляясь друг от друга. Более точное, но менее наглядное описание выглядит так: кварк на конце одной струны соединяется с антикварком на конце другой. При этом кварк и антикварк аннигилируют, как и любые другие частицы и античастицы, оставляя после себя одну более длинную струну с оставшимися кварком и антикварком на концах.
Возникающая в результате слияния двух мезонов струна, как правило, оказывается в возбуждённом состоянии, включающем как вращательные, так и колебательные моды. Но спустя некоторое время струна, подобно цепи танцоров, распадается надвое, образуя на свободных концах кварк и антикварк. В итоге мы имеем процесс, в ходе которого две струны соединяются в одну, которая затем снова распадается надвое.
Задача, которую я решил на чердаке, формулировалась следующим образом: предположим, что два мезона (две струны) до столкновения двигались с заданной энергией во встречных направлениях. Какова квантово-механическая вероятность того, что образовавшаяся после столкновения новая пара мезонов будет разлетаться в некотором заданном направлении? Задача выглядит ужасно сложной, и это просто математическое чудо, что она может быть решена.
Математическая задача описания идеального резинового шнура была решена ещё в начале XIX века. Колеблющуюся струну можно рассматривать как совокупность гармонических осцилляторов – по одному для каждого отдельного типа (моды) колебаний. Гармонический осциллятор – одна из немногих физических систем, которые могут быть полностью проанализированы с помощью очень простой математики уровня средней школы.
Добавить квантово-механическое описание, чтобы превратить струну в квантовый объект, тоже не составляет труда. Все, что необходимо помнить, – это что уровни энергии любой квантово-механической колебательной системы обладают дискретными значениями энергии (см. главу 1). Этих простых соображений достаточно, чтобы понять свойства одной колеблющейся струны, но описание двух взаимодействующих струн гораздо сложнее. Для этого мне пришлось разработать собственные правила с нуля, что сделало возможным локализовать сложное описание только для бесконечно малого времени, в течение которого происходит объединение струн. Как только это произойдёт, две струны снова становятся одной, описываемой простой математикой. Чуть позже струна рвётся, и этот процесс снова требует сложного описания, но опять же лишь для короткого промежутка времени. Таким образом, я сумел с большой точностью описать процесс объединения двух струн и последующего распада получившейся струны. Результат своих математических расчётов я сопоставил с уравнением Венециано, и они согласовались с идеальной точностью.
Барион представляет собой три струны, соединённые «звездой», мезон – одну открытую струну, но что такое глюбол? Начнём с цепочки танцоров. Допустим, танцоры, двигаясь в своём сложном танце, изогнули цепочку так, что два крайних танцора оказались рядом друг с другом. Не понимая, что они принадлежат к одной и той же цепочке, они могут взяться за руки. В результате получается замкнутый круг танцоров без свободных концов. То же самое может произойти и с колеблющимся мезоном. Предположим, что в процессе колебаний и вращений концы мезонной струны случайно оказались друг возле друга. Кварк на одном конце видит антикварк на другом и, не догадываясь, что его коллега принадлежит тому же самому мезону, хватает его, как змея собственный хвост. В результате получается глюбол: замкнутая струна, не имеющая на своих концах кварков. Большинство мезонов и барионов было известно задолго до создания теории струн, но глюболы были предсказаны ею, так сказать, с чистого листа. И если сегодня вы посмотрите на список известных частиц, то глюболы и их массы будут перечислены в нём наряду с барионами и мезонами.
Мезон превращается в глюбол
Глюболы, мезоны и барионы являются сложными объектами, которые могут вращаться и колебаться множеством способов. Например, струна, соединяющая концы мезона, может вибрировать, как пружина или даже как скрипичная струна; он может даже вращаться вокруг своей середины, растягиваясь под действием центробежной силы и образуя своеобразный адронный пропеллер. Эти возбуждённые состояния адронов соответствуют известным объектам, часть которых была обнаружена в экспериментах ещё в 1960-х.
Связь теории адронных струн с Законами Физики, и в частности с их формулировкой в терминах фейнмановских диаграмм, отнюдь не очевидна. Одним из способов визуализации теории струн является генерализация фейнмановских диаграмм путём замены точечных частиц струнами. Фейнмановские диаграммы состоят из основных элементов, которые мы уже рассматривали в главе 1: вершин и пропагаторов. Пропагаторы и вершины хороши для представления бесконечно малых точечных частиц квантовых полей. Например, вершина сама по себе является точкой, в которой сходятся траектории частиц. Если же сами частицы не являются точками, то не совсем понятно, что означает точка встречи их траекторий. Как же придать смысл пропагаторам и вершинам для струн? Когда мы имеем дело с точечной частицей, мы представляем её движение в виде линии в пространстве-времени. В каждый момент времени частица представляется точкой, но в результате движения эта точка разворачивается в кривую линию. Великий Минковский назвал траекторию движения частицы в пространстве-времени мировой линией, и этот термин прочно вошёл в науку.
Теперь представим себе, как могла бы выглядеть история струны в пространстве-времени. Возьмём замкнутую струну, не имеющую концов. В каждый конкретный момент времени такая струна будет представляться в пространстве замкнутой кривой. Представьте себе, что эту струну освещает стробоскоп. Во время первой вспышки мы увидим кольцо. При следующей вспышке мы увидим то же самое кольцо, только в другом месте. В конечном итоге мы увидим набор колец, отображающий последовательные положения струны.
Но в действительности время течёт непрерывно, и чтобы составить полную историю движения струны, нужно заполнить промежутки между её последовательными изображениями. В результате получится трубка, проходящая через пространство-время: двумерная цилиндрическая поверхность.
Размер кольца струны может изменяться со временем, ведь струна способна сжиматься, растягиваться и колебаться. Временами она может даже самопересекаться, образуя подобие восьмёрки или принимая более сложные формы. В этом случае цилиндр окажется деформированным, но в нём всё ещё можно будет узнать цилиндр.
Поверхность, заметаемую кольцом, можно было бы очень удачно назвать трубкой мира по аналогии с мировой линией. Но так случилось, что в физике прижился другой термин: мировой лист, или мировая поверхность. Но как бы мы его ни называли, этот цилиндр представляет собой пропагатор струны, который приходит на замену пропагатору точечной частицы.
Мезон, оканчивающийся двумя кварками, тоже может быть представлен в виде мирового листа, только это будет не цилиндр, а лента, имеющая два края. Вернёмся к аналогии со стробоскопом. Теперь мы будем видеть последовательность открытых струн с кварками на концах. Заполнив пространство между последовательными изображениями мезона, мы получим мировой лист в виде ленты.
Но для интересной теории, которая способна была бы описывать сложные взаимодействия сталкивающихся частиц, недостаточно одних только пропагаторов. Нужны ещё вершины, развилки дорог, в которых частицы могли бы излучать и поглощать другие частицы. И теория струн не исключение.
Вершина для открытой струны должна выглядеть как обычная дорожная развилка: в какой-то момент времени струна разрывается посередине, на образовавшихся свободных концах образуются кварк и антикварк, и вот уже две струны продолжают своё путешествие. Закрытые струны тоже могут разделяться на две. Соответствующая этому процессу диаграмма выглядит как Y-образная развилка водопроводной трубы.
Если вы будете следовать по этой диаграмме снизу вверх (от прошлого к будущему), вы увидите, как одна струна расщепляется на две, каждая из которых удаляется в своём направлении. Перевернув диаграмму, вы получите процесс слияния двух струн в одну.
Идея заключается в том, чтобы заменить обычные фейнмановские диаграммы сетью водопроводных труб, представляющих собой пропагаторы струн, и Y-образных развилок, заменяющих прежние вершины. Очень быстро теоретики поняли, что деление диаграммы на цилиндрические пропагаторы и Y-сочленения носит искусственный характер и что в действительности теория содержит мировые листы любой формы и топологии. Диаграммы могут содержать отверстия, представляющие входящие и выходящие струнноподобные глюболы, но в общем случае они могут быть любой сложности.
Этот способ представления адронов трудно связать со Стандартной моделью, теорией, основанной на обычных фейнмановских диаграммах, (то есть на точечных частицах). Современная Стандартная модель включает то, что на первый взгляд выглядит как совершенно отличная от всего предыдущего теория адронов – теория, известная под названием квантовая хромодинамика, или КХД.
Согласно КХД, адроны состоят из кварков и антикварков. В этом КХД имеет много общего с теорией струн, которую разрабатывали мы с Намбу. Но удерживающая кварки вместе сила – клей, скрепляющий адроны, – совершенно не похожа на струны. Кварки испускают и поглощают глюоны[72] точно так же, как электроны испускают и поглощают фотоны. Силы, удерживающие кварки в адронах, обязаны своим происхождением обмену глюонами между кварками.
У глюонов есть одна особенность, которая делает их более сложными, чем фотоны. Заряженные частицы могут излучать и поглощать фотоны, но сами фотоны не обладают такой способностью. Другой способ сказать то же самое: не существует вершин, в которых один фотон распадается на два. Глюоны же способны испускать и поглощать другие глюоны.
Существует вершинная диаграмма, на которой три глюона соединяются в одной вершине. В конечном итоге это делает глюоны и кварки гораздо более «липкими», чем электроны и позитроны.
Всё это выглядит так, будто существуют две различные теории адронов: КХД и теория струн. Но, разумеется, почти с самого момента появления теории струн было очевидно, что эти два описания в действительности – лишь два лица одной и той же теории. Просто ключевое Озарение опередило на пару лет открытие КХД.
Мост между обычными фейнмановскими диаграммами и теорией струн показался из тумана, когда в 1970 году я получил письмо от блестящего молодого датского физика Хольгера Бех Нильсена. Он был в восторге от моей статьи, где я излагал теорию с резинкой, и хотел поделиться некоторыми из своих идей. В письме он сообщал, что тоже думал о чём-то, очень похожем на упругую струну, и излагал свои соображения под несколько другим углом.
Идея соединить теорию струн с фейнмановскими партонами[73] была созвучна тому, о чём я сам размышлял в течение продолжительного времени. Нильсен глубоко изучил вопрос и имел собственное, весьма интересное видение проблемы. Он предложил считать, что гладкий непрерывный мировой лист на самом деле представляет собой мелкую сеть из линий и узлов. Другими словами, мировой лист в его представлении был обыкновенной, но чрезвычайно сложной фейнмановской диаграммой, состоящей из огромного числа пропагаторов и вершин. Эта сеть становилась всё более и более гладкой по мере добавления в неё новых вершин и пропагаторов и всё лучше и лучше аппроксимировала гладкий мировой лист. Теория адронных струн тоже может быть сформулирована подобным способом.
Мировые листы, трубки и Y-образные сочленения можно представить как очень сложные фейнмановские диаграммы с участием кварков и огромного количества глюонов. Когда вы смотрите на мировой лист «с большого расстояния», он кажется гладким. Но «под микроскопом» мировой лист выглядит как рыболовная сеть[74] или как баскетбольная корзина, сплетённая из фейнмановских диаграмм. Нити рыболовной сети представляли пропагаторы точечных частиц, узлы – партоны Фейнмана или кварки и глюоны Гелл-Мана, а «ткань», сотканная из этих микроскопических мировых линий, – непрерывный мировой лист.
Вы можете представить струну как набор партонов, нанизанных один за другим подобно нитке жемчуга. Фейнмановская партонная теория, Гелл-Мановская кварковая теория и моя «резиновая» теория – всё это различные способы представления квантовой хромодинамики.
Струнной, или «резиновой» модели адронов не сопутствовал немедленный успех. Многие теоретики, занимавшиеся адронной физикой в 1960-х годах, выражали весьма негативное отношение к любой теории, которая пыталась визуализировать явления. Рьяные сторонники теории S-матрицы утверждали, что столкновение – это непознаваемый «чёрный ящик», и отстаивали своё неприятие новой теории с почти миссионерским рвением. Они признавали только одну заповедь – «не срывай покрова», то есть «не заглядывай “внутрь” процесса столкновения, пытаясь обнаружить механизмы происходящих процессов, не пытайся понять строение такой частицы, как протон». Враждебное восприятие идеи о том, что уравнение Венециано описывает столкновение двух резинок, сохранялась до тех пор, пока однажды Мюррей Гелл-Ман не поставил на ней свою печать одобрения.
Мюррей был королём физики, когда я впервые встретился с ним в Корал Гейблс, штат Флорида, в 1970 году. В то время кульминацией сезона теоретической физики была конференция в Корал Гейблс. А кульминацией конференции была лекция Мюррея. Для меня Корал Гейблс оказался первой большой конференцией, на которую я был приглашен не в качестве лектора, а в качестве слушателя. Мюррей начал свою лекцию с темы спонтанного нарушения дилатационной симметрии – одной из проблем, с которой у него были проблемы. Едва ли я смогу вспомнить саму лекцию, но очень хорошо помню, что произошло потом: мы с Мюрреем застряли в лифте.
Я был тогда совершенно неизвестен, в то время как всё физическое сообщество боготворило Мюррея. Разумеется, застряв с ним в лифте, я потерял дар речи.
Чувствуя необходимость как-то начать разговор, Мюррей поинтересовался, чем я занимаюсь. Я испуганно ответил: «Я работаю над теорией адрона, представляющей его как своего рода эластичный шнур, как резинку». В следующий ужасный момент, который я не забуду никогда, он начал смеяться. И это был не короткий смешок, а громогласный гомерический хохот. Я чувствовал себя презренным червём. Затем двери лифта открылись, и я позорно уполз с горящими ушами.
После этого я не встречался с Мюрреем почти два года. Следующая наша встреча состоялась на другой конференции, в Национальной ускорительной лаборатории имени Энрико Ферми, сокращённо Фермилаб. Эта конференция была очень представительной: около тысячи участников, среди которых были наиболее влиятельные теоретики и экспериментаторы со всего мира. И в этот раз я снова был слушателем.
В день открытия конференции, когда мы с группой друзей ожидали начала первой лекции, к нам неторопливо подошёл Мюррей. При всех он сказал: «Мне очень жаль, что я смеялся над вами в лифте в тот день. Я думаю, что задача, над которой вы работаете, – это просто фантастика, и я посвящу ей большую часть моей лекции. Давайте присядем где-нибудь и поговорим об этом, когда у нас выдастся свободная минутка». В этот момент я из червя превратился в принца: сам король оказал мне свою милость!
В течение пары дней после этого, встречая Мюррея, я спрашивал: «Не настало ли время нам поговорить?» И каждый раз он отказывался, ссылаясь на какую-нибудь важную встречу.
В последний день конференции я стоял в длинной очереди к турагенту. Мне нужно было поменять авиабилет, и я ждал своей очереди уже более часа. Наконец, когда передо мной в очереди оставалось только два или три человека, ко мне подошёл Мюррей со словами: «Я свободен! Мы можем поговорить прямо сейчас. У меня есть пятнадцать минут». «О’кей, – сказал я себе. – Это твой шанс. Сделаешь всё правильно, и ты – принц. Сделаешь что-то не так, и ты – наживка для рыбы».
Мы сели за свободный столик, и я начал объяснять, как моя новая «резиновая» теория связана с его и Фейнмана идеями. Я собирался начать с диаграммы рыболовной сети. Помню, я сказал: «Я начну с партонов».
«Партоны? Партоны… Какие, к дьяволу, партоны? Патроны? Пистоны? Вы хотите вставить мне пистон? Так, что ли?» Я понял, что совершил непростительную ошибку, но не мог сообразить какую. Я пытался объяснить, но всё, что я получал в ответ, – это «Патроны? Что это такое?» Так прошли четырнадцать из пятнадцати отведённых мне минут, пока он не спросил: «Патроны – они имеют заряд?» Я ответил: «Да». – «Принадлежат ли они группе SU(3)?» Я снова ответил утвердительно. Тогда его лицо просветлело: «А-а, так вы имеете в виду кварки!» Я совершил смертный грех, назвав составляющие адронов словом, которое придумал Фейнман, а не Мюррей. Похоже, я был единственным физиком на планете, который не подозревал о непримиримом соперничестве между этими двумя титанами из Калтеха.
Во всяком случае, у меня оставались ещё одна или две минуты, за которые я в сжатом виде изложил свои соображения, а затем Мюррей посмотрел на часы и сказал: «Ладно, спасибо. У меня назначена встреча с одним важным человеком, с которым я должен переговорить до моей лекции».
Я был так близко и вместе с тем так далеко. Увы, не для меня королевские почести, а для меня земля и грязь. Но затем я услышал то, что вернуло меня к жизни. Я увидел Мюррея, который пересказывал группе своих коллег всё то, что я успел ему рассказать. «Сасскинд говорит, что… Сасскинд утверждает, что… Мы должны заняться теорией струн Сасскинда…» А затем Мюррей рассказал о моей идее в своём заключительном докладе на конференции. И хотя теории струн была посвящена лишь небольшая часть доклада, она получила благословение Мюррея, а я чувствовал себя как после езды по американским горкам.
Хотя Мюррей не занимался теорией струн, его разум был открыт для новых идей, и Мюррей сыграл важную роль в их продвижении. Нет никаких сомнений, что он был одним из первых, кто признал потенциальное значение теории струн как теории адронов, а позднее и как теории явлений планковских масштабов.
Существует много вариантов теории струн. Наши варианты начала 70-х были математически очень точными – слишком точными. Хотя с современной точки зрения абсолютно ясно, что адроны являются струнами, теория должна была пройти через целый ряд метаморфоз, прежде чем она смогла описать реальные барионы и мезоны.
Имелись три огромные проблемы, досаждавшие первоначальному варианту теории струн. Одна из них была настолько странной, что консерваторы, а особенно энтузиасты S-матриц, нашли в ней источник для шуток. Это была проблема слишком большого количества измерений. Теория струн, как и все физические теории, имеет дело с пространством и временем. До Эйнштейна пространство и время существовали сами по себе, но затем под влиянием Минковского они слились в единое пространство-время – четырёхмерный мир, в котором каждое событие представлено четырьмя координатами: тремя пространственными и одной временной. Эйнштейн и Минковский превратили время в «четвёртое измерение». Но пространство и время не совсем равноправны. Даже в общей теории относительности, которая перемешивает пространство и время путём замысловатых математических преобразований, эти две сущности различаются. Они по-разному «ощущаются». По этой причине, вместо того чтобы говорить о четырёхмерном пространстве, мы обычно говорим о 3 + 1-мерном, обозначая тем самым, что у нас есть три пространственные и одна временная координата.
Может ли пространство иметь большее число измерений? Да, и это обычное явление в современной физике. Не так трудно, как кажется, представить себе движение в пространстве, имеющем более трёх пространственных измерений. Ещё проще представить себе мир, имеющий менее трёх пространственных измерений. Например, в знаменитой книге Эдвина Эббота «Флатландия» описывается жизнь в мире, имеющем только два пространственных измерения. Но ещё никому не удалось представить себе мир, имеющий более (или менее) одного временного измерения. Похоже, что это вообще не имеет смысла. По этой причине физики, оперируя с многомерными пространствами, всегда имеют в виду пространство с 4 + 1, 5 + 1 и т. д. измерениями, подразумевая, что в нём может быть много пространственных, но всегда только одно временное измерение. Физики всегда надеялись, что однажды они сумеют объяснить, почему наш мир имеет именно 3 пространственных измерения, а не 2, 7 или 84. Поэтому струнные теоретики были рады обнаружить, что их математика корректно работает только в определённых количествах измерений. Проблема лишь в том, это количество оказалось равным 9 + 1, а не 3 + 1. Что-то где-то не так с математикой, если количество пространственных измерений, необходимых для её работы, оказывается в три раза большим, чем количество измерений в нашем обычном мире! Это выглядело насмешкой над струнными теоретиками.
Как преподаватель физики я ненавижу рассказывать что-то студентам, а потом заявлять, что я не могу этого объяснить. Это-де слишком сложно или это-де слишком специально. Я трачу массу времени, придумывая, как объяснить сложные вещи простыми словами. Одним из моих самых больших разочарований является то, что мне так и не удалось придумать простого объяснения, почему теория струн может обрести полное счастье только в 9 + 1 измерениях. И никому другому тоже. Всё, что я могу сказать, – это что всё дело в неустранимых квантовых флуктуациях струн. Эти квантовые флуктуации могут накапливаться и полностью выйти из-под контроля, если не будут выполнены определённые, очень тонкие условия. И эти условия выполняются только в пространстве с 9 + 1 измерениями.
Ошибка в три раза – не столь уж большая беда для космологии, но для физики элементарных частиц это просто катастрофа. Физики, изучающие частицы, привыкли к точным числам. И нет другого такого числа, в котором они были бы настолько уверены, как в числе пространственных измерений. Никакая экспериментальная ошибка не способна объяснить потерю шести пространственных координат. Короче, это полное фиаско. Пространство-время и в прошлом, и ныне имело и имеет размерность 3 + 1, и в этом не может быть никаких сомнений.
Провравшись в отношении размерности пространства, теория струн, конечно, поступила очень плохо, но ещё хуже было то, что она провралась и в предсказании закона, которому подчиняются ядерные силы между адронами. Вместо близкодействующих ядерных сил теория предсказывала дальнодействующие силы, неограниченно простирающиеся в пространстве, подобные электромагнитным или гравитационным. Если подогнать короткодействующую ядерную силу под правильное значение, то электрическая сила была бы в 100 раз сильнее, а гравитационная – в 1040 раз. О том, чтобы отождествить эти дальнодействующие силы с реальными гравитационными или электрическими силами, не могло быть и речи.
Все силы в мире, будь то гравитационные, электрические или ядерные, имеют одну и ту же природу. Представьте себе электрон, обращающийся вокруг центрального ядра. Время от времени электрон испускает фотоны, и куда же эти фотоны деваются? Если атом возбуждён, то фотон может улететь прочь, а атом перейти на более низкий энергетический уровень. Но если атом уже находится в самом низшем энергетическом состоянии, фотон не может унести с собой часть энергии. Единственный выход для фотона – быть поглощённым другим электроном или положительно заряженным ядром. Таким образом, в реальном атоме электроны и ядра постоянно перебрасываются фотонами подобно цирковым жонглёрам. Этот обмен частицами, в данном случае фотонами, и является источником всех сил в природе. Любые силы – электрические, магнитные, гравитационные – в конечном итоге приводят нас к фейнмановским обменным диаграммам, на которых кванты летают от одних частиц к другим. Для электрических и магнитных сил такими обменными квантами являются фотоны; для гравитационных сил ту же работу выполняют гравитоны. Мы с вами прикованы к Земле гравитонами, которыми обмениваются частицы наших тел с частицами нашей планеты. Но для сил, удерживающих вместе протоны и нейтроны в ядре, такими обменными квантами являются пи-мезоны (пионы). Если заглянуть внутрь протонов и нейтронов, то мы увидим, что составляющие их кварки обмениваются друг с другом глюонами. Установление связи между силами и соответствующими этим силам обменными частицами было одним из величайших достижений физики XX века.
Если природа ядерных, электромагнитных и гравитационных сил одинакова, то отчего же они настолько различны? Электромагнитные и гравитационные силы являются дальнодействующими, что позволяет гравитации удерживать планеты на их орбитах, в то время как ядерные силы сходят на нет уже на расстояниях порядка диаметра протона. Если вы думаете, что различия между силами связаны с какими-то индивидуальными свойствами создающих эти силы обменных частиц, то окажетесь абсолютно правы. Определяющим фактором дальнодействия какой-нибудь силы является масса создающей эту силу обменной частицы: чем легче частица, тем более дальнодействующей является сила. Причина дальнодействия гравитации и электричества состоит в том, что гравитон и фотон являются безмассовыми частицами. А вот пион, наоборот, весьма массивен – его масса в 300 раз больше массы электрона. Можно сравнить влияние массы переносчика взаимодействия на характер взаимодействия с влиянием избыточного веса на достижения атлета. Чем он тяжелее, тем меньше расстояние, на которое он может прыгнуть, чтобы достать другую частицу.
Теория струн является также и теорией сил. Вернёмся к аналогии с танцорами. Представьте себе, как две цепочки взявшихся за руки танцоров приближаются друг у другу. Всё это время, за исключением короткого промежутка времени, когда они соединяются в одну цепочку, они исполняют разные танцы. Перед тем как встретиться, от одной из цепочек отделяется группа танцоров, которые образуют третью короткую цепочку. Эта третья цепочка направляется ко второй группе и соединяется с ней.
Так две первоначальные группы постоянно обмениваются короткими цепочками, и это порождает действующую между ними силу.
Издалека мировой лист, описывающий этот обмен, выглядит как буква «Н», но «под микроскопом» линии, образующие эту букву, превращаются в подобие водопроводных труб. Поперечная палочка буквы «Н» – это мировой лист обменной струны, которая летает туда-сюда между вертикальными палочками и создаёт действующую между ними силу. В первые дни теории струн те из нас, кто надеялся объяснить с её помощью всё, что имеет отношение к адронам, испытывали восторг от открывающихся перспектив описания ядерных сил, удерживающих протоны и нейтроны в ядре.
К несчастью, наши надежды очень скоро рухнули. Когда были выполнены первые расчёты, стало понятно, что полученный закон, описывающий силы между струнами, не имеет ничего общего с законом, которому подчиняются силы, удерживающие нуклоны вместе. Вместо короткодействующих ядерных сил мы получили дальнодействующие силы, скорее напоминающие электромагнитные или гравитационные, о чём я уже упоминал ранее. Обнаружить причину этого оказалось несложно. Среди похожих на частицы вибрирующих струн были два объекта с очень специфическими свойствами. Первый – открытые струны типа тех, которые описывают мезоны, а второй – замкнутые струны, описывающие глюболы. Оба этих объекта отличались тем, что не имели массы, – точно так же, как фотоны и гравитоны! При обмене этими объектами между частицами возникали силы – почти такие же, как электрические силы между зарядами или гравитационные силы между массами. Открытые струны вели себя как фотоны, но наибольшим сюрпризом для меня оказалось то, что замкнутые глюболы вели себя точно так же, как в теории должны вести себя неуловимые таинственные гравитоны. Это всё могло бы стать источником бесконечной радости, если бы мы собирались построить новую теорию гравитации и электромагнетизма, но это было весьма далеко от нашей цели. Ведь мы-то хотели описать ядерные силы, и в этом смысле все наши попытки потерпели сокрушительный провал. Мы оказались в тупике.
В теории струн есть ещё одна трудность. Она одновременно является «теорией всего» и «теорией ничего». Первоначальной целью теории было описание адронов, и ничего больше. Электроны, фотоны и гравитоны оставались точечными частицами. Многолетние эксперименты убеждали нас, что если электроны и фотоны и имели какие-то размеры, то были гораздо меньше адронов. Они с таким же успехом могли быть просто точками, если так можно выразиться. С другой стороны, было очевидно, что адроны точками быть никак не могут. Точка не может вращаться вокруг собственной оси. Думая о вращающемся объекте, я представляю себе кусок теста, который вертит повар, готовящий пиццу, или баскетбольный мяч, который баскетболист крутит на пальце. Но невозможно представить себе вращение бесконечно малой точки. Адрону очень легко придать вращение: возбуждённые вращательные состояния адронов регулярно наблюдаются в экспериментах на ускорителях. Адроны должны быть больше похожи на кусок теста, чем на математическую точку. Но никому ещё не удалось заставить вращаться электрон или фотон.[75]
Реальные адроны могут взаимодействовать и взаимодействуют с точечными частицами. Протон способен поглощать и испускать фотоны точно так же, как это делает электрон. Но как только мы пытаемся построить теорию, в которой струнноподобный адрон взаимодействует с фотоном, всё летит к чёрту. Одно математическое противоречие за другим разрушает все наши попытки.
И тут сразу многим пришла в голову очевидная идея. Колеблющаяся струна – разумеется, не точка, но мы всегда считали, что на концах струны находятся точечные кварки. Почему бы не считать, что и весь электрический заряд струны тоже сосредоточен на этих кварках? После этого останется лишь просчитать взаимодействие фотонов с точечными зарядами – детская задача. Но, как известно, порой даже лучшие планы идут наперекосяк.
Проблема в том, что струны в теории струн обладают исключительно сильной квантовой дрожью. Чрезвычайно высокочастотные квантовые флуктуации оказываются настолько дикими и неконтролируемыми, что кварки, находящиеся на концах струны, могут оказаться на самом краю Вселенной. Это звучит глупо, но части струны вибрируют настолько сильно, что в очень короткие промежутки времени могут оказываться бесконечно далеко!
Я попытаюсь объяснить такое интуитивно непонятное поведение струн на простом примере. Представьте себе гитарную струну. Она несколько отличается от струн струнной теории, в первую очередь тем, что концы гитарных струн неподвижно закреплены на концах грифа и деки. Но сейчас это не важно. Важным является то, что струны обоих видов могут иметь различные моды колебаний. Гитарная струна может колебаться как единое целое, двигаясь, как детская скакалка. Когда возбуждена эта мода колебаний, струна звучит как основной тон.
Но, как известно любому гитаристу, струны могут звучать и на обертонах высших гармоник. При этом струна колеблется не как единое целое, а как одна или несколько струн, соединённых последовательно своими концами. Например, в моде первой гармоники струна колеблется, как будто она разделена пополам: середина струны остаётся неподвижной.
В принципе, идеальная бесконечно тонкая струна может иметь бесконечное количество мод колебаний и излучать обертона бесконечно высоких гармоник, но на практике трение и другие факторы демпфируют колебания высших гармоник, не давая им даже возбудиться.
Теперь вспомним урок квантовой механики из главы 1. Любой осциллятор обладает неустранимыми нулевыми колебаниями. Это имеет весьма драматические последствия для идеальной струны: все возможные колебания, весь бесконечный набор колебательных мод звучит одновременно, создавая безумную симфонию белого шума. Если мы просуммируем вклад всех мод колебаний для какого-нибудь отдельно взятого фрагмента струны, то обнаружим, что максимальная амплитуда его колебаний является бесконечной.
Почему же эта безумная какофония не возникает при звучании обычной гитарной струны? Причина заключается в том, что обычные струны состоит из атомов, располагающихся вдоль струны. Не имеют смысла моды колебаний, при которых расстояние между узлами стоячей волны на струне меньше, чем расстояние между соседними атомами. Но математически идеальная струна не состоит из атомов, и количество узлов на струне фиксированной длины может быть любым, поэтому она будет колебаться совершенно неконтролируемым образом.
Пожалуй, самое удивительное математическое чудо теории струн заключается в том, что если посчитать всё корректно, то окажется, что в десятимерном пространстве-времени струны колеблются синхронно и ни одна не улетает на бесконечность относительно другой. Иными словами, ваша струна и моя струна могут колебаться с размахом от одного края Вселенной до другого, но если мир десятимерен, мы чудесным образом не обнаружим эти колебания.
Но это чудо работает, только если всё в мире состоит из струн. Если фотон является точечной частицей, а протон – струной, возникнет ужасная коллизия. По этой причине только струна может взаимодействовать с другими струнами! Это именно то, что я имел в виду, когда я говорил, что теория струн является теорией всего или теорией ничего.
Яростная струнная квантовая дрожь, размах колебаний которой достигает границ Вселенной, казалась столь мрачной перспективой, что я отбросил все мысли о негибкой математике теории струн более чем на десять лет. Но в конце концов это берсеркоподобное поведение струн стало основой для одной из самых интересных и странных разработок современной теоретической физики. В главе 10 мы познакомимся с голографическим принципом, который гласит, что мир является своего рода квантовой голограммой на границах пространства. В какой-то степени открытие этого принципа было вдохновлено экстремальной квантовой дрожью струн. Но голографический принцип – это особенность квантово-механического описания гравитации, а не ядерной физики.
Некоторые теории настолько математически точны, что теряют гибкость. Это хорошо, если теория успешна. Но если что-то в теории работает не совсем так, как хотелось бы, то негибкость становится помехой. Варианты теории струн, существовавшие в 70-х, 80-х и большей части 90-х, не позволяли описать взаимодействие объектов, которые не являются струнами. Если ваша цель – описать взаимодействие адронов, то такая теория для вас не слишком многообещающая. Слишком много измерений, безмассовые гравитоны и фотоны и невозможность взаимодействия с более мелкими объектами… В общем, теория струн испытывала серьёзные трудности, по крайней мере в качестве теории адронов. Тем не менее никто не отрицал, что адроны ведут себя как упругие струны с кварками на концах. За 35 лет, прошедших со времени создания теории струн, струнная природа адронов стала хорошо проверенным экспериментальным фактом. Но в то же время теория струн нашла себя в другой жизни. Следующая глава посвящена тому, как теория струн возродилась в виде фундаментальной теории, объединяющей квантовую механику и общую теорию относительности.
Глава 8. Реинкарнация
Хотя теория адронных струн потерпела неудачу в своей наиболее точной математической форме, некоторые смельчаки увидели в этом крушении благоприятный момент. «Если гора не идёт к Магомету, то Магомет идёт к горе». Если мы не можем заставить теорию струн описывать адроны, потому что она ведёт себя как теория гравитации, то пусть гравитация описывается теорией струн. Почему бы не использовать её для описания всего: гравитации, электромагнетизма, кварков и всего остального? Вторая и третья проблема, описанные в предыдущей главе, в этом случае исчезают: весь предсказанный спектр сил теперь соответствует реальности и всё состоит из струн. Негибкость теории из пассива переходит в актив. Радикально новый взгляд на мир, сотканный из одномерных энергетических нитей, колеблющихся от края до края Вселенной, приходит на смену прежней парадигме точечных материальных частиц.
Чтобы нарисовать картину этой трансформации теории струн, поговорим немного о масштабах явлений. Размеры адронов лежат в пределах 10–13–10–14 см. Существуют некоторые вариации, но по порядку величины мезоны, барионы и глюболы имеют приблизительно одинаковые размеры. Размер 10–13 сантиметров выглядит исчезающе малым, это в 100 000 раз меньше поперечника атома, но по стандартам современной физики элементарных частиц это очень много. Ускорители позволяют исследовать объекты, размер которых в тысячу раз меньше, а наиболее мощные из ускорителей уже начинают подступать к расстояниям, в 10 000 раз меньшим размера адрона.
Естественный размер гравитона гораздо меньше. В конце концов, гравитоны являются гибридом теории гравитации и квантовой механики, а на каком бы квантовом уровне вы ни работали, вы всегда придёте к тому же, к чему пришёл Планк в 1900 году: к естественной единице длины, к очень-очень малой единице длины – к планковской длине, составляющей 10–33 см. Физики ожидают, что гравитон имеет именно такой размер.
Насколько гравитон меньше протона? Если увеличить гравитон до размера Земли, то протон будет иметь такой же размер, как и вся известная нам Вселенная. Используя ту же самую теорию струн, которая потерпела фиаско в роли теории адронов, Джон Шварц и Жоэль Шерк предложили совершить «прыжок лягушки»[76] сразу на несколько порядков. Подобно тихоокеанской тактике генерала Макартура, эта затея с равным успехом могла оказаться как героической, так и дурацкой.
Если с дальнодействием сил никаких проблем не возникло, то размерность пространства, требуемая для математической согласованности теории, всё ещё составляла девять пространственных плюс одно временное измерение. Но в новом контексте это обещало обернуться благом. Список элементарных частиц в Стандартной модели – частиц, предполагаемых точечными, – слишком длинен. Он включает 36 различных видов кварков, 8 глюонов, 6 типов лептонов: электрон, мюон и тау-лептон плюс соответствующие им античастицы, два типа W-бозонов, Z-бозон, бозон Хиггса, фотон и нейтрино. Частица каждого типа принципиально отличается от частиц другого типа. Каждая обладает индивидуальными свойствами. Но если все частицы просто точки, то откуда берутся у них индивидуальные свойства? Как простая точка может обладать такими квантовыми числами, как спин, изоспин, странность, очарование, барионное число, лептонное число и цвет?[77] Очевидно, что частицы должны иметь какие-то внутренние механизмы, просто не видимые с большого расстояния. Их точечноподобный внешний вид, несомненно, временное явление, следствие ограниченной разрешающей способности наших лучших «микроскопов», то есть ускорителей. Но увеличить разрешающую способность ускорителя возможно только путём увеличения энергии ускоряемых частиц, а единственный способ увеличить эту энергию – увеличить размер ускорителя. Если, как считают большинство физиков, внутренние механизмы элементарных частиц имеют размеры порядка планковской длины, то, чтобы их рассмотреть, потребуется построить ускоритель размером с Галактику! Поэтому мы продолжаем думать о частицах как о точках, несмотря на то что факты говорят, что у них внутри, несомненно, что-то есть.
Но теория струн – это не теория точечных частиц. С точки зрения теоретиков, теория струн способна объяснить, откуда у частиц берутся их свойства. Помимо всего прочего, струны способны колебаться с разными модами. Всякий, кто когда-либо играл на гитаре, знает, что гитарная струна может вибрировать на разных гармониках. Струна может вибрировать как единое целое или как две части, разделённые узлом посередине. Она также может вибрировать как три и более различные части, излучая набор гармоник. То же самое верно и для струн в теории струн. Различные типы колебаний струны приводят к разным типам частиц, но этого ещё недостаточно, чтобы объяснить различия между электронами и нейтрино, фотонами и глюонами или между u-кварками и c-кварками.
Вот тут-то струнные теоретики и нашли блестящее применение тому, что раньше вызывало их неуверенность. Им удалось из свиного уха – слишком большого числа измерений – сделать шёлковый кошелёк. Дополнительные шесть измерений, которые так мешали при описании адронов, оказались ключом к объяснению разнообразия свойств элементарных частиц: электрического заряда, цвета, странности, изоспина и других.
На первый взгляд между этими свойствами и дополнительными измерениями не прослеживается очевидной связи. Каким образом движение в дополнительных шести измерениях объясняет электрический заряд или различия между разными типами кварков? Ответ лежит в глубоких изменениях в природе пространства, которые описал Эйнштейн в своей общей теории относительности, – в возможности компактификации пространства или его части.
Компактификация
Проще всего объяснить явление компактификации на примере двумерной поверхности. Представим себе пространство в виде плоского листа бумаги, неограниченно простирающегося во всех направлениях. Но это только один из вариантов двумерного пространства. Вспомните, как при разговоре о Вселенной Эйнштейна и Вселенной Фридмана мы представляли пространство в виде поверхности сферы, – независимо от того, в каком направлении вы будете двигаться в таком пространстве, в конце концов вы вернётесь в исходную точку.
Эйнштейн и Фридман представляли пространство в виде гигантской сферы, достаточно большой, чтобы на протяжении миллиардов световых лет на вашем пути не встретилась дважды одна и та же галактика. Но теперь представьте себе, что мы начали сжимать эту сферу: и вот она становится всё меньше и меньше, в ней уже едва помещается человек. Продолжим сжатие сферы до размера молекулы, атома, протона… В конце концов такую сферу будет уже невозможно отличить от точки – пространства, не имеющего ни одного измерения, в котором можно двигаться. Это простейший пример компактификации пространства.
Можем ли мы выбрать для двумерного пространства такую форму, чтобы оно выглядело как одномерное? Можно ли спрятать одно из двух измерений двумерного листа бумаги? Легко. Для начала вырежем из бесконечного плоского листа бумаги полосу бесконечной длины в наравлении x, но конченой ширины, скажем 10 см, в направлении y. Теперь свернём эту полосу в бесконечный цилиндр, так чтобы ось цилиндра была направлена в направлении x. Получившийся цилиндр будет компактным (конечным) в направлении y и бесконечным в направлении x.
Сворачивание полосы в цилиндр
Если же вместо полосы шириной 10 см мы свернём в цилиндр полосу шириной 1 мкм (1/10 000 см), то такой цилиндр при взгляде на него невооружённым глазом будет выглядеть как одномерное пространство, как бесконечно тонкий «волос». И только положив его под микроскоп, мы сможем убедиться, что на самом деле поверхность этого цилиндра двумерная. Вот вам и пример того, как двумерное пространство можно замаскировать под одномерное.
Предположим далее, что мы уменьшили длину окружности цилиндра до планковской длины. Для таких размеров уже не существует микроскопа, способного разрешить второе измерение. Для всех практических целей это пространство будет одномерным. Процесс, позволяющий сделать некоторые из размерностей компактными, оставив остальные бесконечными, и называется компактификацией.
Теперь несколько усложним картину. Возьмём трёхмерное пространство с тремя координатными осями: x, y и z. Оставим x– и y-координаты простирающимися неограниченно, а z-координату свернём. Это трудно представить, но принципиально это не отличается от сворачивания полоски в цилиндр. Двигаясь в направлении x или y, вы можете удалиться неограниченно далеко, но двигаясь в направлении z, пройдя некоторое расстояние, возвратитесь в исходную точку. Если это расстояние микроскопически мало, то получившееся пространство будет выглядеть как двумерное.
Пойдём немного дальше и компактифицируем два измерения: y и z. На некоторое время полностью забудем про x-размерность и рассмотрим две оставшиеся. Для начала мы можем свернуть их в 2-сферу. В этом случае вы смогли бы сколь угодно далеко двигаться вдоль x-направления, а путешествие вдоль координат y и z будет похоже на путешествие по поверхности глобуса. Опять же, если этот «глобус» имеет микроскопические размеры, то получившееся пространство трудно будет без микроскопа отличить от одномерного. Как вы видите, действуя подобным образом, можно свернуть в компактное пространство какое угодно количество измерений.
2-сфера – это не единственный способ компактификации двух измерений. Ещё одним простым способом является использование для этой цели тора. Если 2-сфера представляет собой поверхность мяча, то тор – это поверхность бублика. Существует ещё множество других топологических форм, которые можно использовать для компактификации, но тор является наиболее общим случаем.
Вернёмся к цилиндру и представим частицу, движущуюся по его поверхности. Эта частица может неограниченно двигаться в любую сторону вдоль оси x, точно так же, как если бы это было одномерное пространство. При этом мы можем вычислить скорость, с которой движется частица. Но ведь частица может двигаться не только вдоль оси x, но и вдоль свёрнутой оси y. В этом скрытом микроскопическом направлении у частицы тоже будет какая-то скорость. Итак, частица может двигаться в x-направлении, в y-направлении или в обоих направлениях одновременно. В последнем случае движение частицы будет иметь форму микроскопического штопора, навитого на ось x. Частица будет двигаться в направлении x, одновременно вращаясь вокруг неё. Для наблюдателя, разрешающей способности приборов которого недостаточно, чтобы наблюдать движение в y-направлении, это дополнительное движение представляется в виде некоего особого свойства частицы. Частица, которая дополнительно движется в y-направлении, отличается от частицы, которая движется только в x-направлении, но причина этого различия скрыта от нас малостью y-измерения. Как бы мы могли интерпретировать это новое свойство частицы?
Идея существования в пространстве дополнительных ненаблюдаемых направлений отнюдь не нова. Впервые она появилась ещё в начале XX века, вскоре после завершения Эйнштейном общей теории относительности. Современник Эйнштейна Теодор Франц Эдуард Калуца задался именно этим вопросом: как повлияет на физические явления существование дополнительного крошечного измерения? В те времена были известны два фундаментальных физических взаимодействия: электромагнитное и гравитационное. Они во многом похожи, но эйнштейновская теория гравитации выглядела более глубокой, чем максвелловская электродинамика. Гравитация у Эйнштейна сводилась к геометрическому искажению пространства-времени, в то время как теория Максвелла выглядела произвольной надстройкой над физическим миром, не имеющей никаких фундаментальных причин быть именно такой, какая она есть. Но геометрия пространства-времени описывает только свойства гравитационного поля, и ничего более. Чтобы электричество и магнетизм можно было каким-то образом объединить с гравитацией, основные геометрические свойства пространства должны быть более сложными, чем это представлялось Эйнштейну.
Калуца совершил удивительное открытие. Если к обычным 3 + 1 измерениям добавить ещё одно свёрнутое измерение, то геометрия пространства-времени включит в себя не только гравитационное поле Эйнштейна, но и электромагнитное поле Максвелла: гравитация, электричество и магнетизм могут быть объединены в одну всеохватывающую теорию.
Блестящая идея Калуцы привлекла внимание Эйнштейна, который пришёл от неё в полный восторг. Согласно Калуце, частицы могут двигаться не только в трёх обычных измерениях, но и в четвёртом, скрытом. Он обнаружил, что если две частицы движутся в этом дополнительном измерении, то гравитационная сила, действующая между ними, претерпевает изменения, и самое удивительное, что эта добавка к гравитационной силе оказывается идентичной электрическому взаимодействию между двумя заряженными частицами. Более того, электрический заряд каждой частицы – это не что иное, как компонент импульса в дополнительном измерении. Если частицы вращаются в этом компактном измерении в одном направлении, то они отталкиваются друг от друга. Если они вращаются в противоположных направлениях, то они притягиваются. Но если хотя бы одна из двух частиц не вращается в дополнительном измерении, между ними остаётся лишь обычное гравитационное взаимодействие. В воздухе явно запахло возможностью объяснить, почему одни частицы, например электроны, имеют электрический заряд, а другие, скажем нейтрино, не имеют. Заряженные частицы попросту движутся в компактном измерении пространства, в то время как нейтральные частицы – нет. Это даже позволяло объяснить различия между электроном и его античастицей – позитроном. Электрон вращается в компактном измерении в одну сторону, скажем по часовой стрелке, а позитрон – против часовой стрелки.
Следующее озарение принесла квантовая механика. Подобно любым другим колебательным движениям движение в направлении компактной y-координаты квантовано. Частица не может двигаться вдоль оси y с произвольным значением проекции импульса на ось y. Оно может принимать только дискретные значения, так же как и в гармоническом осцилляторе или у электрона в атомной теории Бора. А это, в свою очередь, означает, что момент в y-измерении и, соответственно, заряд электрона не могут принимать произвольные значения. Электрический заряд в теории Калуцы квантован, он может выражаться только произведением заряда электрона на целое число. Заряд частицы может в два или в три раза превышать заряд электрона, но не может отличаться от него, например, в 1,88 или в 0,067 раза. И это радует. В реальном мире не обнаружено ни одного объекта, имеющего дробный (в единицах заряда электрона) заряд: все электрически заряженные тела имеют заряд, кратный заряду электрона.
Это потрясающее открытие, тем не менее, так и оставалось не более чем «интересной идеей» на протяжении всей оставшейся жизни Калуцы. Но для нашей книги оно имеет ключевое значение. Теория Калуцы продемонстрировала, как свойства частиц могут возникать из дополнительных пространственных измерений. И действительно, обнаружив, что теория струн требует шести дополнительных измерений, струнные теоретики вспомнили об идеях Калуцы. Достаточно просто свернуть шесть дополнительных измерений надлежащим образом, чтобы движением в них объяснить внутреннюю машинерию элементарных частиц.
Возможности теории струн гораздо богаче, чем теории точечных частиц. Вернёмся к цилиндру и предположим, что по его поверхности движется маленькая замкнутая струна. Начнём с цилиндра, окружность которого достаточно велика, чтобы видеть её невооружённым глазом. Маленькая замкнутая струна может двигаться по нему таким же образом, как и точечная частица: вдоль образующей цилиндра или вокруг его оси. В этом случае движение струны принципиально не отличается от движения точечной частицы. Но есть кое-что, на что струна способна, а точечная частица – нет. Струна может быть обёрнута вокруг цилиндра подобно резиновому кольцу, надетому на картонную трубку. Обёрнутая вокруг цилиндра струна отличается от необёрнутой. Резиновое кольцо можно надеть на цилиндр так, что оно будет оборачивать его дважды, трижды и т. д., пока оно не порвётся. Этот мысленный эксперимент приводит нас к новому свойству струн, которое в принципе отсутствует у точечных частиц, называемому числом кручения. Это число сообщает нам, сколько витков струны намотано на компактное измерение.
Число кручения является тем свойством частицы, которое невозможно понять, если наш микроскоп недостаточно силён, чтобы разрешать детали, имеющие размеры, сравнимые с размером компактного измерения. Как вы теперь понимаете, дополнительные измерения оказались благословением, а не проклятием для теории струн, поскольку они необходимы для объяснения сложных свойств элементарных частиц.
Двумерный цилиндр изобразить достаточно легко, но я сомневаюсь, чтобы кто-нибудь был в состоянии представить себе девятимерный мир, шесть измерений которого свёрнуты в крошечное шестимерное пространство. Но рисование картинок на листе бумаги или представление моделей в голове не единственный способ оперировать шестимерной геометрией теории струн. Часто геометрия может быть сведена к алгебре точно таким же способом, которым вы в школе описывали различные геометрические фигуры, например окружность или прямую, при помощи уравнений. Тем не менее даже самые мощные математические методы часто пасуют перед шестимерной геометрией.
Например, число возможных путей, по которым может катиться шарик по поверхности в шестимерной геометрии теории струн, исчисляется миллионами. Я не стану описывать эти пространства, а только сообщу, что они носят наименование пространств или многообразий Калаби – Яу в честь двух математиков, потративших массу усилий на их изучение. Я не знаю, с чего вдруг математики заинтересовались этими многообразиями, но они оказались чрезвычайно полезными для струнных теоретиков. К счастью, единственное, что следует знать про эти пространства для понимания дальнейшего материала, – это то, что они представляют собой очень сложные конструкции с сотнями дыр наподобие дыр от бублика и прочими особенностями.
Вернёмся к двумерному цилиндру. Длина окружности цилиндра характеризует так называемый масштаб компактификации. Для картонного цилиндра этот масштаб составляет несколько сантиметров, для теории струн он должен быть порядка нескольких планковских длин. Если вы решите, что этот масштаб слишком мал, чтобы иметь какое-то значение для тех вещей, которыми мы обычно занимаемся, то сильно ошибётесь. Хотя мы и не в состоянии наблюдать или измерять столь малые вещи, они имеют определяющее значение для обычной физики. Масштаб компактификации в теории Калуцы определяет величину электрического заряда частицы, например электрона. Другими словами, масштаб компактификации определяет величину различных констант, которые присутствуют в обычных законах природы. При изменении размера нашего цилиндра изменяются и Законы Физики. Если изменить величины скалярных полей, о которых я рассказывал в главе 1, Законы Физики тоже изменятся. Есть ли здесь какая-то связь? Безусловно! И сейчас мы о ней поговорим.
Чтобы задать свойства цилиндра, достаточно задать величину масштаба компактификации, но для других фигур этого недостаточно. Например, для описания тора необходимо задать три параметра. Попробуем себе это представить. Первым параметром является внешний размер тора. Тор можно увеличить или уменьшить, не изменяя его формы. Кроме того, тор может быть «тонким», как обруч, или «толстым», как пышка. Параметр, характеризующий толщину тора, называется аспектным отношением. Аспектное отношение определяется как отношение большого радиуса тора (определяющего внешний размер) к радиусу трубки. Для тонкого тора аспектное отношение велико, для толстого тора оно стремится к единице. Существует ещё один параметр, который достаточно трудно изобразить на рисунке. Представьте себе, что мы разрезали тор, так, чтобы получился цилиндр, после этого, взявшись за один из концов цилиндра, начали его закручивать относительно оси цилиндра, а потом снова соединили цилиндр в тор по линии разреза. Угол, на который мы закрутили цилиндр, и есть третий параметр. Я попытался это изобразить на третьей картинке.
Математики называют эти параметры, определяющие форму и размеры тора, модулями. Тор имеет три модуля, цилиндр – только один, но типичное многообразие Калаби – Яу характеризуется сотнями модулей. Возможно, вы догадались, к чему это приводит, но если нет, то я объясню: это приводит к невероятному разнообразному и сложному ландшафту.
Одним из очень важных вопросов является возможность изменения размера и формы компонента пространства от одной точки к другой. Представьте себе криво склеенный цилиндр. Предположим, что при перемещении по поверхности этого цилиндра её кривизна постоянно изменяется. Цилиндр в одних местах толще, в других – тоньше.
Имейте в виду, что даже если цилиндр очень тонок, слишком тонок, чтобы обнаружить это компактное измерение, размер этого измерения всё равно будет определять различные константы связи и массы. Очевидно, что, перемещаясь вдоль такого цилиндра, мы будем перемещаться по миру, в котором законы природы изменяются от одной точки к другой. Что в этом случае скажет обычный физик, который не в состоянии обнаружить свёрнутое измерение? Он скажет, что условия в разных точках пространства различны. Для него это будет выглядеть как присутствие неких скалярных полей, управляющих величиной заряда электрона и массами частиц, и эти поля будут изменяться от точки к точке. Другими словами, модули формируют некое подобие ландшафта – ландшафта в сотнях измерений.
Пространство Калаби – Яу намного более сложно, чем круглое сечение цилиндра, но принцип остаётся тем же: размер и форма компактифицированного пространства может варьироваться в зависимости от положения в пространстве, как если бы у нас были сотни скалярных полей, управляющих Законами Физики! Теперь мы начинаем понимать, почему настолько сложен ландшафт теории струн.
Элегантная суперсимметричная Вселенная?
Реальные принципы, лежащие в основе теории струн, окутаны большой тайной. Почти всё, что мы знаем о теории, включает в себя особую часть ландшафта, где математика удивительно упрощается благодаря свойству, называемому суперсимметрией. Суперсимметричные области ландшафта образуют идеально плоскую равнину, располагающуюся на высоте, в точности равной нулю, со свойствами, настолько симметричными, что многие вещи могут быть вычислены без информации обо всём ландшафте. Если кто-то искал простоту и элегантность, то плоская равнина суперсимметричной теории струн, известной также как теория суперструн, является именно тем местом, на которое им стоит обратить внимание. В самом деле, пару лет назад это место было единственным, на которое обращали внимание струнные теоретики. Но кое-кто из физиков уже стряхнул с себя чарующее наваждение и пытается избавиться от элегантных упрощений супермира. Причина проста: реальный мир не суперсимметричен.
Мир, содержащий Стандартную модель и малую ненулевую космологическую постоянную, не может находиться на плоскости нулевой высоты. Он лежит где-то в неровном районе Ландшафта с холмами, долинами, высокими плато и крутыми склонами. Но есть основания считать, что наша долина близка к суперсимметричной части Ландшафта и что какие-то остатки математического суперчуда могли бы помочь нам понять особенности эмпирического мира. Одним из примеров, который мы разберём в этом разделе, является масса бозона Хиггса. Фактически все открытия, благодаря которым появилась на свет эта книга, представляют собой первые робкие попытки отойти от безопасной суперсимметричной равнины.
Суперсимметрия говорит нам о различиях и сходствах бозонов и фермионов. Как многое другое в современной физике, принципы суперсимметрии прослеживаются вплоть до первых работ Эйнштейна. В 2005 год мы отметили столетие «anno mirabilis» – года чудес современной физики. Эйнштейн начал в этом году две революции и завершил третью.[78] Безусловно, это был год специальной теории относительности. Но мало кто знает, что 1905 год был гораздо больше чем «годом относительности». Он также ознаменовал рождение фотонов, начало современной квантовой механики.
Эйнштейн получил только одну Нобелевскую премию по физике, хотя я думаю, что каждая Нобелевская премия, вручаемая после 1905 года, несла в себе отголоски открытий Эйнштейна. Нобелевская премия была присуждена Эйнштейну не за создание теории относительности, а за объяснение фотоэффекта. Именно теория фотоэффекта была наиболее радикальным вкладом Эйнштейна в физику, где он впервые ввёл понятие фотонов, квантов энергии, из которых состоит свет. Физика была уже готова разродиться специальной теорией относительности, её создание было лишь вопросом времени, в то время как фотонная теория света прогремела как гром среди ясного неба. Эйнштейн показал, что луч света, обычно представляемый как волновое явление, имеет дискретную структуру. Если свет имеет определённый цвет (длину волны), то все фотоны как бы маршируют в ногу: каждый фотон идентичен любому другому. Частицы, которые могут одновременно находиться в одном и том же квантовом состоянии, называются бозонами в честь индийского физика Шатьендраната Бозэ.
Почти двадцать лет спустя, завершая здание, заложенное Эйнштейном, Луи де Бройль покажет, что электроны, всегда воспринимаемые как частицы, ведут себя в то же самое время и как волны. Подобно волнам электроны способны отражаться, преломляться, дифрагировать и интерферировать. Но есть фундаментальное различие между электронами и фотонами: в отличие от фотонов два электрона не могут одновременно находиться в одном и том же квантовом состоянии. Принцип запрета Паули гарантирует, что каждый электрон в атоме имеет своё собственное квантовое состояние и что ни один другой электрон не может сунуть свой нос на уже занятое место. Даже вне атома два идентичных электрона не могут находиться в одном и том же месте или иметь один и тот же импульс. Частицы этого рода называются фермионами по имени итальянского физика Энрико Ферми, хотя по справедливости они должны называться паулионами. Из всех частиц Стандартной модели около половины являются фермионами (электроны, нейтрино и кварки), а другая половина представлена бозонами (фотоны, Z и W-бозоны, глюоны и бозон Хиггса).
Фермионы и бозоны играют разные роли в картине мира. Обычно мы представляем материю состоящей из атомов, то есть из электронов и ядер. В первом приближении ядра состоят из протонов и нейтронов, удерживаемых вместе ядерными силами, но на более глубоком уровне протоны и нейтроны оказываются собранными из небольших строительных блоков – кварков. Все эти частицы – электроны, протоны, нейтроны и кварки – являются фермионами. Материя состоит из фермионов. Но без бозонов атомы, ядра, протоны и нейтроны просто развалятся. Эти бозоны, в первую очередь фотоны и глюоны, прыгая взад-вперёд между фермионами, создают силы притяжения, удерживающие всё вместе. Хотя фермионы и бозоны критически важны для того, чтобы мир был таким, каков он есть, они всегда считались «животными разной породы».
Но примерно в начале 1970-х вдохновлённые первыми успехами теории струн теоретики начали играться с новыми математическими идеями, согласно которым фермионы и бозоны на самом деле не настолько различны. Одна из идей состояла в том, что все частицы образуют идеальные пары идентичных близнецов, одинаковых во всех отношениях, за исключением того, что один из них является фермионом, а другой – бозоном. Это была совершенно дикая гипотеза. Её справедливость для реального мира означала бы, что физики умудрились каким-то образом потерять половину всех элементарных частиц, не сумев обнаружить их в своих лабораториях. Например, согласно этой гипотезе, должна существовать частица с точно такой же массой, зарядом и прочими свойствами, как у электрона, только являющаяся не фермионом, а бозоном. Как можно было не заметить такую частицу на ускорителях Стэнфорда или ЦЕРНа? Суперсимметрия предполагает существование у фотона безмассового нейтрального близнеца-фермиона, а также близнецов-бозонов у электронов и кварков. То есть гипотеза предсказывала целый мир таинственно пропавших без вести «противоположностей». На самом деле вся эта работа была лишь математической игрой, чисто теоретическими исследованиями нового вида симметрии – мира, которого нет, но который мог бы существовать.
Идентичных частиц-близнецов не существует. Физики не лажанулись и не проворонили целый параллельный мир. Какой же интерес в таком случае представляет эта математическая спекуляция и почему этот интерес вдруг усилился за последние 30 лет? Физиков всегда интересовали всевозможные математические симметрии, даже если единственный разумный вопрос, который можно было при этом задать: «Почему этой симметрии нет в природе?» Но и реальный мир, и его физическое описание полны разнообразных симметрий. Симметрия является одним из наиболее дальнобойных и мощных орудий в арсенале теоретической физики. Она пронизывает все разделы современной физики, и особенно те, которые связаны с квантовой механикой. Во многих случаях тип симметрии – это всё, что мы знаем о физической системе, но анализ симметрии является настолько мощным методом, что зачастую сообщает нам почти всё, что мы хотим знать. Симметрии нередко являются тем садом, в котором физики находят эстетическое удовлетворение от своих теорий. Но что такое симметрии?
Начнём со снежинки. Любой ребёнок знает, что не существует двух одинаковых снежинок, но вместе с тем все они имеют общую особенность, а именно симметрию. Симметрия снежинки сразу бросается в глаза. Если вы возьмёте снежинку и повернёте её на произвольный угол, то она будет выглядеть отличной от своего первоначального вида – повёрнутой. Но если повернуть снежинку ровно на 60°, то она совпадёт сама с собой. Физик мог бы сказать, что поворот снежинки на 60° является симметрией.
Симметрии связаны с операциями или преобразованиями, которые можно выполнять над системой, не влияя на результат эксперимента. В случае снежинки такой операцией является поворот на 60°. Вот ещё один пример: предположим, что мы ставим эксперимент, имеющий целью измерение ускорения свободного падения на поверхности Земли. Простейшим вариантом было бы уронить камень с известной высоты и измерить время его падения. Ответ: около 10 метров в секунду за секунду. Обратите внимание, что я не беспокоюсь о том, чтобы сообщить вам, где я уронил камень: в Калифорнии или в Калькутте. В очень хорошем приближении ответ будет одним и тем же в любом месте на поверхности Земли: результат эксперимента не изменится, если вы переместитесь со всем экспериментальным оборудованием с одного места земной поверхности на другое. На физическом жаргоне сдвиг или перемещение чего-либо из одной точки в другую называется трансляцией. Поэтому о гравитационном поле Земли мы можем сказать, что оно обладает «трансляционной симметрией». Конечно, некоторые побочные эффекты могут внести возмущения в результаты нашего эксперимента и испортить симметрию. Например, проведя эксперимент над очень большими и массивными месторождениями полезных ископаемых, мы получим немного большее значение, чем в других местах. В этом случае мы бы сказали, что симметрия является только приблизительной. Приблизительную симметрию называют также нарушенной симметрией. Наличие отдельных залежей тяжёлых минералов «нарушает трансляционную симметрию».
Может ли симметрия снежинки быть нарушенной? Без сомнения, некоторые снежинки несовершенны. Если снежинка формируется в неидеальных условиях, то одна её сторона может отличаться от другой. Она всё ещё будет иметь форму, близкую к шестиугольной, но этот шестиугольник будет несовершенным, то есть его симметрия будет нарушена.
В космическом пространстве, вдали от каких-либо возмущающих влияний, мы могли бы измерить гравитационную силу между двумя массами и получить ньютоновский закон всемирного тяготения. Независимо от того, где проведён эксперимент, мы, по идее, должны получить один и тот же ответ. Таким образом, ньютоновский закон всемирного тяготения обладает трансляционной инвариантностью.
Для измерения силы притяжения между двумя объектами необходимо расположить их на некотором расстоянии друг друга. Например, мы можем расположить два объекта так, что соединяющая их прямая будет параллельна оси x в некоторой заданной системе координат. С равным успехом мы можем расположить объекты на прямой, параллельной оси y. Будет ли измеряемая нами сила притяжения зависеть от направления прямой, соединяющей эти объекты? В принципе, да, но только если законы природы отличаются от тех, которые у нас есть. В природе же закон всемирного тяготения утверждает, что сила притяжения пропорциональна произведению масс и обратно пропорциональна квадрату расстояния между ними и она не зависит от ориентации одного объекта относительно другого. Независимость от направления называется вращательной симметрией. Трансляционная и вращательная симметрии являются важнейшими фундаментальными свойствами мира, в котором мы живём.
Посмотрите в зеркало. Ваше отражение как две капли воды похоже на вас. Зеркальное отражение ваших брюк ничем не отличается от самих брюк. Отражение левой перчатки в точности повторяет левую перчатку.
Стоп. Что-то тут не так. Давайте посмотрим ещё раз внимательно. Зеркальное отражение левой перчатки не во всём идентично левой перчатке. Оно идентично правой перчатке! А зеркальное отражение правой перчатки идентично левой перчатке.
Теперь присмотритесь внимательнее к собственному отражению. Это не вы. Родинка, которая у вас находится на левой щеке, у вашего отражения находится на правой. А если бы вы вскрыли собственную грудную клетку, то обнаружили бы, что сердце у вашего отражения находится не слева, как у всех нормальных людей, а справа. Давайте назовём зеркального человека – .
Предположим, что у нас есть футуристическая технология, позволяющая собрать любой объект, какой мы только захотим, из отдельных атомов. Построим с помощью этой технологии человека, чьё зеркальное изображение будет в точности повторять вас: сердце слева, веснушка слева и т. д. Тогда оригинал, который мы построим, будет представлять собой .
Будет ли нормально функционировать? Будет ли он дышать? Будет ли биться его сердце? Если дать ему конфету, будет ли он усваивать сахар, входящий в её состав? Ответы на большинство из этих вопросов утвердительные. В основном будет функционировать точно так же, как и человек. Но с его метаболизмом возникнут проблемы. Он не сможет усваивать обычный сахар. Причина состоит в том, что сахар существует в двух зеркальных формах, как правая и левая перчатки. Человек способен усваивать только одну из зеркальных форм сахара. А способен усваивать только . Молекулы – сахар и – отличаются друг от друга так же, как правая и левая перчатка. Химики называют обычные сахара, которые способен усваивать человек, D-изомерами (от латинского dextra – правый), а зеркальные им, которые способен усваивать только , – L-изомерами (от латинского lvum – левый).
Замена чего бы то ни было на его зеркальное отражение называется зеркальной симметрией, или чётностью. Последствия зеркального отражения, в принципе, очевидны, но давайте повторим ещё раз одну важную вещь: если всё в мире заменить на его зеркальное отражение, то поведение этого мира никоим образом не изменится и не будет отличаться от поведения нашего мира.
В действительности зеркальная симметрия не является точной. Она представляет собой хороший пример нарушенной симметрии. Что-то приводит к тому, что зеркальное отражение нейтрино оказывается во много раз тяжелее оригинала. Это относится и ко всем остальным частицам, хотя и в гораздо меньшей степени. Похоже на то, что великое мировое зеркало слегка кривое, оно немного искажает отражение. Но это искажение настолько незначительно, что практически не отражается на обычной материи. А вот в поведении высокоэнергетических частиц в зеркальном мире могут произойти весьма существенные изменения. Однако давайте до поры до времени делать вид, что зеркальная симметрия в природе является точной.
Что мы имеем в виду, когда говорим, что между частицами существует отношение симметрии? В двух словах, это означает, что у частицы каждого типа существует партнёр или близнец с очень похожими свойствами. Для зеркальной симметрии это означает, что если законы природы допускают существование левой перчатки, то возможно и существование правой. Установление факта существования D-глюкозы означает, что должна существовать и L-глюкоза. И если зеркальная симметрия не будет нарушена, то же самое должно касаться и всех элементарных частиц. У каждой частицы должен существовать близнец, идентичный ей с точностью до зеркального отражения. При зеркальном отражении человека каждая элементарная частица, составляющая его тело, заменяется её зеркальным близнецом.
Антивещество представляет собой ещё один вид симметрии, называемый симметрией зарядового сопряжения. Поскольку симметрия предполагает замену всего на его симметричный аналог, симметрия зарядового сопряжения предполагает замену каждой частицы её античастицей. Она меняет положительные электрические заряды, например протоны, на отрицательные, в данном случае антипротоны. Аналогично отрицательно заряженные электроны заменяются положительно заряженными позитронами. Атомы водорода заменяются атомами антиводорода, состоящими из позитронов и антипротонов. Подобные атомы действительно получены в лабораториях, правда, в очень небольшом количестве, недостаточном даже для того, чтобы построить из них антимолекулы. Но никто не сомневается в том, что антимолекулы возможны. Точно так же возможны и антилюди, но не забывайте, что кормить их придется антипищей. На самом деле лучше держать антилюдей и обычных людей подальше друг от друга. Когда вещество встречается с антивеществом, они взаимоуничтожаются, превращаясь в фотоны. Взрыв, который произойдёт, если вы случайно пожмёте руку античеловеку, будет посильнее взрыва водородной бомбы.
Как выяснилось, симметрия зарядового сопряжения также является слегка нарушенной. Но, как и в случае с зеркальной симметрией, эффект от этого нарушения оказывается совершенно незначительным, если не принимать в расчёт частицы очень высоких энергий. Теперь вернёмся к фермионам и бозонам. Исходная, самая первая теория струн, которую разработали мы с Намбу, называется теорией бозонных струн, потому что все описываемые ею частицы являются бозонами. Она не вполне подходит для описания адронов, ведь, в конце концов, протон – это фермион. Точно так же она не годится и на роль теории всего. Электроны, нейтрино, кварки – все являются фермионами. Но прошло совсем не мног времени, и появилась новая версия теории струн, которая уже содержала не только бозоны, но и фермионы. И одним из замечательных математических свойств этой так называемой теории суперструн была суперсимметрия – симметрия между бозонами и фермионами, требующая, чтобы у каждого фермиона существовал близнец-бозон, обладающий точно такими же свойствами, и наоборот.
Суперсимметрия оказалась незаменимым и чрезвычайно мощным математическим инструментом для струнных теоретиков. Без него математика оказывается настолько сложной, что установить факт согласованности теории очень трудно. Почти все заслуживающие доверия теории, претендующие на описание реального мира, являются суперсимметричными. Но, как я уже подчеркнул, суперсимметрия в природе не является точной симметрией. В лучшем случае это довольно сильно нарушенная симметрия, напоминающая отражение мира в чрезвычайно кривом зеркале. До сих пор ни для одной из известных элементарных частиц не обнаружено суперпартнёра. Если бы в природе существовал бозон с такими же массой и зарядом, как у электрона, он бы уже давно был открыт. Тем не менее если вы откроете веб-браузер и поищете в интернете статьи по физике элементарных частиц, вы обнаружите, что начиная с середины 1970-х годов в подавляющем числе работ так или иначе используется суперсимметрия. Почему? Почему теоретики до сих пор не выбросили суперсимметрию в мусорную корзину вместе с теорией суперструн? Тому есть несколько причин.
Предмет, который когда-то назывался высокоэнергетической теоретической физикой элементарных частиц, давно уже разделился на две дисциплины: теоретическую и феноменологическую. Если вы введёте в адресной строке своего браузера URL http://arXiv.org, то попадёте на сайт, где физики публикуют препринты своих статей. Различные дисциплины подразделяются там на ядерную физику, физику конденсированных сред и т. д. Если вы перейдёте в раздел высокоэнергетической физики (hep), то найдёте там два отдельных архива: один (hep-ph) содержит феноменологические, а второй (hep-th) – теоретические и математические статьи. Заглянув в эти архивы, вы увидите, что раздел hep-ph содержит статьи по вопросам традиционной физики элементарных частиц, содержащие либо результаты проведённых, либо описание планируемых экспериментов. Обычно в этих статьях присутствует большое количество таблиц и графиков. В противоположность этому, в разделе hep-th присутствуют по большей части статьи по теории струн и гравитации. Они полны математических выкладок и имеют очень слабое отношение к экспериментам. Однако в последние годы границы между этими двумя дисциплинами всё сильнее размываются, что, на мой взгляд, является хорошим знаком.
Но в обоих разделах большинство статей так или иначе имеют отношение к суперсимметрии. У представителей каждого имеются на то собственные резоны. Для чистых теоретиков таким резоном является математика – использование суперсимметрии приводит к потрясающему упрощению математических выкладок и позволяет получать решение задач, разобраться с которыми другими методами было бы невероятно трудно. Помните, в главе 2 я говорил о том, что космологическая постоянная будет в точности равна нулю, если у всех частиц будут суперсимметричные партнёры? Это одно из математических чудес, появляющихся в суперсимметричных теориях. Мне не хотелось бы тут их описывать, но главное то, что суперсимметрия настолько упрощает расчёты в квантовой теории поля и теории струн, что теоретикам становятся доступны такие вещи, которые в противном случае они вряд ли смогли бы вывести. И пусть реальный мир не суперсимметричен, но суперсимметрия позволяет понять некоторые из существующих явлений, например чёрные дыры. Любая теория, включающая гравитацию, описывает и чёрные дыры. Они обладают парадоксальными и таинственными свойствами, о которых мы поговорим позже. Возможные варианты разрешения этих парадоксов слишком сложны для проверки в обычных теориях. И тут, словно по волшебству, существование суперпартнёров делает изучение чёрных дыр необычайно простым. Особенно ценно это упрощение для струнных теоретиков. Математика теории струн, как это сейчас принято, почти полностью полагается на суперсимметрию. Даже многие старые квантово-механические расчёты поведения кварков и глюонов существенно упрощаются при добавлении суперпартнёров. Суперсимметричный мир – это не реальный мир (по крайней мере, в нашей карманной Вселенной), но этот мир достаточно близок к нашему, чтобы извлечь из его изучения множество уроков относительно гравитации и физики элементарных частиц.
Хотя конечные цели «хепферов» и «хептеров»[79] совпадают, текущие задачи феноменологов и струнных теоретиков различаются. Феноменологи используют старые методы теоретической физики и иногда новые идеи теории струн для описания Законов Физики в том плане, как они понимались на протяжении большей части XX века. Как правило, они не пытаются построить теорию, единственным подтверждением правильности которой была бы её математическая полнота. Не пытаются они и построить единую теорию. Суперсимметрия интересует их лишь как приближение к нарушенной симметрии природы для поиска чего-то, что может затем быть обнаружено в лабораторных экспериментах. Наиболее важным открытием для них было бы обнаружение отсутствующих суперпартнёров.
Как вы помните, нарушенная симметрия не является совершенной. В идеальном зеркале объект и его отражение полностью идентичны с точностью до замены правого на левое, но в кривом зеркале из комнаты смеха симметрия несовершенна. Такое отражение, возможно, годится лишь для того, чтобы опознать объект, но при этом оно является сильно искажённой копией. Изображение худого человека в таком зеркале может выглядеть как изображение толстяка, весящего в несколько раз больше, чем его худой двойник.
В аттракционе кривых зеркал, называемом нашей Вселенной, зеркало суперсимметрии вносит в отражение частиц огромные искажения, настолько огромные, что суперпартнёры обычных частиц выглядят в нём невероятными толстяками. Если они существуют, то должны быть во много раз тяжелее обычных частиц. До сих пор не обнаружено ни одного суперпартнёра: ни суперпартнёра электрона, ни суперпартнёра фотона, ни суперпартнёра кварка. Означает ли это, что их совсем не существует и что суперсимметрия – всего лишь бесполезная математическая игра? Возможно, что и так, но это также может означать, что искажение настолько велико, что суперпартнёры слишком тяжелы и энергии современных ускорителей частиц недостаточно для их обнаружения. Если по каким-то причинам массы суперпартнёров превышают несколько сотен масс протона, их действительно не удастся обнаружить, пока не будет построено следующее поколение ускорителей.
Все суперпартнёры имеют названия, похожие на названия их обычных близнецов. Эти названия нетрудно запомнить, если знать правило. Если обычная частица является бозоном, например фотоном или бозоном Хиггса, то название её суперпартнёра образуется добавлением суффикса «ино». Например, фотино, хигсино или глюино. Если же исходная частица является фермионом, то название суперпартнёра образуется добавлением приставки «с», например, сэлектрон, смюон, снейтрино, скварк и т. п. Это последнее правило породило самые уродливые названия, которые только можно встретить в физике.
В науке существует устоявшееся мнение, что новые открытия поджидают нас буквально «за углом». Если попытки обнаружить суперпартнёров в области нескольких сотен масс протона потерпят неудачу, оценки, скорее всего, будут пересмотрены и обнаружение суперчастиц будет отложено до постройки ускорителей, позволяющих генерировать частицы с массами в тысячу масс протона… или в десять тысяч масс протона. Не напоминает ли это попытки выдать желаемое за действительное? Я так не думаю. Суперсимметрия может оказаться ключом к загадке частиц Хиггса, и сама проблема, возможно, связана с Матерью всех физических проблем и с загадкой необъяснимой слабости гравитационного взаимодействия.
Та же самая квантовая дрожь, которая приводит к необъяснимо высокой энергии вакуума, может оказаться ответственной и за массы элементарных частиц. Предположим, что мы поместили частицу в дрожащий вакуум. Взаимодействуя с квантовыми флуктуациями, частица будет вносить возмущения в них в непосредственной близости от своего местоположения. Одни частицы будут гасить квантовые флуктуации, другие – усиливать их. Суммарным эффектом может стать изменение энергии этих флуктуаций. Эту дополнительную энергию, возникающую из-за присутствия частицы, можно интерпретировать как некую дополнительную массу (вспомните о E = mc2). Наиболее характерным примером является попытка рассчитать таким образом массу бозона Хиггса. При этом получается совершенно абсурдный результат, похожий на результат попытки оценить энергию вакуума. Вакуумная дрожь в окрестности бозона Хиггса приводит к добавке, имеющей порядок планковской массы!
Почему это нас так беспокоит? Хотя обычно теоретики фокусируются исключительно на бозоне Хиггса, описанная проблема относится ко всем элементарным частицам, за исключением фотона и гравитона. Любая частица, помещённая во флуктуирующий вакуум, приобретает ненормально большую массу. Но если все частицы увеличат свои массы, то всё вещество Вселенной станет во много раз тяжелее и гравитационные силы, действующие между телами, возрастут на много порядков. А мы помним, что даже незначительно увеличение гравитационной постоянной приведёт к полностью необитаемой Вселенной. Эту дилемму принято называть проблемой массы Хиггса, и она является ещё одной проблемой тонкой настройки Законов Физики, которую пытаются решить теоретики. Проблема массы Хиггса очень похожа на проблему малости космологической постоянной. Но какое отношение обе эти проблемы имеют к суперсимметрии?
Помните, как во второй главе я рассказывал о том, что фермионы и бозоны вносят противоположные вклады в энергию вакуумных флуктуаций и если бы их вклады удалось уравнять, это решило бы проблему энергии вакуума? Это верно и для нежелательных дополнительных масс частиц. В суперсимметричном мире огромный вклад квантовых флуктуаций можно приручить, оставив массы частиц невозмущёнными. Более того, даже нарушенная суперсимметрия могла бы облегчить проблему, если бы это нарушение было бы не слишком сильным. Это основная причина, по которой физики, изучающие элементарные частицы, надеются, что суперсимметрия ждёт их «за углом». Следует, однако, заметить, что нарушенная суперсимметрия всё равно не может объяснить столь невероятно малое значение космологической постоянной.
Проблема массы Хиггса похожа на проблему энергии вакуума ещё с одной стороны. Вайнберг показал, что жизнь не может существовать в мире со слишком большой энергией вакуума, и то же самое верно и для мира со слишком тяжёлыми элементарными частицами. Возможно, решение проблемы массы Хиггса лежит не в суперсимметрии, а в огромном разнообразии Ландшафта и антропной необходимости в небольшом значении этой массы. В течение нескольких лет мы сможем узнать, действительно ли суперсимметрия ждёт нас «за углом» или это мираж, который постоянно отступает при нашем приближении.
Один из вопросов, который неприлично задавать теоретикам, звучит так: «Если суперсимметрия настолько замечательна, элегантна и математически совершенна, почему мир не суперсимметричен? Почему мы не живём в столь элегантной Вселенной, которую струнные теоретики любят больше всего на свете?» Может ли причина заключаться в антропном принципе?
Наибольшая угроза для жизни в идеально суперсимметричной Вселенной исходит не со стороны космологии, а скорее со стороны химии. В суперсимметричной Вселенной каждый фермион имеет близнеца-бозона точно такой же массы – в этом и состоит проблема. Её виновниками являются суперпартнёры электрона и фотона. Эти две частицы, называемые сэлектроном (тьфу, язык сломаешь!) и фотино, вступают в тайный сговор с целью уничтожения всех обычных атомов.
Возьмём атом углерода. Химические свойства углерода в основном определяются его валентными электронами – наиболее слабо связанными электронами внешней оболочки. Но в суперсимметричном мире внешний электрон может излучать фотино и превратиться в сэлектрон. Безмассовый фотино улетает со скоростью света, оставляя сэлектрон заменять в атоме обычный электрон. А это большая проблема: сэлектрон, будучи бозоном, не подчиняется принципу запрета Паули и падает на самую низкую орбиту. За очень короткое время все электроны станут сэлектронами и окажутся на самой нижней орбите. До свидания, химические свойства углерода, прощайте, все прочие молекулы, необходимые для жизни! Суперсимметричный мир может быть очень элегантным, но он не способен поддерживать жизнь – по крайней мере, жизнь того типа, которую мы знаем.
Вернувшись на веб-сайт http://arXiv.org, вы найдёте там ещё два архива: General Relativity and Quantum Cosmology (Общая теория относительности и квантовая космология) и Astrophysics (Астрофизика). В статьях, публикуемых в этих разделах, суперсимметрия играет менее заметную роль. Почему космолог должен обращать какое-то внимание на суперсимметрию, если мир не является суперсимметричным? Ответом может служить переиначенная фраза Билла Клинтона: «Это Ландшафт, идиот!»[80] Несмотря на то что симметрия может быть частично нарушена, в большей или меньшей степени, в нашей маленькой домашней долине, это не значит, что симметрия нарушается во всех уголках Ландшафта. Та часть ландшафта теории струн, которую мы лучше всего изучили, является регионом, где суперсимметрия точная и ненарушенная. Пространство, называемое суперсимметричным пространством модулей (или пространством супермодулей), представляет собой часть ландшафта, где каждый фермион имеет свой бозон и каждый бозон имеет собственный фермион. Как следствие, энергия вакуума строго равна нулю во всём пространстве супермодулей. Топографически это означает, что данная часть ландшафта представляет собой плоскую равнину, лежащую на нулевой высоте. Большая часть того, что мы знаем о теории струн, зиждется на нашем 35-летнем опыте изучения этой равнины. Разумеется, это также означает, что некоторые карманы Мегаверсума должны быть суперсимметричными. Но ни один суперструнный теоретик не смог бы насладиться жизнью в одном из этих карманов.
Волшебная, таинственная и удивительная М-теория
Начиная с 1985 года теория струн, называемая теперь теорией суперструн,[81] существует в пяти версиях. Две из них наряду с закрытыми (замкнутыми) струнами содержат ещё и открытые (струны с двумя свободными концами), а три другие – только замкнутые. Названия этих пяти теорий не являются особо содержательными, но я их перечислю. Две теории с открытыми струнами называются теориями типа I. Три оставшиеся, содержащие только закрытые струны, известны как теория типа IIa, теория типа IIb и гетеротическая теория струн. Различия между ними носят слишком технический характер, и я боюсь, что их описание будет скучным для читателя. Но одна общая для всех этих теорий вещь гораздо интереснее, чем каждое из различий. Хотя некоторые теории содержат открытые струны, а некоторые – нет, все пять версий содержат закрытые струны.
Чтобы вы в полной мере смогли оценить, почему это так интересно, я должен пояснить, что именно разочаровывало исследователей во всех предыдущих теориях. В обычные теории – например, в квантовую электродинамику или в Стандартную модель, – гравитация добавлялась как «опция», как «плагин». Можно было либо игнорировать гравитацию, либо добавить её в готовое блюдо как специю. Рецепт прост: возьмите Стандартную модель и добавьте в неё ещё одну частицу – гравитон. Пусть гравитон будет безмассовым. Добавьте также несколько новых вершин в фейнмановскую диаграмму, чтобы любая частица могла испускать гравитоны. Блюдо готово. Но получившаяся теория работает не очень хорошо. Математика оказывается сложной и слишком чувствительной к малым возмущениям, и в конце концов фейнмановские диаграммы, содержащие гравитоны, превращаются в фарш из расчётов: все результаты оказываются бесконечными, и нет никакого способа придать этой теории хоть какой-нибудь смысл.
Мне кажется, что в каком-то смысле это хорошо, что простой путь завёл в тупик. В нём нет и намёка на объяснение свойств элементарных частиц. Он не даёт никакого объяснения, почему Стандартная модель именно такая, и он ничего не проясняет в вопросе тонкой настройки космологической постоянной или массы Хиггса. Откровенно говоря, если бы это работало, было бы очень обидно.
Но пять теорий струн вносят в этот вопрос полную ясность: они просто не могут быть сформулированы без гравитации. Гравитация в них – это не произвольная надстройка, а неизбежный результат. Теория струн, чтобы быть последовательной, обязана содержать гравитоны и силы, переносчиками которых они являются. Причина проста: гравитон – это закрытая струна, легчайшая из всех возможных. Открытые струны не являются обязательными для теории, но закрытые присутствуют всегда. Предположим, что мы пытаемся создать теорию, содержащую только открытые струны. Если бы мы добились успеха, то получили бы теорию струн без гравитации. Но мы успеха не добьёмся никогда, потому что два конца открытой струны всегда могут найти друг друга и замкнуться. Обычные теории оказываются самосогласованными только при отсутствии гравитации, в то время как теории струн согласуются, только если они включают гравитацию. Этот факт больше, чем любой другой, придаёт струнным теоретикам уверенность, что они находятся на верном пути.
Четыре теории, обозначаемые как тип I и тип II, были разработаны в 1970-х годах. И каждая из них имела фатальный дефект, относящийся не к внутренней математической согласованности, а к согласию теорий с экспериментальными данными. Каждая из теорий описывала возможный мир. Но ни один из этих миров не соответствовал нашему реальному миру. Поэтому пятая версия, разработанная в Принстоне в 1985 году, вызвала большое брожение умов. Эта версия получила название гетеротической теории струн, и её появление было воплощением всех мечтаний теоретиков. Она выглядела как реальная теория реального мира. Её успех был провозглашён неминуемым.
Но даже тогда были причины выдвинуть к этой теории ряд претензий. Во-первых, по-прежнему оставалась проблема слишком большого количества измерений: девяти пространственных и одного временного. Но теоретики уже знали, что делать с лишними шестью измерениями. Они приказали им: «Свернись!» Однако оставались ещё миллионы возможных вариантов многообразий Калаби – Яу, каждый из которых приводит к согласованной теории. А ещё хуже то, что даже после того, как вы выбрали один конкретный вариант многообразия Калаби – Яу, в качестве свободных параметров остаются сотни модулей, определяющих его форму и размер. И эти модули тоже приходится выбирать самому теоретику. Кроме того, все известные теории были суперсимметричными: в каждой из них присутствовали частицы-близнецы, которые, как мы знаем, отсутствуют в реальном мире.
Тем не менее струнные теоретики были настолько ослеплены мифом об однозначности, что на протяжении 1980-х и в начале 1990-х годов продолжали утверждать, что существуют только пять вариантов теории струн. В их воображении ландшафт был очень разрежен – содержал только пять точек! Конечно же, это был полный нонсенс, поскольку каждая компактификация характеризуется огромным количеством переменных модулей, но тем не менее физики с редким упорством держались за идею-фикс, что существуют только пять различных теорий. Даже если бы и в самом деле существовали только пять возможных теорий, по какому принципу следует выбирать ту единственную, которая описывает реальный мир? Идей не было. Но в 1995 году состоялся прорыв – не в поиске правильной версии теории для описания реального мира, но в понимании связи между различными версиями.
Университет Северной Каролины, 1995
Каждый год в конце весны – начале лета мировые струнные теоретики собираются на ежегодный джамбори. Американцы, европейцы, японцы, корейцы, индийцы, пакистанцы, израильтяне, латиноамериканцы, китайцы, мусульмане, ортодоксальные иудеи, индуисты, верующие и атеисты, – мы все съезжаемся на неделю, чтобы послушать друг друга и поделиться свежими идеями. И почти все четыре или пять сотен участников знакомы друг с другом.
Учёные старшего поколения – все, как правило, старые друзья. Встречаясь, они делают то, что всегда делают физики: читают и слушают лекции по самым животрепещущим проблемам. А потом устраивают банкет.
1995 год стал незабываемым, по крайней мере для меня, по двум причинам. Первая причина состояла в том, что я был спикером на банкете. Второй причиной стало событие исторического значения для собравшихся там людей: Эд Виттен прочёл лекцию о впечатляющем прогрессе в наших исследованиях, очертив огромное поле совершенно новых направлений. К сожалению, лекция Виттена прошла мимо меня, но не потому, что я не смог на ней присутствовать, а потому, что я был занят мыслями о своей предстоящей банкетной речи.
То, о чём я собирался говорить, должно было взорвать вечер возмутительной гипотезой о том, что сегодняшние физики, возможно, были бы в состоянии выдвинуть революционные теории, даже если бы после окончания XIX века не было поставлено ни одного нового эксперимента. Моей целью было отчасти развлечь аудиторию, а отчасти обрисовать ожидающие нас, струнных теоретиков, перспективы. Я вернусь к этому в главе 9.
Тем, что я пропустил мимо ушей из-за мыслей о своей речи, была новая идея, которая могла бы стать центральным элементом моей концепции Ландшафта. Эд Виттен – не только великий матфизик, но и одна из главных фигур среди чистых математиков, которые уже давно стали движущей силой развития теории струн. Он – профессор (я бы даже сказал Профессор) и ведущий учёный перезаряженного интеллектом Принстонского института перспективных исследований, служившего домом Альберту Эйнштейну и Джону Роберту Оппенгеймеру. Виттен более чем кто-либо целеустремлённо гнал клячу науки вперёд.
К 1995 году стало ясно, что вакуум, описываемый теорией струн, отнюдь не единственный. Существовало несколько версий теории, каждая из которых приводила к различным Законам Физики. Это рассматривалось не как достоинство, а скорее как недостаток теории. В конце концов, десять лет назад принстонские струнные теоретики выдвинули теорию, которая не просто обещала стать единственной, но и претендовала на роль окончательной, истинной теории, описывающей природу. Основной задачей Виттена было доказать, что все, кроме быть может, одной, версии теории струн математически несогласованны. Но вместо этого он обнаружил Ландшафт, или, точнее, регион Ландшафта, лежащий на нулевой высоте, то есть суперсимметричную часть Ландшафта.
Это произошло следующим образом. Представьте себе, что некие воображаемые физики обнаружили бы две теории, описывающие электроны и фотоны: обычную квантовую электродинамику и ещё одну теорию. Во второй теории электроны и позитроны, вместо того чтобы свободно перемещаться в трёхмерном пространстве, могли бы двигаться только в одном направлении, скажем, вдоль оси x. Они просто не в состоянии были бы двигаться в любом другом направлении. В то же время фотоны сохраняли бы способность двигаться обычным образом. Вторая теория могла бы привести теоретиков в замешательство. Насколько они могли бы судить, эта теория была математически полностью самосогласованной, как и квантовая электродинамика, которая описывает реальный мир атомов и фотонов, но ей не нашлось бы места в их представлениях о реальном мире. Никто из них долго не мог бы объяснить феномен существования двух одинаково хорошо самосогласованных теорий, одна из которых описывает реальный мир, а второй – место на помойке. Они бы надеялись и молились, что кто-то обнаружит ошибку, математическое противоречие, которое позволило бы отбросить нежелательную теорию и дать им основание полагать, что мир устроен именно так, а не иначе, потому что никакой другой мир невозможен.
Пытаясь обнаружить внутреннюю несогласованность второй теории, исследоваели могли бы натолкнуться на некоторые интересные факты. Они не только не нашли бы никаких противоречий, но и начали бы понимать, что две означенные теории являются частями одной и той же теории. Они поняли бы, что вторая теория представляет собой просто частный случай обычной теории в области пространства с чрезвычайно сильным магнитным полем – как бы внутри некоего магниторезонансного супертомографа. Любой физик скажет вам, что очень сильное магнитное поле будет заставлять заряженные частицы двигаться только в одном направлении: вдоль магнитных силовых линий. Но движение незаряженных частиц, таких как и фотон, не зависит от магнитного поля.[82] Другими словами, они бы поняли, что существует только одна теория, только один набор уравнений, но два решения. Более того, непрерывно изменяя величину магнитного поля, можно получить весь набор решений между двумя предельными случаями. Эти вымышленные физики обнаружили бы непрерывный ландшафт и приступили бы к его изучению. Конечно же, они бы и понятия не имели о механизме, который позволил бы выбрать из всего спектра решений правильное, о механизме, который объяснял бы, почему в реальном мире отсутствует сильное фоновое магнитное поле. Но они бы надеялись объяснить это позже.
Это в точности то самое положение, в котором оставил нас Виттен в 1995 году в Лос-Анджелесе по завершении своей лекции. Он обнаружил, что все пять версий теории струн оказались решениями одной-единственной теории: мы имели не множество теорий, а множество решений. Все они принадлежали к семейству, которое включает в себя ещё одного члена – Виттен назвал его М-теорией. Кроме того, некоторые крайние значения модулей соответствуют шести теориям, описывающим наиболее удалённые уголки Ландшафта. Как в примере с магнитным полем, модули можно непрерывно изменять, превращая каждую из теорий в любую другую! «Одна теория – множество решений» – это стало нашим руководящим девизом.
Существует масса домыслов о том, что означает буква «М». Вот некоторые из них: Мать, чудо (Miracle), Мембраны, Магия, мистика и Мастер. Позднее этот список пополнили ещё и Матрицы. Никто, судя по всему, точно не знает, что имел в виду Виттен, когда придумывал термин «М-теория». В отличие от ранее известных пяти теорий, их новоявленная кузина не является теорией с девятью пространственными и одним временным измерением. Вместо этого М-теория оперирует уже десятью пространственными и одним временным измерением. Ещё более тревожным обстоятельством является то, что М-теория – это не теория струн: вместо одномерных «резинок» основными объектами М-теории являются мембраны – двумерные листы энергии, чем-то напоминающие упругие резиновые поверхности. Хорошей новостью является то, что М-теория, по-видимому, способна обеспечить объединяющий базис, в котором различные варианты теории струн появляются, когда одно или более из десяти пространственных измерений компактифицируются. Это был реальный прогресс, который обещал привести к построению общего для всех струнных теорий фундамента. Но была и тёмная сторона. Почти ничего не было известно о том, как соединить одиннадцатимерную общую теорию относительности с квантовой механикой. Математика мембран ужасно сложна, она выходит далеко за пределы математики струн. М-теория была так же таинственна и непостижима, как любая теория квантовой гравитации дострунной эпохи. Создавалось впечатление, что мы сделали шаг вперёд и два шага назад.
Но замешательство длилось недолго. Уже на следующей встрече струнных теоретиков летом 1996 года я имел удовольствие сообщить, что мы с тремя моими друзьями раскрыли секрет М-теории. Мы обнаружили основополагающие объекты теории, и уравнения, управляющие ими, оказались невероятно простыми. Томас Бэнкс, Вилли Фишер, Стивен Шенкер и я обнаружили, что основными сущностями М-теории были не мембраны, а более простые объекты, своего рода «партоны» нового вида. В каком-то смысле они похожи на старые партоны Фейнмана – эти новые компоненты обладали удивительной способностью соединяться вместе, образуя все возможные виды объектов. Гравитон, считавшийся наиболее фундаментальной элементарной частицей, оказался собранным из многих партонов. Если же собрать партоны другим способом, получались мембраны. Собранные ещё одним способом, партоны образовывали чёрные дыры. Уравнения новой теории оказались намного проще, чем уравнения теории струн, даже проще уравнений общей теории относительности. Новая теория получила название матричной теории. Иногда её название пишут как M(atrix) theory, чтобы подчеркнуть связь с М-теорией.
Виттен не был первым, кто задумался о связи между одиннадцатимерной теорией и теорией струн. На протяжении нескольких лет ряд физиков пытались привлечь внимание теоретической общественности к одиннадцатимерной теории, содержащей мембраны. Майк Дафф из Техасского университета A&М (сейчас он работает в Имперском колледже Лондона) высказал большую часть идей несколькими годами раньше, но струнные теоретики не приняли их. Мембраны казались слишком сложными, математики недостаточно хорошо их понимали, чтобы принимать всерьёз те семена, которые Дафф пытался посеять в их умах. Но Виттен был авторитетом, и струнные теоретики, зацепившись за М-теорию, уже никогда больше не отпускали её.
Так что же это за М-теория, так захватившая воображение физиков? Это не теория струн. Неодномерные энергетические нити населяют её мир одиннадцати пространственно-временных измерений. Так почему же вдруг теоретики так заинтересовались двумерными энергетическими листами – мембранами, как они их назвали? Ответы на эти загадки лежат под покровом тайны компактификации.
Давайте вернёмся к бесконечному цилиндру и вспомним, как мы его получили. Мы начали с бесконечного листа бумаги и вырезали из него бесконечную полосу шириной в несколько сантиметров. Представьте, что края полосы – это пол и потолок двумерной комнаты. Комната огромна, она бесконечно простирается в направлении x, но в направлении y она ограничена снизу и сверху полом и потолком. На следующем этапе мы соединяем пол с потолком и получаем цилиндр.
Представьте частицу, летящую в упомянутой бесконечной комнате. В определённый момент частица сталкивается с потолком. Что произойдёт дальше? Если полоса свёрнута в цилиндр, не возникает никаких проблем: частица просто продолжит свой путь, проходя сквозь потолок и появляясь из пола. В действительности нам не обязательно сворачивать бумажную полосу в цилиндр: достаточно просто знать, что каждая точка потолка соответствует единственной точке пола, так что когда частица проходит через край, она мгновенно оказывается на другом краю. Мы можем свернуть полосу или оставить её плоской: нужно лишь следить за выполнением правила, согласно которому каждая точка потолка идентифицируется с точкой пола, находящейся с ней на одном перпендикуляре к краю.
Теперь давайте немного усложним картину: пусть теперь наша комната имеет три измерения, как реальная комната, за исключением того, что она бесконечно простирается в двух направлениях, на этот раз в направлении x и в направлении z. Но в вертикальном направлении y она по-прежнему ограничивается полом и потолком. Как и прежде, когда частица проходит сквозь потолок, она мгновенно появляется из пола. Трёхмерное пространство можно компактифицировать до двумерного. Если высоту комнаты, или, другими словами, расстояние вдоль оси y, сократить до микроскопических размеров, получившееся пространство будет восприниматься как двумерное.
Как я уже сказал, в М-теории нет струн, а есть только мембраны. Как совместить её с теорией струн? Представьте себе ленту, ширина которой в точности равна высоте комнаты. Поместим эту ленту в комнату так, чтобы её края касались пола и потолка. Сама лента при этом может иметь любую форму, она может змеиться вдоль комнаты, изгибаясь любым способом. Единственное условие состоит в том, чтобы эта поставленная на ребро лента всюду касалась пола и потолка и была в точности вертикальна. На самом деле лента больше не имеет кря и в этом отношении подобна бумажному цилиндру. Но проще всего визуализировать её в виде длинной извилистой ленты, змеящейся по бесконечной комнате, пол и потолок которой соединены друг с другом описанным выше правилом.
Теперь вы понимаете, как лента, представляющая собой двумерную мембрану, может имитировать одномерную струну. Если компактифицированное измерение настолько мало, что его невозможно увидеть без микроскопа, то для всех практических применений ленту можно считать струной. Если лента замкнута в кольцо, она будет неотличима от закрытой струны: струны типа IIa, если быть точным.
Такова связь между М-теорией и теорией струн. Струны на самом деле являются очень тонкими лентами, или мембранами, которые выглядят как тонкие струны, когда координата, представляющая их ширину, компактифицируется. Как видите, не так уж это и сложно.
Но можно пойти дальше и сделать ещё один шаг в сторону компактификации: компактифицируем теперь два измерения, скажем, z и y. Чтобы визуализировать этот процесс, представим себе не бесконечную комнату, а бесконечный коридор. У нас есть стены слева и справа, а также потолок и пол вверху и внизу. Но если смотреть вдоль коридора, то взгляд проникает сколь угодно далеко в любом направлении. Как и прежде, если объект пересекает потолок, он появляется из пола. Но что делать, если объект пересекает одну из стен? Вы, вероятно, уже знаете ответ: он появляется из противоположной стены, прямо напротив места, где он коснулся первой стены.
Точно тот же трюк может быть проделан и в десятимерном пространстве М-теории, только на этот раз «коридор» простирается на бесконечное расстояние в восьми из десяти пространственных направлений. Как и следовало ожидать, когда ширина и высота потолка становятся очень маленькими, неуклюжий крупномасштабный наблюдатель начинает считать, что он живёт в мире, состоящем из восьми пространственных измерений (плюс одно временное).
Тут-то и появляется на сцене шокирующее и странное следствие теории струн. Как только ширина и высота коридора становятся меньше определённого размера, из ниоткуда вырастает новое измерение. Это новое пространственное направление не является ни одним из тех, с которых мы начали. Мы знаем о нём благодаря косвенным математическим свидетельствам теории струн. Чем меньше мы делаем исходные пространственные измерения, тем большим становится новое. В конечном итоге, если уменьшить коридор до нулевой высоты и ширины, размер нового измерения станет бесконечным. Поразительным следствием компактификации двух пространственных измерений оказывается получение в итоге не восьми, а девяти несвёрнутых пространственных направлений. Этот весьма странный факт, что десять минус два равно девяти, является одним из неожиданных следствий теории струн. Геометрия пространства далеко не всегда такова, какой представлял её себе Евклид или даже Эйнштейн. Очевидно, что на малых расстояниях пространство отличается от чего бы то ни было, что физики и математики могли представить себе даже в самых смелых мечтах.
Возможно, вас слегка запутало, что я постоянно использую то название «теория струн», то «М-теория» в отношении, казалось бы, одних и тех же вещей. Струнные теоретики тоже постоянно путаются в терминологии. Например, можно ли считать одиннадцатимерную теорию, содержащую мембраны, но не содержащую струны, частью теории струн? А компактифицированная версия М-теории, в которой мембраны трансформируются в струны, – это по-прежнему М-теория? Я боюсь, что эта книга не очень подходящее место для терминологических дискуссий. Что касается меня, то я отношу к теории струн всё, что выросло из первоначальной теории струн, созданной много лет назад. Сюда входит и то, что сегодня называется М-теорией. Термин же «М-теория» я использую, когда хочу подчеркнуть, что речь идёт именно об одиннадцатимерной теории.
В главе 10 я продолжу рассказ о теории струн, а сейчас хочу взять тайм-аут и дать вам отдохнуть от сложных технических аспектов теории струн и поговорить о проблеме, которая касается каждого серьёзного физика. На самом деле она касается не только физиков, а вообще всех, кто заинтересован в понимании природы на самом глубоком уровне.
Глава 9. Сами по себе?
Поиск фундаментальных физических принципов – очень рискованное занятие. Впрочем, как и любое погружение в неизведанное: у вас нет никакой гарантии успеха, вероятность же фиаско, напротив, очень велика. Путеводными звёздами физикам всегда служили экспериментальные данные, но сейчас они достаются с таким трудом, как никогда раньше. Все мы (физики) прекрасно понимаем, что чем глубже в структуру материи мы пытаемся проникнуть, тем сложнее и дороже становятся наши эксперименты. Для того чтобы построить ускоритель, который позволил бы погрузиться в планковские масштабы, то есть 10–33 см, не хватит всего ВВП всей мировой экономики за сто лет. А используя сегодняшние технологии, мы рискуем получить ускоритель размером с Галактику! И даже если в будущем кто-нибудь придумает, как уменьшить размер ускорителя до более приемлемого в использовании, он будет каждую секунду потреблять энергию, образующуюся при сжигании триллиона баррелей нефти.