Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной Сасскинд Леонард

Но редукция волновой функции не является компонентом математического аппарата квантовой механики. Это некое дополнительное математическое правило, которое ввёл Бор для описания результата наблюдения. Это волюнтаристское правило стало головной болью для нескольких поколений физиков. По большей части проблема состоит в том, что Ш. ограничивает описываемую систему только теми объектами, которые находятся в ящике, но в конце эксперимента Ш. сам становится частью системы, производя акт наблюдения. Сегодня уже нет сомнений, что последовательное описание обязательно должно включать Ш. как часть системы. Вот как оно должно выглядеть.

Волновая функция теперь описывает всё, что находится в ящике, а также фрагмент физической материи, который мы называем Ш. Первоначальная волновая функция по-прежнему состоит только из одной записи, но теперь эта запись выглядит следующим образом: «Кот жив, пистолет заряжен, нейтрон цел, Ш. ничего не знает о здоровье кота». Спустя некоторое время Ш. открывает ящик. Теперь волновая функция состоит из двух записей: «Кот жив, пистолет заряжен, нейтрон цел, Ш. знает, что кот жив» и «Кот мёртв, пистолет выстрелил, нейтрон распался, Ш. знает, что кот мёртв». Как видите, нам удалось включить Ш. в описание системы без привлечения идеи редукции волновой функции.

Но теперь предположим, что у нас появился ещё один наблюдатель – назовём его Б. Б. отсутствовал в комнате в тот момент, когда Ш. проводил своё живодёрский эксперимент. Когда Б. открывает дверь, чтобы посмотреть, что происходит в лаборатории, он видит один из двух исходов. Поскольку нет никакого смысла в отслеживании нереализованной ветви, получается, что появление Б. приводит к редукции волновой функции. Похоже, что нам не избежать этой лишней операции. Но давайте попробуем включить в волновую функцию и Б. Отправной точкой будет система, включающая всё, что находится в ящике, и два сгустка материи, называемые Ш. и Б. Начальное состояние системы теперь будет описываться так: «Кот жив, пистолет заряжен, нейтрон цел, Ш. ничего не знает о здоровье кота, и Б. ничего не знает о здоровье кота». Когда Ш. открывает ящик, волновая функция расщепляется на две ветви: «Кот жив, пистолет заряжен, нейтрон цел, Ш. знает, что кот жив, и Б. ничего не знает о здоровье кота» и «Кот мёртв, пистолет выстрелил, нейтрон распался, Ш. знает, что кот мёртв, и Б. ничего не знает о здоровье кота». Наконец, когда Б. входит в комнату, первая ветвь волновой функции принимает вид: «Кот жив, пистолет заряжен, нейтрон цел, Ш. знает, что кот жив, и Б. знает, что кот жив». Я оставлю читателю возможность самому сформулировать описание остальных ветвей. Главное, что мы сумели описать эксперимент без привлечения редукции волновой функции.

А теперь предположим, что есть ещё один наблюдатель, именуемый Э. Ничего страшного. Вы наверняка уже поняли, по какому шаблону следует действовать: единственный способ избежать редукции волновой функции – включить в квантовое описание всю наблюдаемую Вселенную, а также все ветви её волновой функции. Предлагаемая интерпретация является альтернативой прагматичному правилу Бора, требующему завершать описание любого эксперимента редукцией волновой функции.

Эвереттовский способ представления волновой функции описывает бесконечное ветвящееся дерево всевозможных исходов. Большинство физиков – последователей Бора – представляло себе ветви волновой функции как математическую фикцию, за исключением одной-единственной ветви, которая остаётся после акта наблюдения. Редукция волновой функции является полезным инструментом для отсечения ненужных ветвей, но многие физики считают это правило произвольным вмешательством внешнего наблюдателя – процедурой, не основывающейся на базовом математическом аппарате квантовой механики. Почему математика должна включать в описание все возможные ветви, если их единственная роль – быть отброшенными на последнем этапе?

По мнению сторонников многомировой интерпретации, все ветви волновой функции одинаково реальны. На каждой развилке мир ветвится на две или более альтернативные вселенные, которые продолжают вечно существовать бок о бок. В представлении Эверетта реальность постоянно ветвится, но с одной оговоркой: различные ветви никогда не взаимодействуют друг с другом после того, как они разошлись. На «живой» ветви дух мёртвого кота никогда не будет преследовать Ш. в ночных кошмарах. Правило Бора – это просто трюк, позволяющий отрезать лишние ветви, которые вполне реально существуют, несмотря на то что не оказывают в будущем никакого воздействия на наблюдателя.

Стоит отметить ещё один момент. С течением времени мы на определённом этапе истории получаем невероятно разветвлённую волновую функцию, и в её описании присутствует невообразимое количество копий каждого возможного варианта развития событий. Рассмотрим бедного Б., пока он ещё не вошёл в комнату. Волновая функция, разветвляющаяся в момент, когда Ш. открывает ящик, разделяет историю всех входящих в описание системы объектов, в том числе и Б., на две ветви, причём состояние Б. в каждой из этих ветвей одинаково. Количество ветвей, содержащих вас, читающих эту книгу, практически бесконечно. В этом контексте понятие вероятности имеет смысл только как относительная частота различных результатов. Один из результатов является более вероятным, чем другой, если он присутствует в большем количестве ветвей.

С точки зрения эксперимента различий между многомировой и копенгагенской интерпретациями нет. Никто не спорит с тем, что на практике копенгагенское правило редукции волновой функции даёт правильные вероятности экспериментальных результатов. Но эти две интерпретации глубоко различаются в отношении философского смысла этих вероятностей. Копенгагенцы придерживаются консервативного взгляда, считая, что вероятность есть мера возможности получения определённого результата при проведении большого числа повторяющихся экспериментов. Представьте себе монету. Если монета «правильная», вероятность любого исхода (орёл или решка) равна одной второй. Это означает, что если подбросить монету достаточно большое количество раз, то примерно в половине случаев она упадёт решкой, а в половине – орлом. Чем больше количество подбрасываний, тем ближе полученный результат будет к идеальному соотношению 50 на 50. Подобные рассуждения применимы и при бросании игральной кости. Каждая из граней кости при достаточно большом числе бросаний будет выпадать (с точностью до погрешности) с частотой одна шестая. Обычно никто не применяет статистику к единственному броску монеты или игральной кости. Но многомировая интерпретация делает именно это. Она имеет дело с единичными событиями способом, комичность которого особенно хорошо видна на примере подбрасывания монеты. Идея, что при подбрасывании монеты мир расщепляется на два параллельных – мир орла и мир решки, – не кажется слишком перспективной.

Почему же физиков настолько беспокоят вероятности, которыми оперирует квантовая механика, что они вынуждены обращаться к таким странным идеям, как многомировая интерпретация? Почему Эйнштейн так настойчиво утверждал, что «Бог не играет в кости»? Чтобы понять то недоумение, которое вызывает квантовая механика, полезно спросить себя: «Почему в ньютоновском мире абсолютной определённости тем не менее возникает необходимость обращаться к статистическим методам?» Ответ прост: вероятности возникают в ньютоновской физике по той простой причине, что мы почти никогда не знаем точных начальных условий эксперимента. Если бы в эксперименте с подбрасыванием монеты мы имели точную информацию о строении и движении руки экспериментатора, информацию обо всех воздушных потоках в комнате и информацию обо всех других факторах, влияющих на исход эксперимента, никакие вероятности нам бы не потребовались. Каждый бросок приводил бы к совершенно определённому результату. Вероятность – это удобный трюк, позволяющий компенсировать нашу неосведомлённость о деталях эксперимента. Вероятность не играет фундаментальной роли в законах Ньютона.

Но в квантовой механике ситуация принципиально иная. Из-за принципа неопределённости не существует способа точно предсказать результат эксперимента – принципиально не существует. Основные уравнения квантовой теории определяют эволюцию волновой функции, и ничего более. Вероятность лежит в самом фундаменте квантовой теории. Это не удобный трюк, используемый для компенсации недостатка информации. Кроме того, уравнения, которые определяют эволюцию волновой функции, не предусматривают внезапного отсечения ненужных ветвей. Редукция волновой функции – это лишь удобный трюк.

Эта проблема становится особенно острой в космологическом контексте. Обычные эксперименты типа эксперимента с двумя щелями, который я описал в главе 1, можно повторять снова и снова, как и подбрасывание монеты. Каждый фотон, который проходит через экспериментальную установку, можно рассматривать как отдельный эксперимент. Проблема состоит не в необходимости накопления огромного количества статистических данных. Она состоит в том, что мы не можем набрать нужную статистику в космическом масштабе. Вряд ли мы сумеем повторить много раз Большой взрыв, чтобы собрать статистику о результатах. По этой причине многие космологи склоняются к философии многомировой интерпретации.

Пионерская идея Картера по объединению антропного принципа с многомировой интерпретацией состояла в следующем: предположим, что волновая функция ветвится не только при описании таких простых вещей, как местоположение электрона, распад нейтрона или жизнь и смерть кота, но в каждой ветви работают различные Законы Физики. Если предположить, что все ветви одинаково реальны, то получится, что существует множество миров с различными вакуумами. На современном языке мы могли бы сказать, что каждой точке на Ландшафте соответствует своя ветвь. Всё остальное ничем не отличается от того, что я уже рассказывал ранее в этой книге, за исключением того, что вместо различных областей Мегаверсума мы будем говорить о различных вариантах реальности. Чтобы пояснить основную мысль, я приведу цитату из главы 1, а затем изменю в ней несколько слов. Исходная цитата звучит так: «Где-то в Мегаверсуме эта константа имеет такое значение, а где-то – сякое. Мы живём в одном маленьком кармане, в котором значения констант таковы, что позволяют существовать жизни нашего типа». А вот изменённая цитата: «На какой-то из ветвей волновой функции эта константа имеет такое значение, а на какой-то – сякое. Мы живём на одной отдельной ветви, где значения констант таковы, что позволяют существовать жизни нашего типа». Хотя две цитаты кажутся похожими, они несут в себе две совершенно различные идеи существования альтернативных вселенных. Похоже, что у нас есть ещё один способ достижения разнообразия вселенных, которое могло бы придать смысл антропной аргументации. Я мог бы добавить, что разные сторонники антропного принципа имеют разные мнения о том, какая из версий теории параллельных вселенных правильна. Хотите знать моё мнение? Я считаю, что оба варианта являются взаимодополняющими описаниями одной и той же сущности.

Рассмотрим ситуацию более подробно. Ранее в этой главе я описал два представления вечной инфляции, параллельное и последовательное. Параллельное представление признаёт существование гигантского Мегаверсума, наполненного неисчислимыми карманными вселенными, которые, будучи отделены друг от друга горизонтами, не взаимодействуют друг с другом. Это представление созвучно многомировой интерпретации Эверетта. А как насчёт последовательного представления?

Рассмотрим один пример. Представим сформировавшийся пузырь пространства, свойства которого определяются его положением в одной из долин Ландшафта. Для удобства дадим названия всем соседним долинам. Пусть долина, в которой находится пузырь, называется Центральной долиной. К востоку и западу от неё лежат Восточная и Западная долины, каждая – несколько ниже Центральной. С Западной долины можно добраться до ещё двух близлежащих долин, одну из которых мы назовём Шангри Ла, а другую – Долиной смерти. Долина смерти на самом деле не долина, а довольно плоское плато, расположенное на нулевой высоте. Восточная долина также имеет несколько соседей, до которых легко добраться, но мы не будем озадачиваться их названиями.

Представьте, что вы находитесь в Центральной долине, в то время как ваша карманная вселенная находится в стадии инфляционного раздувания. Из-за того, что поблизости находятся долины, лежащие на более низком уровне, вакуум вашей долины является метастабильным: в любой момент в нём может возникнуть пузырь, который поглотит вас. Итак, вы осматриваетесь и изучаете свойства окружающего вас пространства. Вы можете обнаружить, что всё ещё находитесь в Центральной долине, или понять, что уже совершили переход в Восточную или Западную долину. Долина, которую вы в данный момент населяете, определяется случайным образом согласно законам квантовой механики, во многом таким же образом, как квантовая механика определяет судьбу кота Шрёдингера.

Предположим теперь, что вы обнаружили себя в Западной долине. С тем же успехом вы могли бы отбросить ветвь вашей волновой функции, которая соответствует Восточной долине. Она не имеет никакого значения для вашего будущего. Спустя время, если вам повезёт, вас может поглотить пузырь, свойства пространства которого определяются благоприятной для жизни долиной Шангри Ла. Но вы с таким же успехом можете оказаться и в Долине смерти. На каждом перекрёстке Бор и его копенгагенская банда подскажут вам, как рассчитать вероятность для каждого исхода. Затем они поручат вам произвести редукцию волновой функции, для того чтобы избавиться от сверхнормативного багажа тех ветвей, которые не соответствуют исходу вашего эксперимента. Вот это и есть последовательное представление.

Моё мнение вам, должно быть, уже очевидно. Последовательное представление – когда вы постоянно остаётесь в пределах горизонта вашей карманной вселенной, наблюдая события и избавляясь от ненужного багажа, – это боровская интерпретации квантовой механики. Параллельное представление Мегаверсума, наполненного множеством невзаимодействующих карманных вселенных, соответствует интерпретации Эверетта. Я нахожу в этом соответствии приятную логичность. Возможно, в конце концов мы обнаружим, что квантовая механика имеет смысл только в контексте ветвящегося Мегаверсума и что Мегаверсум имеет смысл только как ветвящаяся реальность эвереттовской интерпретации.

Независимо от того, говорим мы на языке Мегаверсума или многомировой интерпретации, параллельное представление совместно с гигантским ландшафтом теории струн даёт нам два элемента, которые способны превратить антропный принцип из глупой тавтологии в мощный инструмент познания. Но параллельное представление основывается на предположении о реальности существования областей пространства и времени, которые всегда находятся вне досягаемости для любых мыслимых способов наблюдений. У некоторых людей это вызывает чувство тревоги. Меня это тоже беспокоит. Если безбрежное море карманных вселенных действительно находится за недостижимыми горизонтами, то параллельное представление и вправду видится больше метафизикой, чем наукой. Следующая глава будет целиком посвящена горизонтам и вопросу, действительно ли они являются непреодолимыми барьерами.

Глава 12. Битва при чёрной дыре

В иные дни я успевала поверить в десяток невозможностей до завтрака!

Льюис Кэрролл (пер. Н. М. Демуровой)

«Вы можете только беспомощно смотреть, как тепло охватывает вас. Вскоре драгоценные жидкости вашего организма начнут кипеть, а затем испарятся. Станет настолько горячо, что атомы вашего тела начнут отрываться друг от друга. Но, как предсказано, в конечном итоге вы вернётесь к нам в виде чистого света и сияния.

Но не бойтесь. Вы перейдёте на другую сторону без боли и страданий. В своём нынешнем облике вы будете потеряны для нас навсегда, мы больше никогда не сможем общаться с вами, по крайней мере до тех пор, пока наши пути вновь не пересекутся. Но, друг мой, из вашего нынешнего места обитания вы всегда будете видеть нас и знать, как мы живём без вас. Удачи».

История мученичества и воскресения? Человек в балахоне, утешающий мученика перед аутодафе? Пересечение грани, отделяющей жизнь от смерти? Ничего подобного. Это выдумка, но имеющая право на существование, о межзвёздном путешественнике, который решится нырнуть в чёрную дыру и скрыться от нас за её горизонтом. И действие происходит не в церковном приделе, а в звездолёте, несущем в своём чреве физика-теоретика.

Если привязываться к тематике этой конкретной книги, то речь может идти о пересечении космического горизонта вечно раздувающейся Вселенной. Но мы вернёмся к космическим горизонтам несколько позже.

Спиритуалисты считают, что общение с умершими возможно: всё, что для этого требуется, – это правильный медиум, адепт тёмных наук. Вы можете догадаться, что я думаю по этому поводу, но, по иронии судьбы, я был одним из главных воинов, защищавших в Битве при чёрной дыре тезис о возможности общения с нежитью, обитающей по ту сторону горизонта событий. Война длилась четверть века, но теперь все кончено.

Протагонистами этой драмы выступали Стивен Хокинг со своим главным штабом из генерал-релятивистов,[97] с одной стороны, и мы с Герардом ‘т Хоофтом – с другой. Так продолжалось первые пятнадцать лет. Позже к нам подошло подкрепление в составе группы струнных теоретиков.

Герард ‘т Хоофт – голландец. Если считать по общему вкладу в науку, то голландцы, безусловно, являются величайшими физиками в мире. Христиан Гюйгенс, Хендрик Антон Лоренц, Виллем де Ситтер, Хейке Камерлинг-Оннес, Джордж Уленбек, Ян Дидерик Ван-дер-Ваальс, Герхард Казимир Хендрик, Мартинус Велтман, Герард ‘т Хоофт – вот лишь несколько величайших имён. Лоренц и ‘т Хоофт, возможно, величайшие физики в истории. Герард ‘т Хоофт больше, чем кто-либо другой, олицетворяет дух физики Лоренца, Эйнштейна и Бора.

Несмотря на то что ‘т Хоофт младше меня на шесть лет, я всегда испытывал перед ним благоговейный трепет.

Герард – не только герой нашей войны, но и мой большой друг. Хотя он и является гораздо более сильным физиком, чем я, наши точки зрения на науку вообще и физику в частности были всегда очень близки. На протяжении многих лет мы часто обнаруживали, что решаем одни и те же головоломки, беспокоимся об одних и тех же парадоксах, и даже наши догадки о способе решения той или иной проблемы совпадали. Мне кажется, что и я, и Герард – весьма консервативные физики, которые согласятся на радикальное решение, только если все прочие пути окажутся тупиковыми. Ну и наконец, он бесстрашен!

Если Герард – консерватор, то Стивен Хокинг сущий Ивел Книвел[98] от физики. Храбрый до безрассудства, Стивен представлял немалую угрозу для обитателей Кембриджа, рассекая на своей инвалидной коляске по университетским дорожкам со скоростью гоночного болида. И его стиль в физике во многих отношениях похож на его манеру вождения инвалидной коляски – отчаянные, леденящие дух авантюры. Но, как и Ивел Книвел, Стивен порой попадал в катастрофы.

Недавно Стивену исполнилось шестьдесят. Празднование его дня рождения меньше всего было похоже на день рождения 60-летнего физика. Семинары и лекции по физике – понятно: куда же без них? Но прибавьте к этому музыку, танцы, знаменитую рок-звезду из U2, двойника Мэрилин Монро и хор физиков. Это было колоссальное событие для СМИ.

Чтобы дать вам представление об отношениях, которые много лет связывали меня с ним, я процитирую кусочек из поздравительной лекции, которую прочёл на этом празднике:

«Стивен, как все мы знаем, – самый упрямый и тем доводящий до бешенства человек во Вселенной. Мои с ним научные отношения, я полагаю, можно назвать противоборством. Мы глубоко расходимся по вопросам, касающимся чёрных дыр, информации и тому подобных вещей. Временами он заставлял меня рвать волосы от досады, – и вы теперь ясно видите результат. Уверяю вас – когда мы начали спорить более двух десятилетий назад, вся моя голова была покрыта волосами».

В этот момент я увидел в дальней части зала Стивена с его озорной улыбкой и продолжил:

«Могу также сказать, что из всех физиков, которых я знаю, он оказал самое большое влияние на меня и мой образ мышления. Почти все, о чём я думал начиная с 1983 года, в том или ином смысле отвечало на его глубочайший вопрос о судьбе информации, падающей в чёрную дыру. Хотя я твёрдо убеждён, что его ответ был ошибочным, сам вопрос Стивена вкупе с требованием убедительного ответа вынудил нас переосмыслить основания физики. Результатом стала совершенно новая парадигма, которая сегодня обретает форму. Я глубоко польщён возможностью отметить здесь монументальный вклад Стивена и особенно его блистательное упрямство».

Это было три года назад, но Стивен Хокинг до сих пор уверен, что он был прав, а мы с ‘т Хоофтом ошибались.

В первые дни войны было множество перебежчиков, пытавшихся оказаться на стороне победителя, какой бы ни была его позиция. Но Стивен, что делает ему честь, не складывал своё оружие до тех пор, пока дальнейшее сопротивление было уже не просто бесполезно, а невозможно. После чего он изящно и безоговорочно капитулировал. И справедливости ради надо заметить, что если был Хокинг воевал с меньшим фанатизмом, мы, наверное, знали бы о чёрных дырах гораздо меньше, чем знаем сегодня.

Точка зрения Хокинга была простой и прямолинейной: горизонт чёрной дыры – это «точка невозврата». Всё, что пересекает горизонт, оказывается в ловушке. Для того чтобы вернуться из-под горизонта, необходимо превысить скорость света, а это, согласно Эйнштейну, совершенно невозможно. Люди, атомы, фотоны, любые формы сигналов, способных нести сообщения, не способны преодолеть скорость света. Ни один объект или сигнал не способен выбраться из-под горизонта во внешний мир. Горизонт чёрной дыры – это идеальная тюремная стена. Наблюдатель, ожидающий весточки из этой тюрьмы, может прождать вечность, но не дождётся ни единого бита информации. По крайней мере, так считал Хокинг.

Чтобы получить представление о физике чёрной дыры, не вдаваясь в сложные математические подробности общей теории относительности, нам нужна удачная аналогия. К счастью, она у нас есть. Я не помню, кто впервые её использовал, но я узнал о ней от канадского физика Билла Унру. Вернёмся к бесконечному мелкому озеру, которое мы уже использовали в предыдущей главе для иллюстрации раздувания Вселенной. Но сейчас нам не нужны трубы для подачи воды, расположенные под всем дном. Вместо этого мы соорудим сток в центре. Отверстие в дне озера будет позволять воде вытекать, возможно, падая с большой высоты на острые смертельные скалы под сливом. Добавим также несколько лодок с наблюдателями. Наблюдатели должны соблюдать два правила. Во-первых, они могут общаться только с помощью поверхностных волн, то есть ряби на поверхности озера. Например, они могут шевелить пальцами в воде, чтобы производить волны. Второе правило – это ограничение скорости передвижения относительно воды. Лодке ни при каких обстоятельствах не разрешается двигаться быстрее, чем поверхностные волны.

Начнём с наблюдателей, расположенных вдали от центра, где движение воды незаметно. Это не означает, что вода там вообще не движется: она очень медленно перемещается к центру озера, но наблюдатели этого практически не замечают. Однако по мере приближения к сливному отверстию поток воды ускоряется, и в непосредственной окрестности от слива скорость движения воды становится больше скорости поверхностных волн. Волны, исходящие из этой области, будут засосаны потоком воды в слив, даже если они распространяются в противоположном от слива направлении. Очевидно, что любая лодка, неосторожно оказавшаяся в этом месте, обречена быть засосанной в сливное отверстие и разбитой о скалы под ним. При этом существует некая граница, где скорость движения воды в точности соответствует скорости поверхностных волн. Эта граница и есть так называемая точка невозврата (слово «точка» здесь, разумеется, означает философскую метафору, а не геометрический объект). После того как вы пересекли границу, обратного пути для вас больше не существует. Нет даже возможности передать сообщение тем, кто остался снаружи. Именно такую точку невозврата представляет собой горизонт чёрной дыры, за исключением того, что в случае чёрной дыры уже не вода, а само пространство-время низвергается внутрь неё со скоростью света. Никакой сигнал не может выйти из-под горизонта, не превысив скорость света, которую Эйнштейн постулировал как максимально возможную. Теперь вам должно быть понятно, почему Стивен был так уверен в том, что информация, упавшая за горизонт чёрной дыры, безвозвратно потеряна для всех, кто остался снаружи.

Но Стивен сам создал оружие, которое повернулось против него. Опираясь на большую работу Яакова Бекенштейна, Стивен в начале 1970-х показал, что чёрные дыры имеют ненулевую температуру. Они не являются абсолютно холодными, как считали физики ранее. Чем больше чёрная дыра, тем ниже её температура, но как бы ни была велика чёрная дыра, её температура никогда не будет равна абсолютному нулю. К примеру, чёрная дыра, образовавшаяся в результате коллапса звезды, согласно Хокингу, будет иметь температуру всего лишь на одну десятимиллионную долю градуса выше абсолютного нуля. Но не ноль!

Хокинг рассудил, что чёрная дыра, как и любой другой объект с ненулевой температурой, будет излучать энергию. Раскалённая кочерга, вынутая из камина, излучает свет оранжевого или красного цвета. Тёплые предметы излучают в инфракрасном диапазоне, не видимом человеческому глазу. Независимо от того, насколько холоден предмет, если его температура не равна абсолютному нулю, он будет излучать энергию в виде электромагнитных волн. В случае чёрной дыры это излучение называется излучением Хокинга. Это было одним из величайших открытий Хокинга.

Далее: всё, что излучает, теряет энергию. Но масса и энергия – это две стороны одной и той же сущности, если верить Эйнштейну. Выходит, что с течением времени чёрные дыры теряют массу, и это происходит до тех пор, пока они полностью не испарятся, оставив после себя только фотоны хокинговского излучения.

Любопытно, что масса любого объекта, который падает в чёрную дыру, неизбежно излучается обратно в виде излучения Хокинга. Энергия смелого межзвёздного путешественника, который отважно пересечёт горизонт, в итоге возвращается в виде «чистого света и сияния».

Но, по утверждению Хокинга, из-за того что скорость распространения сигнала не может превышать скорость света, никакая информация из чрева чёрной дыры не может выйти из-под горизонта вместе с излучением Хокинга. Эта информация оказывается в ловушке – когда чёрная дыра испаряется, она исчезает.

Впервые я услышал об этом в 1980 году, когда Стивен, Герард и я участвовали в работе небольшой конференции в Сан-Франциско. Мы с Герардом были глубоко обеспокоены выводами Стивена и считали, что он не прав. Но ни один из нас не мог понять, что именно неправильно в его рассуждениях. Меня не покидало ощущение глубокого дискомфорта. Перед нами стоял парадокс очень серьёзного масштаба: разрешение этого парадокса в конечном итоге могло открыть перспективы для более глубокого понимания неуловимой связи между гравитацией и квантовой механикой.

Проблема состояла в том, что вывод Хокинга нарушал один из краеугольных физических принципов. Хокинг, безусловно, понимал это. Именно поэтому он нашёл проблему потери информации при испарении чёрной дыры настолько захватывающей. Но мы с ‘т Хоофтом чувствовали, что принцип сохранения информации слишком глубоко встроен в логические основы физики, чтобы отменить его, даже при наличии такого странного объекта, как чёрная дыра. Если мы правы, то должен существовать какой-то механизм, который позволяет биту информации, провалившемуся под горизонт чёрной дыры, вернуться обратно с излучением Хокинга, открывая тем самым для узников, заключённых в чреве чёрной дыры, возможность подать весточку наружу.

Никто, конечно, не отстаивал идею, что информация возвращается из чёрной дыры в легко воспринимаемой форме. Она выходит в таком виде, что её практически невозможно расшифровать. Но дискуссия шла не о практических аспектах. Речь была о соблюдении законов природы и принципов физики.

Что именно представляет собой информация, особенно если она зашифрована до неузнаваемости? Чтобы понять это, обратимся к аналогии с тюрьмой. Допустим, главарь мафии, сидящий в тюрьме, хочет отправить сообщение своему человеку на свободе. Сначала он записывает сообщение: «Передайте братьям Пиранья, чтобы они поставили десять тысяч на Малыша». Чтобы затруднить работу цензору, он дописывает в конец ещё ряд поддельных сообщений, например, несколько страниц текста из энциклопедии «Британника». Затем главарь записывает сообщение на наборе карт, по одной букве на каждую карту. Если перебирать карты в правильном порядке, то можно прочесть и содержательную часть сообщения в начале, и текст из «Британники» в конце. После этого главарь шифрует сообщение. У него есть для этого специальный алгоритм. Он начинает тасовать колоду карт, но не случайным образом, а согласно определённому правилу. После этого он ещё раз тасует колоду, руководствуясь этим же правилом. Он повторяет эту процедуру снова и снова десять миллионов раз. Сообщение затем передаётся сообщнику на свободе.

Отдельные карты являются аналогами отдельных фотонов излучения Хокинга, испускаемых чёрной дырой.

Что делает сообщник, получивший сообщение? Если он не знает правил перетасовки карт, то не имеет на руках ничего, кроме бессмысленной случайной последовательности букв, которая не несёт никакой информации. Но тем не менее информация в этом наборе карт есть. Применив алгоритм перетасовки в обратном порядке десять миллионов раз, сообщник может получить их исходную последовательность, и после этого буквы, написанные на картах, сложатся в осмысленный текст. Эта информация содержалась в колоде, даже будучи зашифрованной. Если бы сообщник не знал правил перетасовки, информация всё равно присутствовала бы в колоде.

Рассмотрим другую ситуацию. Предположим, тюремный цензор, просматривая передаваемую на волю колоду, уронил её на пол, и карты рассыпались в произвольном порядке. После чего он собрал карты и сложил колоду случайным образом. И так – десять миллионов раз… Теперь, даже если сообщник на свободе и знает алгоритм перетасовки, он не сможет восстановить исходную последовательность. Информация в такой колоде на этот раз действительно потеряна. Случайная перетасовка не только шифрует сообщение, но и полностью уничтожает содержащуюся в нём информацию.

Суть спора между Хокингом, ‘т Хоофтом и мной состояла не в обсуждении практических методов восстановления сообщений, получаемых из-под горизонта чёрной дыры. Наш спор касался принципиальной возможности существования таких методов. Мы с Герардом утверждали, что природа шифрует информацию, но никогда не уничтожает её. Стивен же придерживался точки зрения, что чёрные дыры вносят принципиально неустранимый элемент случайности в любой процесс, уничтожая любую информацию, прежде чем она покинет чёрную дыру в виде хокинговского излучения. Ещё раз обращаю ваше внимание, что суть вопроса состояла не в технической, а в принципиальной, фундаментальной возможности или невозможности восстановить информацию.

Внимательный читатель может задать несколько напрашивающихся вопросов. Разве не вносит квантовая механика элемент случайности в законы природы? Разве не должна уничтожать информацию квантовая дрожь? Это не очень просто объяснить, но ответ на второй вопрос: «Нет». Квантовая информация не настолько детализирована, как классическая последовательность символов, и случайность в квантовой механике – очень специфического рода. Хокинг же утверждал, что помимо обычной неопределённости, допускаемой стандартными законами квантовой механики, в недрах чёрной дыры возникает совершенно новый, не имеющий аналогов в других областях физики, вид неопределённости.

Давайте разовьём аналогию с тюрьмой. Представьте себе, что сообщник отправил в тюрьму сообщение с некоторой уникальной информацией. В действительности мы можем даже представить себе, что в тюрьму поступает постоянный поток сообщений. Но тюрьма не резиновая. Он не может вместить в себя весь бумажный поток, поступающий в неё неопределённо долго. В какой-то момент охранникам придётся сложить всю эту макулатуру в мусорный бак и вывезти за пределы тюрьмы. По словам Хокинга, в тюрьму поступают осмысленные сообщения, из тюрьмы выходят мусорные баки, но в самой тюрьме информация, содержащаяся во входящих сообщениях, уничтожается этим новым видом неопределённости. Но мы с ‘т Хоофтом сказали: «Нет! Сообщения, находящиеся в мусорном баке, по-прежнему содержат информацию. Она неуничтожима». Мы утверждали, что квантовые биты,[99] которые попадают в чёрную дыру, всегда можно восстановить, если только вы знаете алгоритм восстановления.

Однако позиция, которую отстаивали мы с ‘т Хоофтом, приводит нас к ещё одной проблеме. Мы настаивали на том, что информация способна возвращаться из-под горизонта, но как это может происходить, если для этого требуется превысить скорость света?

Какой механизм может это обеспечить? Напрашивающийся ответ: этого не может быть никогда.

Давайте отправим в чёрную дыру сообщение с нарочным, в качестве которого завербуем межзвёздного путешественника. Согласно законам общей теории относительности, сообщение вместе с путешественником должно навсегда исчезнуть под горизонтом. С другой стороны, чтобы спасти основные принципы квантовой механики, мы с ‘т Хоофтом утверждали, что биты информации этого сообщения будут переданы наружу при помощи излучения Хокинга непосредственно перед пересечением путешественником горизонта. Это как если бы сообщение было в последний момент вырвано из рук курьера в воротах тюрьмы и переложено в вывозимый оттуда мусорный бак непосредственно перед пересечением курьером точки невозврата.

Этот конфликт принципов создал весьма серьёзную дилемму. С одной стороны, общая теория относительности говорит, что биты, упавшие под горизонт, должны продолжить свой путь в недра чёрной дыры. С другой стороны, правила квантовой механики не допускают потерю информации для внешнего мира. Была, правда, одна возможность разрешить эту дилемму. Вернёмся снова к аналогии с тюрьмой. Предположим, что перед тюремными воротами сидит охранник с ксерокопировальным аппаратом, который ксерит каждое входящее сообщение. Одну копию он пропускает в тюрьму, а вторую шифрует и отправляет обратно. Казалось, такое объяснение должно было удовлетворить всех. Сидящие в тюрьме будут получать входящие сообщения в незашифрованном виде, а их подельники на свободе убедятся в том, что отправляемая ими в тюрьму информация не теряется.

Все правы

Тут-то и начинается самое интересное. Существует фундаментальный принцип квантовой механики, который гласит, что квантовая ксерокопировальная машина невозможна. Квантовая информация не может быть скопирована абсолютно точно. Независимо от того, насколько хорошо машина копирует одни виды информации, она всегда будет плохо копировать другие. Я называю это принципом квантовой нексерокопируемости. Специалисты по квантовой информации называют его теоремой о запрете клонирования. Эта теорема говорит о невозможности создания идеальной копии произвольного неизвестного квантового состояния.

Чтобы понять принцип квантовой нексерокопируемости, рассмотрим отдельный электрон. Принцип неопределённости Гейзенберга говорит, что невозможно одновременно точно знать положение и скорость электрона. Теперь предположим, что некий квантовый ксерокс способен абсолютно точно скопировать состояние электрона. После этого мы смогли бы абсолютно точно измерить положение электрона в одной копии состояния (пренебрегая его скоростью) и абсолютно точно измерить скорость электрона во второй копии, получив таким образом знание, запрещённое принципом неопределённости.

Итак, перед нами новая дилемма: общая теория относительности говорит нам, что информация должна падать за горизонт к центру чёрной дыры, а квантовая механика требует, чтобы та же информация оставалась снаружи чёрной дыры. При этом теорема о запрете клонирования утверждает, что возможна только одна копия каждого бита. Это был тупик, в который мы Хокингом и ‘т Хоофтом загнали себя. В начале 1990-х ситуация стала совершенно непонятной: кто же прав? Наблюдатель снаружи, ожидающий соблюдения принципов квантовой механики, для которого биты информации должны задерживаться чуть выше горизонта, шифроваться и возвращаться обратно в виде хокинговского излучения? Или наблюдатель, который падает на чёрную дыру через горизонт, справедливо ожидающий, что находящаяся у него в кармане депеша будет в целости и сохранности доставлена им прямо в центр чёрной дыры?

Разрешение парадокса в конечном итоге потребовало введения двух новых физических принципов физики, которые мы с ‘т Хоофтом озвучили в начале 1990-х годов. Оба эти принципа очень странные, гораздо более странные, чем идея Хокинга о том, что информация может быть безвозвратно потеряна, настолько странные, что никто, кроме нас с ‘т Хоофтом, сначала в них не поверил. Но как сказал однажды Шерлок Холмс доктору Ватсону: «Отбросьте всё невозможное – то, что останется, и будет ответом, каким бы невероятным он ни оказался».

Дополнительность чёрных дыр

Нильс Бор был самым философствующим из всех отцов современной физики. Философская революция, которая сопровождала создание квантовой механики, заставила Бора сформулировать его знаменитый принцип дополнительности. Дополнительность квантовой механики стала манифестом для многих её приложений, но любимым примером Бора был корпускулярно-волновой дуализм, возникший в физике после того, как Эйнштейн ввёл понятие фотона. Свет – это частицы или волны? Эти два представления выглядят настолько различными, что кажутся несовместимыми.

И тем не менее свет – это и волны, и частицы. Или более точно: в некоторых экспериментах свет ведёт себя как поток частиц. Очень слабый луч света, падающий на флюоресцирующий экран, оставляет на нём крошечные точечные пятнышки – доказательства дискретной природы света, состоящего из неделимых фотонов. С другой стороны, если этих точек достаточно много, они образуют на экране интерференционную картину – явление, которое имеет смысл только для волн. Всё зависит от того, как вы регистрируете свет и что хотите измерить в ходе эксперимента.

Оба эти описания являются дополнительными, а не противоречивыми.

Ещё одним примером дополнительности является принцип неопределённости Гейзенберга. В классической физике описание состояния частицы предполагает точное задание её положения в пространстве и импульса. Но в квантовой механике вы можете точно задать либо положение частицы, либо её импульс, и никогда – то и другое одновременно. Утверждение «частица имеет точное положение и импульс» следует заменить утверждением «частица имеет точное положение или точный импульс». Соответственно свет – это частицы или волны. Использование того или другого описания зависит от цели эксперимента.

Соединение квантовой механики с общей теорией относительности приводит к новому виду дополнительности – дополнительности чёрных дыр. Не существует однозначного ответа на вопрос: «Кто прав: наблюдатель, который остаётся снаружи горизонта чёрной дыры и регистрирует всю информацию, которая поступает к нему с поверхности, лежащей чуть выше горизонта, или наблюдатель, который везёт с собой сообщение, направляясь к центру чёрной дыры?» Каждый прав в своём собственном контексте: их свидетельства являются взаимодополняющими описаниями двух различных экспериментов. С одной стороны, экспериментатор, остающийся снаружи чёрной дыры, может бросать на неё предметы и регистрировать фотоны, приходящие с поверхности, расположенной чуть выше горизонта, наблюдать воздействие гравитационного поля чёрной дыры на траектории частиц, пролетающих вблизи горизонта, и т. п. С другой стороны, второй экспериментатор, готовящий эксперимент в своей лаборатории, может затем упасть вместе с лабораторией в чёрную дыру, пересечь горизонт и продолжить свои эксперименты на пути к её центру.

Дополнительные описания этих двух экспериментов различаются настолько радикально, что вызывают сомнения в справедливости постулированного нами принципа. Внешний наблюдатель видит[100] вещество, падающее на горизонт, замедляющееся и замирающее чуть выше него. Вблизи горизонта вещество распадается на отдельные частицы и, наконец, возвращается обратно в виде хокинговского излучения. Фактически внешний наблюдатель видит, как его отчаянный коллега испаряется и возвращается обратно в виде света и сияния.

Но опыт внешнего наблюдателя не имеет ничего общего с опытом наблюдателя свободно падающего. Свободно падающий наблюдатель благополучно пересекает горизонт, даже не замечая этого. Ни удара, ни высокой температуры, никакого иного свидетельства, что он прошёл «точку невозврата». Если чёрная дыра является достаточно большой, скажем, радиусом в несколько миллионов световых лет, он будет падать в неё миллионы лет, не ощущая никакого дискомфорта. По крайней мере, пока он не достигнет центра чёрной дыры, где приливные силы, являющиеся следствием неоднородности гравитационного поля, станут настолько сильными, что… нет, лучше даже не думать о том, что с ним произойдёт.

Два столь разных описания создают впечатление неразрешимого противоречия. Но как мы узнали от Бора, Гейзенберга и их последователей, единственный вид противоречий, который следует принимать во внимание, это когда два различных описания ведут к предсказанию различных результатов одного и того же эксперимента. Если же речь идёт о двух принципиально несовместимых экспериментах, то нет и никакого повода беспокоиться о противоречивости описаний. Свободно падающий в чёрную дыру наблюдатель никогда не сможет обменяться опытом с оставшимся снаружи: после благополучного пересечения горизонта он находится вне контакта со всеми наблюдателями, которые остались по ту сторону. Поэтому дополнительность чёрных дыр – совершенно законная физическая вещь, какой бы странной она ни казалась.

Я упомянул о квантово-механической революции в физике. Другой крупной революцией начала XX века стала теория относительности Эйнштейна. Некоторые явления зависят от характера движения наблюдателя. Например, мы не можем с абсолютностью утверждать, что два события, разделённые пространственным промежутком, произошли одновременно. Их последовательность может быть разной для разных наблюдателей, движущихся друг относительно друга. Скажем, один наблюдатель увидит две последовательные вспышки света, в то время как другой заявит, что они произошли одновременно.

Принцип дополнительности чёрных дыр является новым и более сильным принципом относительности. Ещё раз: описание событий зависит от состояния движения наблюдателя. Оставаясь в покое снаружи чёрной дыры, вы видите одну картину. Свободно падая внутрь чёрной дыры, вы видите те же события в совершенно другом представлении.

Дополнительность и относительность – плоды величайших умов XX века – объединены теперь в радикально новое видение пространства, времени и информации.

Голографический принцип

Возможно, ошибка, которую допустил Хокинг, состоит в том, что он представлял, что бит информации имеет определённую пространственную локализацию. Простым примером квантового бита является поляризация фотона. Каждый фотон обладает спином, проекция которого на направление движения фотона называется спиральностью. Представьте себе электрическое поле фотона в виде стрелочки, перпендикулярной направлению его движения. Конец этой стрелочки вращается в плоскости, перпендикулярной направлению движения фотона, описывая в пространстве винтовую спираль. Эта спираль может закручиваться как по, так и против часовой стрелки подобно правой или левой резьбе на винте. В первом случае фотоны, составляющие пучок света, называются правыми, а во втором – левыми. Используемые в повседневной жизни винты и шурупы почти всегда имеют правую резьбу, но это не проявление какого-то закона природы, а исключительно следствие того, что в человеческой популяции правши преобладают над левшами. Фотоны могут с равной вероятностью быть как правыми, так и левыми. Это явление носит название круговой поляризации фотонов.

Поляризация одиночного фотона содержит один-единственный квантовый бит информации. Сообщения, передаваемые азбукой Морзе, могут отправляться в виде последовательности фотонов, имеющих различную поляризацию, кодирующую точки и тире.

Итак, каждый фотон может нести с собой один бит информации. Что можно сказать о локализации этого бита информации в пространстве? В квантовой механике местоположение фотона не может быть определённым, потому что нельзя с одинаковой точностью определить местоположение и импульс фотона.

Означает ли это, что бит информации вообще не имеет какого-то определённого места в пространстве?

Вы можете не знать точно, где находится фотон, но способны точно определить его местоположение, если поставите именно такую экспериментальную задачу. Просто нельзя определить одновременно точное местоположение фотона и его импульс. После того как вы точно определите местоположение фотона, вы будете точно знать, где находится бит информации, который он несёт. В рамках обычной квантовой механики и теории относительности любой наблюдатель согласится с вами. В этом смысле квантовый бит информации имеет определённое местоположение. По крайней мере, так всегда считалось.

Но принцип дополнительности чёрных дыр утверждает, что расположение информации не является определённым даже в этом смысле. Один из наблюдателей находит информационные биты где-то глубоко под горизонтом, а другой видит те же биты, излучаемые обратно с поверхности, лежащей над самым горизонтом. Всё выглядит так, будто информация всё-таки не имеет определённого местоположения в пространстве.

Существует альтернативный способ представления этой проблемы. В этом представлении биты информации всё-таки обладают определённым местоположением, но оно находится вовсе не там, где вы думаете. Это – голографический взгляд на природу, порождённый размышлениями о чёрных дырах. Как же работает голографический принцип?

Рисунок, фотография или картина не являются тем реальным миром, который они отображают. Это плоская, неполная, лишённая трёхмерной глубины проекция реального мира. Повертите рисунок перед собой, посмотрите на него под другим углом – вы не увидите ничего нового сверх того, что на нём уже изображено. Он двумерен, в то время как реальный мир трёхмерен. Художник, используя особенности восприятия и законы перспективы, попросту надул вас, заставив ваш мозг додумывать несуществующую информацию и воссоздавать в воображении трёхмерную картину. Не существует никакой возможности определить, является изображённая фигура далёким великаном или близким карликом. Не существует никакой возможности определить, является изображённый человек существом из плоти и крови или восковой фигурой. Мозг домысливает информацию, которая реально не содержится в наборе разноцветных мазков на холсте или в зёрнах серебра на поверхности фотобумаги.

Изображение на экране компьютера также представляет собой двумерную поверхность, заполненную светящимися пикселями. Фактические данные, хранящиеся в памяти компьютера, содержат информацию о цвете и интенсивности отдельных пикселей. Подобно картине или фотографии, экран компьютера является очень плохим представлением реальной трёхмерной сцены.

Что следует сделать, чтобы достоверно сохранить полную информацию о трёхмерном объекте, включая также информацию о его внутренностях? Ответ очевиден: вместо набора пикселей, заполняющих плоскость, нам потребуется набор пространственных элементов – вокселей, заполняющих объём отображаемой сцены.

Заполнение пространства вокселями – гораздо более сложная задача, чем заполнение поверхности пикселями. Например, если экран компьютера имеет разрешение тысяча на тысячу пикселей, то для его заполнения вам понадобится миллион пикселей. Но если мы хотим заполнить объём с таким же разрешением, нам понадобится миллиард вокселей.

Однако голографический метод записи изображений преподносит нам сюрприз. Голограмма представляет собой двумерный образ – изображение на плёнке, позволяющее однозначно восстанавливать полноценные трёхмерные изображения. Вы можете ходить вокруг восстановленного голографического изображения и рассматривать его со всех сторон. Вы способны однозначно определить, какой из объектов находится ближе, а какой дальше. Изменив своё собственное местоположение, вы можете добиться того, что дальний объект станет ближним, а ближний – дальним. Голограмма является двумерным изображением, но она содержит полную информацию о трёхмерной сцене. Однако если вы будете просто рассматривать фотопластинку с изображением голограммы, вы не увидите ничего осмысленного: изображение реального мира на голографической пластинке зашифровано.

Информация на голограмме, пусть и зашифрованная, может содержаться в виде отдельных пикселей. Конечно, за всё приходится платить: чтобы описать объем размером в 100010001000 вокселей, голограмма должна состоять из одного миллиарда пикселей.

Одной из неожиданностей современной физики стало открытие, что мир является своего рода голографическим изображением. Но ещё более удивительным оказалось то, что количество пикселей, которые содержит голограмма, пропорционально площади поверхности, окружающей описываемую сцену, а не её объёму. Это как если бы трёхмерный объём в один миллиард вокселей потребовал для своего полного описания всего миллиона пикселей на плоском экране компьютера! Представьте себя в огромной комнате, в окружении стен, пола и потолка. Или лучше представьте себя внутри большой сферы. Голографический принцип утверждает, что всё, что находится в комнате, представляет собой голографическое изображение, записанное на двумерной поверхности, ограничивающей эту комнату. То есть на самом деле вы и вся прочая обстановка комнаты – всё это квантовая голограмма, записанная на ограничивающей объём поверхности. Эта голограмма представляет собой двумерный массив крошечных пикселей, а отнюдь не вокселей, каждый из которых имеет размер порядка планковской длины! Конечно, природа квантовой голограммы и способ кодирования трёхмерных данных сильно отличаются от принципа работы обычных голограмм. Но они имеют одну общую особенность: изображение трёхмерного мира полностью зашифровано.

Теперь нам понятно, как следует поступать с чёрными дырами. Поместим чёрную дыру в центре большой сферической комнаты. Всё – чёрная дыра, космический путешественник, корабль-матка с внешним наблюдателем – хранится в виде голографической информации, записанной на сферической поверхности, окружающей сцену. Две разные картины, которые мы пытались примирить при помощи принципа дополнительности чёрных дыр, – это просто две различные реконструкции одной и той же голограммы, но с использованием различных алгоритмов!

Голографический принцип не встретил радушного приёма, когда мы с ‘т Хоофтом выдвинули его в начале 1990-х годов. Моё личное мнение было, что этот принцип верен, но что должно пройти не одно десятилетие, прежде чем мы узнаем достаточно о квантовой механике и гравитации, чтобы доказать его справедливость. Однако всё изменилось всего три года спустя, когда в 1997 году молодой физик Хуан Малдасена взорвал физический мир статьёй под названием «Предел больших N в суперконформной теории поля и супергравитация». Неважно, что означают эти слова, суть в том, что Малдасена, умело соединив теорию струн с D-бранами Полчински, обнаружил полное голографическое описание если не нашего мира, то мира, достаточно похожего на наш, чтобы это описание стало убедительным аргументом в пользу голографического принципа. Чуть позже Эд Виттен поставил свою печать одобрения на голографический принцип, опубликовав совместно с Малдасеной статью «Пространство анти-де Ситтера и голография». После этого можно было с уверенностью сказать, что голографический принцип созрел для роли одного из краеугольных камней современной теоретической физики. Он был использован для решения проблем, которые на первый взгляд не имеют ничего общего с чёрными дырами.

Что общего имеет голографический принцип с дополнительностью чёрных дыр? Ответ: «Всё!» Голограммы представляют собой невероятно зашифрованный набор данных, предназначенный для декодирования. Декодирование может быть произведено либо путём математической обработки, либо при помощи освещения голограммы светом лазера. Когерентное лазерное излучение на физическом уровне реализует математический алгоритм.

Представьте себе сцену, содержащую большую чёрную дыру и различные предметы, которые могут в неё падать, а также выходящее наружу излучение. Всю эту сцену можно описать при помощи квантовой голограммы, локализованной на далёкой поверхности, окружающей содержащее сцену пространство. Но теперь у нас существуют два возможных способа – два алгоритма – для декодирования голограммы. Первый алгоритм воссоздаёт сцену так, как она выглядит для наблюдателя, который находится снаружи горизонта чёрной дыры и наблюдает излучение Хокинга, выносящее обратно все биты, попавшие под горизонт. Второй алгоритм восстанавливает сцену такой, какой бы её увидел некто, падающий в чёрную дыру. У нас есть одна голограмма, но два способа её восстановления.

Пузыри вокруг нас

Вероятно, слишком опрометчиво было бы заявить, что трёхмерный мир является полной иллюзией. Но предположение о том, что биты информации располагаются вовсе не обязательно там, где вы ожидали бы их обнаружить, в настоящее время является широко признанным. Каковы его последствия для Вселенной из мыльной пены из главы 11? Позвольте напомнить, на чём мы остановились в конце прошлой главы.

Я рассказал вам о двух способах представления истории: последовательном и параллельном. Согласно последовательному представлению, каждый наблюдатель видит вокруг себя небольшую часть Мегаверсума. Остальные его части никогда не будут доступны наблюдению, потому что они удаляются со сверхсветовой скоростью. Граница между тем, что можно, и тем, что нельзя увидеть, – это горизонт. К сожалению, остальные карманные вселенные Мегаверсума – все эти Неверленды – навсегда скрыты от нас за горизонтом. С позиции классических принципов общей теории относительности мы можем сколько угодно фантазировать о существовании и свойствах этих других миров, но никогда ничего про них не узнаем. Они не имеют для нас никакого практического значения, и они не имеют смысла с точки зрения научного подхода.

Они являются предметом изучения метафизики, а не физики.

Но, с другой стороны, точно такой же вывод оказался ошибочным в отношении горизонта чёрной дыры. На самом деле космический горизонт вечно раздувающейся Вселенной математически очень похож на горизонт чёрной дыры. Давайте вернёмся к бесконечному озеру, заполненному лодками и наблюдателями. Чёрная дыра была очень похожа на опасный слив, горизонт – на точку невозврата. Давайте сравним эту модель с моделью вечно расширяющегося озера, питающегося системой труб, проложенных вдоль всего дна, когда плавающие в нём наблюдатели удаляются друг от друга в соответствии с законом Хаббла. Если вода подаётся в озеро с постоянной скоростью, мы получим наиболее точный аналог вечной инфляции.

Каждая отдельная лодка будет окружена границей, похожей на горизонт вблизи слива. Представьте себе лодки, плавающие вокруг корабля-матки. Если случайно или по умыслу одна из них окажется за пределами точки невозврата, она просто не может вернуться обратно и даже обмениваться сообщениями с кораблём-маткой. Единственное различие между горизонтом чёрной дыры и космическим горизонтом раздувающегося пространства состоит в том, что в одном случае мы находимся снаружи, а в другом – внутри горизонта. Но во всём остальном горизонты чёрной дыры и раздувающегося пространства одинаковы.

Для кого-то находящегося снаружи чёрной дыры все события в жизни отправившегося в чёрную дыру исследователя находятся за горизонтом. Но эти события составляют предмет физики, а не метафизики. Они телеграфируются наружу в виде омлета из голографического кода излучением Хокинга. Как для сообщения, передаваемого заключённым из тюрьмы, не имеет значения, знаем мы код или нет, – сообщение всё равно присутствует в передаваемой колоде карт.

Существуют ли такие же «карты», прилетающие к нам из миллиардов карманных вселенных, находящихся за космическим горизонтом? Космические горизонты изучены не столь хорошо, как горизонты чёрных дыр. Но если очевидное сходство между ними может служить какой-то подсказкой, то карты, прилетающие к нам из-за космических горизонтов, должны представлять собой такие же фотоны, из которых состоит излучение Хокинга. К этому моменту вы, надеюсь, уже догадались, что ими являются фотоны космического микроволнового фонового излучения, которые всё время приходят к нам со всех направлений. Эти посланники из-за космического горизонта несут нм сообщения от всего Мегаверсума.

Джордж Смут, один из пионеров в обнаружении реликтового излучения, в порыве сверхэнтузиазма однажды сравнил карту реликтового излучения с ликом бога. Но мне кажется, что для пытливых умов зашифрованная голограмма бесконечных карманных вселенных является гораздо более интересной и точной интерпретацией этой картины.

Глава 13. Подведение итогов

Слоганы

Одна тема проходит связующей нитью сквозь весь наш длинный и извилистый тур от фейнмановских диаграмм до бурлящих вселенных – наша собственная Вселенная представляет собой необыкновенное место, которое, как кажется, было фантастически хорошо сконструировано для нашего существования. Эта уникальность не является тем, что можно приписать случайному стечению обстоятельств. Это слишком маловероятно. Такое явное совпадение взывает к объяснению.

Чрезвычайно популярным не только среди широкой публики, но и среди многих учёных[101] является объяснение, что некий «суперархитектор» создал Вселенную с определённым благожелательным замыслом. Сторонники этой точки зрения – разумного замысла – утверждают, что он вполне научно и идеально согласуется со всеми космологическими и биологическими фактами. Разумный демиург не только выбрал для своего замысла отличные Законы Физики, но также направил биологическую эволюцию, проведя её в обход тупиковых ветвей от бактерий до человека разумного. Но это объяснение, будучи эмоционально успокаивающим, является интеллектуально неудовлетворительным. Оно оставляет без ответа вопросы, кто создал самого демиурга, какой механизм использовал демиург для вмешательства в ход эволюции, нарушает ли демиург Законы Физики для достижения своих целей, подчиняется ли демиург законам квантовой механики?

Сто пятьдесят лет назад Чарльз Дарвин предложил для науки о жизни ответ, который стал краеугольным камнем современной биологии, – механизм, который не требует ни цели, ни демиурга. Случайные мутации в сочетании с конкуренцией за возможность воспроизводства объясняют всё разнообразие видов, которые в конечном итоге заполнили все экологические ниши, включая существ, которые выживают благодаря своему остроумию. Но физика, астрономия и космология пока не могут похвастаться такими успехами. Дарвинизм может объяснить возникновение человеческого мозга, но уникальность Законов Физики по-прежнему остаётся загадкой. Эта головоломка, возможно, сдастся, наконец, под напором физической теории, сыграющей в физике такую же роль, какую теория Дарвина сыграла в биологии.

Физические механизмы, о которых я рассказывал в этой книге, имеют два ключевых сходства с теорией Дарвина.

Первое из них – это огромный ландшафт возможностей – чрезвычайно богатое пространство всевозможных конструкций.[102] Существует более 10 000 видов птиц, более 300 000 видов жуков и миллионы видов бактерий. Общее же число возможных видов, несомненно, неизмеримо больше.

Является ли число возможных биологических видов настолько же большим, как и число различных вариантов вселенных? Это зависит от того, что именно мы подразумеваем под возможным биологическим видом. Одним из способов определения числа всех возможных биологических конструкций является перебор всех вариантов последовательностей пар нуклеотидов в большой молекуле ДНК. Молекула человеческой ДНК содержит около миллиарда пар оснований, и для каждого основания есть четыре варианта. Общее количество возможных вариантов оказывается невероятно огромным: 41 000 000 000 (или порядка 10600 000 000). Это намного больше, чем 10500 – количество всевозможных долин Ландшафта, подсчитанное струнными теоретиками путём перебора всех возможных конфигураций потоков. Но разумеется, большинство из вариантов последовательностей ДНК оказываются нежизнеспособными. С другой стороны, большинство из 10500 вакуумов также являются непригодными для жизни. В любом случае оба числа настолько велики, что они выходят далеко за пределы наших способностей их представить.

Второе ключевое сходство – это сверхплодотворный механизм воплощения всевозможных «чертежей» «в железе». Дарвиновский механизм включает репликацию, конкуренцию и задействует для своей работы огромное количество атомов углерода, кислорода и водорода. Механизм вечной инфляции также предполагает экспоненциальную репликацию, но – объёма пространства.

Как говорилось в главе 11, процесс заселения ландшафта имеет сходство с биологической эволюцией, но также он имеет по крайней мере два очень больших различия. Первое из них обсуждалось в главе 11. Биологическая эволюция вдоль заданной филы состоит из последовательности практически неотличимых друг от друга индивидуальных организмов, и чтобы обнаружить отличие, необходимо сравнивать организмы, отстоящие друг от друга на много поколений. Но если мы проследим генеалогию нескольких поколений пузырей, то мы в каждом следующем поколении будем обнаруживать большие отличия в энергии вакуума, массах частиц и прочих Законах Физики. Если бы дети так сильно отличались от родителей, это сделало бы дарвиновскую эволюцию невозможной. Количество монстров-мутантов будет настолько превосходить численность относительно нормального потомства, что выживание их вида в условиях конкуренции с другими видами станет невозможным.

Как же тогда Мегаверсум оказался настолько богат разными «видами», если биологическая эволюция в тех же условиях заходит в тупик? Ответ лежит во втором большом различии между двумя видами эволюции: различные карманные вселенные не конкурируют между собой за место под солнцем и за пищевые ресурсы. Было бы интересно посмотреть на воображаемый мир, в котором биологическая эволюция происходит в среде, где ресурсы настолько неограниченны, что у организмов нет необходимости вести борьбу за существование. Возникнет ли в таком мире разумная жизнь? В большинстве моделей дарвиновской эволюции борьба за существование является ключевым фактором. Что произошло бы без неё? Рассмотрим частный случай: последний шаг в развитии нашего собственного вида. Около 100 000 лет назад кроманьонцы боролись за существование с неандертальцами. Кроманьонцы выиграли, потому что они были умнее, крупнее, сильнее и сексуальнее. Это привело к улучшению генофонда человеческой расы. Но предположим, что ресурсы были бы неограниченными и что сексуальность не была бы необходима для размножения. Привело бы это к уменьшению популяции кроманьонцев? Конечно нет. Все, кто выжил в условиях борьбы за существование, тем более выжили бы в условиях её отсутствия. Более того, многие из тех, кто в этой борьбе погиб, тоже выжили бы. Но и неандертальцев тоже было бы больше. Больше было бы и тех и других и, возможно, ещё и каких-нибудь третьих. Все население возрастало бы экспоненциально. В мире неограниченных ресурсов отсутствие конкуренции не замедлило бы эволюцию разумных существ, но привело бы к тому, что их оказалось бы больше одного вида.

Есть и третий, после физики и биологии, контекст, в котором те же две составляющих – Ландшафт и Мегаверсум – крайне важны для нашего существования. В природе существует огромное разнообразие типов планет и других астрономических тел: горячие звёзды, холодные астероиды, гигантские пылевые облака и много чего ещё. И снова оказывается, что ландшафт возможностей в этом контексте чрезвычайно богат. Одни только различия в расстоянии от родительской звезды до планеты дают нам большое разнообразие природных условий. Что касается механизма, который превращает возможность в актуальность – Большого взрыва и последующей гравитационной конденсации вещества, – то только в наблюдаемой части Вселенной этот механизм, по самой пессимистичной оценке, должен был создать порядка 1022 планет.

В каждом из этих случаев ответ на вопрос о нашем собственном существовании точно такой же: имеется много существ/планет/карманных вселенных и многих других возможных конструкций. Количество их настолько велико, что чисто статистически некоторые из них окажутся жизнеспособными/приспособленными для возникновения разумной жизни. Большинство же существ/вселенных/небесных тел нежизнеспособны/непригодны для жизни. Нам просто повезло. Это и есть смысл антропного принципа. Нет никакой магии, нет никакого сверхъестественного демиурга, а есть лишь самый обычный закон больших чисел.

Мой друг Стив Шенкер – один из мудрейших физиков, который я знаю, любит формулировать свои тезисы в виде слоганов. Он считает, что если важная серьёзная идея не может быть сформулирована в виде пары коротких фраз, то такая идея не заслуживает внимания. Мне кажется, что он прав. Вот некоторые примеры слоганов, иллюстрирующих развитие физики.

Ньютоновская механика:

Специальная теория относительности:

и

Общая теория относительности:

Квантовая механика:

Космология:

Однако лучший научный слоган, который я знаю, относится не к физике и космологии, а к теории эволюции:

Естественный отбор

Если бы мне пришлось сократить эту книгу до единственного слогана, то, на мой взгляд, он выражал бы единый принцип, общий для биологии и космологии:

Ландшафт возможностей населён актуальностями Мегаверсума

Между биологическим или планетарным механизмом эволюции и вечной инфляцией, заселяющей Ландшафт, существует одно досадное различие. В первых двух случаях мы можем непосредственно наблюдать результаты работы эволюционного механизма. Мы воочию видим разнообразие биологических форм и типов планет вокруг нас.

Хотя астрономические объекты наблюдать сложнее, чем изучать животный и растительный мир на Земле, но даже без помощи телескопа мы можем увидеть планеты, Луну и звёзды. Однако гигантское море карманных вселенных, созданных вечной инфляцией, скрывает от нас космический горизонт событий. Проблема, конечно, в эйнштейновском ограничении максимальной скорости. Если бы мы смогли превысить скорость света, то не было бы никаких проблем с путешествиями в далёкие карманные вселенные и обратно. Мы могли бы избороздить весь Мегаверсум. Но увы, просверливание червоточины сквозь пространство к далёкой карманной вселенной – это фантазия, которая нарушает фундаментальные физические принципы. Существование других карманных вселенных остаётся и всегда будет оставаться гипотезой, но эта гипотеза обладает огромной силой в отношении объяснения устройства мира.

Консенсус?

Если идеи, которые я изложил, окажутся верными, то наш взгляд на мир расширится далеко за пределы глухой провинции у бескрайнего моря Мегаверсума к чему-то гораздо более грандиозному: большему пространству, большему промежутку времени и большим возможностям. Если всё правильно, то сколько времени займёт сдвиг парадигмы? Как пресловутый лес, смены парадигм лучше всего видны на расстоянии. В периоды смены принципов, на которые мы опираемся, всё выглядит слишком запутанным, вода становится слишком мутной, чтобы позволить ясно увидеть какую-либо перспективу хотя бы на несколько лет вперёд. В такие времена наблюдателю со стороны практически невозможно понять, чьи идеи заслуживают внимания, а чьи – пустые спекуляции. Это трудно предвидеть даже инсайдерам. Цель написания этой книги не в том, чтобы убедить читателя в правильности моей собственной точки зрения. Научными аргументами лучше всего сражаться на страницах научных журналов и в семинарских аудиториях. Моя цель в том, чтобы показать расстановку сил в войне новых идей, чтобы обычные читатели смогли почувствовать свою сопричастность к этой войне, посмотреть на неё изнутри, ощутить азарт сражения и радость открытия так, как ощущаю их я.

Меня всегда захватывали истории появления и развития новых научных идей. Я пытался понять, как великие мастера прошлого приходили к своим открытиям. Однако не все великие мастера мертвы. В настоящее время – прямо сейчас, в это чудесное время – живут и творят такие титаны, как Вайнберг, Виттен, ‘т Хоофт, Полчински, Малдасена, Линде, Виленкин… я счастлив, что могу наблюдать, как они сражаются за новую парадигму. Поскольку я сам являюсь непосредственным участником этих событий, я возьму на себя смелость воссоздать их образ мыслей. Начнём с физиков.

Стивен Вайнберг, пожалуй, более, чем любой другой физик, ответствен за открытие Стандартной модели физики элементарных частиц. Стив не склонен к скоропалительным суждениям, и я уверен, что он перепроверяет все доказательства так тщательно, как никто другой. Из его трудов и лекций очевидно, что он хотя и не принимает как истину в последней инстанции, но, по крайней мере, не отвергает возможность того, что некоторые из вариантов антропного принципа могут играть определённую роль в предопределении Законов Физики. Тем не менее отдельные его работы выражают сожаление о «потерянной парадигме». В своей книге «Мечты об окончательной теории», изданной в 1992 году, он пишет:

«Если благоприятное для нас значение космологической постоянной подтверждается наблюдениями, то будет разумно сделать вывод, что наше собственное существование играет важную роль в объяснении, почему Вселенная является именно такой. Чего бы это ни стоило, я надеюсь, что это не так. Как физик я хотел бы видеть, что мы способны делать точные предсказания, а не расплывчатые заявления о том, что некоторые константы должны лежать в диапазоне, который является более или менее благоприятным для жизни. Я надеюсь, что теория струн действительно послужит основой для окончательной теории и что эта теория будет обладать достаточной предсказательной силой, чтобы дать нам возможность вычислить значения всех фундаментальных констант, включая космологическую постоянную. Будущее покажет…»

Вайнберг написал эти слова под впечатлением открытия гетеротической теории струн и компактификации многообразий Калаби – Яу. Но теперь он знает, что теория струн не оправдала надежд на то, что она станет альтернативой антропному принципу.

Эд Виттен – один из величайших математиков в мире и пифагореец в душе. Он построил свою карьеру вокруг элегантной и красивой математики, которая родилась из теории струн. Его способность погружаться в математические глубины захватывает дух. Неудивительно, что он относится к тем моим коллегам, которые упорно не желают отказываться от поиска той магической математической «серебряной пули», которая убьёт произвол в выборе Законов Физики и свойств элементарных частиц. Если такая пуля и существует, то именно Виттен имеет все шансы её найти. Долгое время его поиски не имели успеха, несмотря на то что он сделал больше, чем кто-либо другой для создания математических инструментов, необходимых при изучении Ландшафта. Я не думаю, что ему вообще нравится текущее направление развития теории.

Если Виттен являлся движущей силой развития математического аппарата теории струн, то Джо Полчински был главным поставщиком «деталей» для этой гигантской машины. Вместе с блестящим молодым стэнфордским[103] физиком Рафаэлем Буссо Джо предпринял первую попытку собрать из этих деталей модель Ландшафта с огромным дискретуумом вакуумов. В многих дискуссиях Джо настаивал, что альтернативы населённому Ландшафту не существует.

Мой старый товарищ по оружию Герард ‘т Хоофт всегда был настроен скептически в отношении претензий теории струн на роль «теории всего» и недавно написал мне:

На самом деле никто не может мне объяснить, что означает утверждение, будто теория струн содержит 10100 вакуумных стран. Прежде чем сделать такое утверждение, вы должны сначала дать строгое определение, что такое теория струн, а у нас нет такого определения. И сколько вообще этих вакуумов: 10500 или 1010 000 000 000? Поскольку такие «детали» все ещё висят в воздухе, я чувствую себя крайне неудобно перед антропными аргументами.

Однако я не исключаю некоторые варианты антропного принципа. В конце концов, мы живём на Земле, не на Марсе, Венере или Юпитере именно по антропным соображеням. Это, однако, заставляет меня отличать дискретный антр. принцип от континуального. Дискретный значит что-то вроде: постоянная тонкой структуры является обратным значением целого числа и равна 1/137, что требует поправок высших порядков. Континуальный означает, что эта константа равна 1/137,018945693459823497634978634913498724082734… и т. д., и все эти десятичные знаки определяются антр. принц. Я считаю это неприемлемым. Теория струн, как мне представляется, утверждает, что первые 500 десятичных знаков имеют антропное происхождение, а остальные – математическое. Я думаю, что слишком рано делать такие предположения».

Нужно уточнить, что понимает ‘т Хоофт под дискретным антропным принципом. Это означает, что Ландшафт не должен содержать так много вакуумов, чтобы среди них можно было найти вакуум с любыми значениями физических констант. Иными словами, он готов частично примириться с антропными рассуждениями, если число различных возможностей окажется конечным.

Стоит отметить, что, несмотря на свой скептицизм, Герард не исключает антропного объяснения, но вместе с тем не предлагает и альтернативного объяснения для факта невероятно тонкой настройки космологической постоянной. Однако в своём скептическом отношении к окончательной «теории всего», я думаю, он прав.

Том Бэнкс – ещё один скептик. Том – один из глубоких мыслителей в мире физики, и его разум всегда открыт для новых идей. Его скептицизм, как и скептицизм ‘т Хоофта, относится не столько к антропной аргументации, сколько к определению Ландшафта, который даёт теория струн. Тому принадлежит множество важных вкладов в эту теорию, но по его же собственному мнению, Ландшафт метастабильного вакуума может оказаться иллюзией. Том утверждает, что теория струн и теория вечной инфляции ещё недостаточно хорошо поняты, чтобы с уверенностью утверждать, что Ландшафт – это математическая реальность. Если критерием является определённость, то я согласен с ним. Но Бэнкс чувствует, что математика теории струн может оказаться не только неполной, но и вообще ошибочной. Пока что его аргументы не выглядят убедительными, но они вызывают серьёзную озабоченность.

А что думают обо всём этом более молодые физики? В целом они открыты новым идеям. Хуан Малдасена в свои тридцать с небольшим лет оказал огромное влияние на всех теоретиков своего поколения. Его работа превратила голографический принцип в практический инструмент. Как и Виттена, его часто посещают великие математические озарения; как и Полчински, он оказал огромное влияние на физическую интерпретацию математических результатов. Относительно Ландшафта он однажды бросил: «Я надеюсь, что это неправда». Подобно Виттену, Малдасена надеется на единственность как Законов Физики, так и истории Вселенной. Однако же, когда я спросил его, питает ли он какую-нибудь надежду на то, что на самом деле никакого Ландшафта не существует, он ответил: «Нет. Боюсь, что нет».

В Стэнфордском университете – моём доме – существует более-менее единодушное, по крайней мере среди физиков, мнение, что Ландшафт существует. Мы должны стать его исследователями, научиться ориентироваться в нём и составить его карту. У нас есть два тридцатилетних лидера: Шамит Качру и Ева Сильверстейн. Оба заняты конструированием гор, долин и обрывов на Ландшафте. Если бы я захотел назвать кого-нибудь современным Рубом Голдбергом, то это, безусловно, был бы Шамит. Только не поймите меня неправильно. Я не хочу сказать, что он делает плохие машины. Напротив, Шамит лучше, чем кто-либо другой из струнных теоретиков, умеет приспосабливать сложные детали этих машин для конструирования моделей Ландшафта. А антропный принцип? Он идёт в комплекте с Ландшафтом. Он составляет неотъемлемую часть рабочей предпосылки для всех моих ближайших коллег в Стэнфордском университете, как молодых, так и старых.

На другом конце страны, в Нью-Джерси, находятся два величайших в мире центра теоретической физики: Принстон с его физическим факультетом и Институт перспективных исследований. Однако в двадцати милях к северу, в Нью-Брансуике, есть ещё один локомотив, тянущий физику вперёд, – Ратгерский университет. Одной из его достопримечательностей является звезда по имени Майкл Дуглас. Как и Виттен, Дуглас и гениальный физик, и серьёзный математик. Но для нашей истории гораздо более важно, что он ещё и отважный исследователь Ландшафта. Дуглас поставил перед собой задачу изучения статистики Ландшафта, вместо того чтобы исследовать свойства отдельных долин. Он использует методы математической статистики, чтобы оценить, какие свойства являются наиболее распространёнными, какой процент долин лежит на той или иной высоте, какова вероятность, что долина, экспоненциально стремящаяся к суперсимметричному состоянию, окажется пригодной для жизни. Несмотря на то что он предпочитает использовать термин «статистический подход» вместо термина «антропный принцип», справедливо будет сказать, что Дуглас находится на антропной стороне баррикады.

Космологи разделились по этому вопросу поровну. Джим Пиблс из Принстонского университета – патриарх американской космологии. Пиблс был пионером в каждом космологическом открытии. Ещё в конце 1980-х годов он одним из первых начал подозревать, что космологические данные свидетельствуют о существовании чего-то вроде ненулевой космологической постоянной. Напоминаю: это было в конце 1980-х годов! Обсуждая с ним космологические проблемы, я был поражён невинным признанием, что, по его мнению, многие черты Вселенной можно объяснить только с привлечением антропной аргументации.

Сэр Мартин Рис, британский Королевский астроном, – одержимый энтузиаст Ландшафта, Мегаверсума и антропного принципа. Мартин – ведущий европейский космолог и астрофизик. Многие аргументы, которые я использовал для обоснования антропного принципа, я узнал от него и от американского космолога Макса Тегмарка.

С Андреем Линде и Александром Виленкиным вы уже знакомы. Подобно Рису и Тегмарку, они принадлежат к лагерю сторонников антропного принципа. Линде так выразил своё мнение:

«Те, кому не нравится антропный принцип, обычно отрицают его с порога. Разумеется, этот принцип не является универсальным оружием – это просто полезный инструмент, позволяющий сосредоточиться на фундаментальных физических проблемах, которые могут иметь антропное решение, отделяя их от всего остального. Вы можете любить или ненавидеть антропный принцип, но я уверен, что в конечном итоге вам придётся его использовать».

Стивен Хокинг работает вместе с Мартином Рисом в Кембридже, но у меня нет сомнений, что его взгляды очень во многом совпадают с моими. Вот цитата из лекции, прочитанной Стивеном в 1999 году:

«Я буду описывать то, что я вижу в качестве возможной основы для квантовой космологии на базе М-теории. Я не стану ограничивать себя в предположениях и рискну утверждать, что антропный принцип имеет важное значение при выборе решения для представления нашей Вселенной из всего зоопарка решений, допускаемых М-теорией».

Это говорит о том, что мы со Стивеном наконец-то хоть в чём-то сошлись во мнениях.

Но не все космологи с этим согласны. Среди наиболее известных в этой области американцев Пол Стейнхардт и Дэвид Спергель являются наиболее яростными противниками всего, что даже отдалённо пахнет антропным принципом. Стейнхардт, чьи чувства я более или менее представляю, утверждает, что он ненавидит Ландшафт и надеется, что эту гипотезу рано или поздно опровергнут. Но, как и Малдасена, он пока что не может придумать, как это сделать. Вот выдержка из работы Стейнхардта:

«Я надеюсь, что в ближайшие десятилетия физики, наконец, воплотят в жизнь свою мечту о подлинно научной “окончательной теории” и будут оглядываться на нынешнее повальное увлечение антропным принципом как на безумие тысячелетия».

Отец инфляционной теории Алан Гут сохраняет нейтралитет. Алан истово верует в густонаселенный Ландшафт. Именно он придумал термин «карманная вселенная». Но не будучи струнным теоретиком, он всё же благожелательно относится к идее дискретуума. Другими словами, он менее привержен идее о том, что количество возможных вакуумных состояний экспоненциально велико. Что касается антропного принципа, то я подозреваю, что Алан – латентный верующий. Всякий раз, когда я его вижу, я спрашиваю, не определился ли он, на что он неизменно отвечает,[104] что пока нет.

Напоследок я припас своего старого друга Дэвида Гросса. Мы с Дэвидом дружим больше сорока лет. Всё это время мы сражались друг с другом, споря до хрипоты, иногда отчаянно, но всегда с большим уважением к мнению друг друга. Я думаю, что когда мы станем двумя старыми несносными ворчунами, мы всё равно будем продолжать сражаться. Возможно, мы уже ими стали.

Без сомнения, Дэвид – один из величайших физиков в мире. Он наиболее известен как один из главных архитекторов квантовой хромодинамики, то есть динамики адронов.[105] Но важно, что он уже давно занимает должность одного из наиболее высокопоставленных генералов в армии струнных теоретиков. В середине 1980-х, будучи профессором в Принстоне, Дэвид со своими коллегами Джеффом Харви, Эмилем Мартинеком и Райаном Ромом произвёл сенсацию, обнаружив гетеротическую теорию струн. Эта новая версия теории струн выглядела гораздо больше похожей на реальный мир элементарных частиц, чем любая предыдущая. Кроме того, в то же самое время Эд Виттен со своими сотрудниками Энди Строминджером, Гари Горовицем и Филиппом Канделасом изобрёл компактификацию многообразий Калаби – Яу (и тоже в Принстоне). Когда эти работы были обнародованы, мир физики ахнул: результаты выглядели настолько реалистичными, что казалось, лишь несколько месяцев отделяет нас от окончательной, завершённой, уникальной теории элементарных частиц. Мир затаил дыхание… и не дышит до сих пор… и уже посинел.

Судьба оказалась зла. Чем больше проходит времени, тем яснее становится, что энтузиазм принстонцев в лучшем случае оказался преждевременным. Но Дэвид никогда не лелеял надежды, что серебряная пуля, которая оправдает этот энтузиазм, будет быстро обнаружена. Что же касается меня, то я подозреваю, что в конце концов гетеротическая теория станет очень важной деталью для гигантской машины Руба Голдберга. Её сходство со Стандартной моделью впечатляет. Но я также думаю, что это не единственная необходимая деталь. Потоки, браны, сингулярности и другие фишки способны расширить гетеротический ландшафт до таких пределов, которые авторы первоначальной теории даже не представляли.

Гросс, как я уже сказал, является очень грозным интеллектуальным противником, и он очень резко возражает против антропного принципа. Хотя его резоны скорее идеологические, нежели научные, их следует обсудить. Его беспокоит аналогия с религией. Кто знает, не сотворён ли этот мир богом? Но учёные – реальные учёные – должны противостоять искушению объяснить природные явления, включая возникновение Вселенной, божественным вмешательством. Почему? Потому что как учёные мы понимаем, что у человека существует настоятельная необходимость в вере, необходимость в утешениях, которые легко затмевают разумные суждения. Очень легко попасть в соблазнительную ловушку утешительной сказки. Поэтому мы сопротивляемся всем попыткам объяснения мира, основанным на чём-либо ином, кроме Законов Физики, математики и вероятности.

Наряду со многими теоретиками Дэвид выражает опасение, что антропный принцип, как и религия, – слишком утешительное и простое объяснение. Он опасается, что если мы приоткроем дверь, даже самую щёлочку для антропного принципа, он совратит нас склониться к ложным убеждениям и отвратит будущих молодых физиков от поиска серебряной пули. Дэвид красноречиво цитирует обращение Уинстона Черчилля к ученикам его школы: «Никогда, никогда, никогда, никогда, никогда, никогда, никогда, никогда не сдавайтесь! Никогда не сдавайтесь! Никогда не сдавайтесь! Никогда не сдавайтесь!» Но бранное поле физики усеяно трупами упрямых стариков, которые не знали, когда надо сдаваться.

Озабоченность представляется мне вполне реальной, и я не хочу преуменьшать опасность, однако я всё же думаю, что всё не так плохо, как он утверждает. Я ни секунды не беспокоюсь о подрастающем поколении – им хватит моральной силы, чтобы избежать ловушки. Если идея населённого ландшафта окажется ошибочной, я уверен, они поймут это. Если аргументы, указывающие на существование 10500 вакуумов, неверны, молодые струнные теоретики и математики обнаружат это. Если теория струн ошибочна, возможно, из-за математической несогласованности, она останется валяться на обочине дороги, и вместе с ней будет выброшен и ландшафт теории струн. Но если это произойдёт, то мы останемся вообще без каких-либо рациональных объяснений иллюзии разумного замысла Вселенной.

С другой стороны, если теория струн верна и Ландшафт существует, мы сможем обосновать существование нашей долины при помощи новых и усовершенствованных математических или физических методов. Мы сможем узнать об особенностях соседних мест и изучить инфляционный обрыв, с которого мы упали. И наконец, мы сможем доказать, что строгое применение математических методов приведёт нас к открытию других долин, мало отличающихся от нашей, за исключением непригодной для жизни среды обитания. Дэвид не отвергает мои аргументы, но уклоняется от прямого ответа, потому что такой ответ противоречил бы нашим ранним надеждам, что тоже является своего рода религией.

У Гросса есть ещё один аргумент. Он спрашивает: «Разве не слишком высокомерно полагать, что жизнь может быть только такой, какой мы её знаем – на основе углерода, воды и т. д. Откуда мы знаем, что в совершенно чуждых нам условиях не может существовать совершенно чуждая нам жизнь?» Кто готов утверждать, что некоторые странные формы жизни не могли бы развиваться в межзвёздном пространстве, в космической пыли, в облаках межзвёздного газа, в атмосферах планет-гигантов, таких как Юпитер или Сатурн? В этом случае ихтиотропный принцип осетрологов потеряет всякий смысл. Аргумент, что для существования жизни необходима жидкая вода и узкий диапазон температуры, также окажется несостоятельным. Рассуждая в том же ключе, мы придём к выводу, что если жизнь может возникнуть без галактик, то и вайнберговское объяснение малости космологической постоянной тоже потеряет свою силу.

Я думаю, что правильный ответ на эту критику состоит в том, что существует некое предположение, являющееся неотъемлемой частью антропного принципа, которое гласит: «Жизнь – это чрезвычайно деликатная вещь, и она требует особых условий». Я не могу этого доказать. Это просто часть гипотезы, наделяющей антропный принцип объяснительной силой. Возможно, мы должны перевернуть аргумент и сказать, что успех предсказания Вайнберга подкрепляет гипотезу о том, что существование разумной жизни требует наличия галактик или по крайней мере звёзд и планет.

Какова альтернатива парадигмы населённого ландшафта? Моё мнение состоит в том, что как только мы устраняем сверхъестественного агента, не остаётся ничего, что могло бы объяснить удивительно тонкие настройки природы. Населённый ландшафт играет в физике и космологии ту же роль, которую дарвиновская эволюция играет в биологии. Случайные ошибки копирования и естественный отбор являются единственным естественным объяснением, как такой сложный орган, как глаз, может сформироваться из обычной материи. Населённый ландшафт и богатое разнообразие, предсказываемое теорией струн, – единственный естественное объяснение экстраординарных уникальных свойств нашей Вселенной, создающих условия для нашего существования.

Самое время остановиться и ответить на потенциальные критические замечания, которые могут быть высказаны в адрес этой книги, а именно на упрёки в однобоком освещении проблемы. Где альтернативные объяснения значения космологической постоянной? Разве не существует аргументов против существования гигантского ландшафта? Как насчёт других теорий помимо теории струн?

Заверяю вас, что я не игнорирую альтернативных точек зрения. На протяжении десятилетий многие люди, включая самых прославленных физиков, пытались объяснить, почему космологическая постоянная должна иметь очень малое или даже нулевое значение. Подавляющее большинство учёных сходится на том, что ни одна из этих попыток не увенчалась успехом. Мне просто нечего сообщить вам на этот счёт.

Что касается серьёзных математических попыток развенчать Ландшафт, то я знаю только одну. Автор этой попытки является блестящим математическим физиком, и, насколько я знаю, он по-прежнему уверен в справедливости своей критики ККЛТ-конструкции. Его возражение базируется на чрезвычайно сложном математическом исследовании особых многообразий Калаби – Яу. Некоторые авторы возражали против его критики, но теперь это уже несущественно. Майкл Дуглас и его коллеги обнаружили множество примеров, позволяющих избежать означенной проблемы. Тем не менее ради честной оценки ситуации мы не должны исключать возможность того, что Ландшафт является всего лишь математическим миражом.

Наконец, относительно альтернатив теории струн. Есть одна популярная теория, называемая «петлевой гравитацией». Это очень интересная теория, но она далеко не так хорошо развита, как теория струн. В любом случае, даже самый известный приверженец петлевой гравитации Ли Смолин считает, что она не является истинной альтернативой теории струн, а может рассматриваться лишь как альтернативная формулировка теории струн.

Как бы мне ни хотелось сбалансировать книгу, приводя альтернативные объяснения, мне попросту не удаётся их найти. Противные аргументы сводятся либо к органическому неприятию антропного принципа («я его ненавижу»), либо к идеологическим возражениям («он неприемлем»).

Два специфических аргумента стали предметом вышедших недавно научно-популярных книг хорошо известных физиков, но оба, на мой взгляд, потерпели неудачу. Я займу ещё немного вашего времени, чтобы объяснить почему.

Законы природы эмерджентны

Это любимая идея некоторых теоретиков, занимающихся конденсированными средами. Они изучают свойства материалов, состоящих из простых атомов и молекул. Главным адептом этой идеи является нобелевский лауреат Роберт Лафлин.[106] По сути – это старая теория эфира, которая утверждает, что вакуум представляет собой некую специфичную материальную среду. Идея эфира была популярна в XIX веке, когда Фарадей и Максвелл пытались представлять электромагнитные поля как напряжения в эфире. Но после Эйнштейна эфир снискал себе дурную славу. Лафлин захотел воскресить старую идею, представляя Вселенную заполненной веществом со свойствами, аналогичными свойствам сверхтекучего гелия. Сверхтекучий гелий является примером вещества с особыми, эмерджентными, то есть «возникающими», свойствами, которые проявляются (возникают), только когда огромное количество атомов собираются вместе в макроскопических количествах. Жидкий гелий в сверхтекучем состоянии проявляет удивительные свойства. Например, он может течь без какого-либо трения. Сверхтекучая жидкость во многом похожа на хиггсовскую жидкость, которая заполняет пространство и придаёт частицам их свойства. В двух словах теорию Лафлина можно выразить, сказав, что мы живём в пространстве, заполненном подобной субстанцией. Если говорить более строго, то само пространство является такой эмерджентной субстанцией! Помимо этого, Лафлин считает, что гравитация – это тоже эмерджентное явление.

Одной из основных тем современной физики является исследование иерархической структуры эмерджентных явлений. Начнём с небольшого набора атомов или молекул. Собираясь в более крупную структуру, они образуют объект с новыми свойствами, которыми не обладали исходные кирпичики. Изучив свойства этого нового объекта, вы можете забыть, откуда он взялся, и начать строить из подобных ему объектов более крупные и сложные структуры. И снова у этих структур появятся новые свойства, отсутствовавшие у их составляющих. Вы снова можете забыть про свойства исходных объектов и т. д., пока не придёте к свойствам конечного макроскопического объекта. Одним из наиболее интересных свойств таких систем является то, что не имеет значения, с каких микроскопических структур вы начинаете, – это не приводит ни к каким различиям в эмерджентном поведении: свойства конечного макроскопического объекта всегда получаются одними и теми же, в определённых пределах.[107] По этой причине Лафлин считает, что нет никакого смысла в поисках фундаментальных объектов природы, поскольку варьирование свойств таких основных объектов в широком диапазоне всё равно приведёт к тем же самым Законам Физики – гравитации, Стандартной модели и т. д. – в нашем крупномасштабном мире. В реальных макроскопических материалах существуют различные виды возбуждений, напоминающие по поведению элементарные частицы, но в действительности являющиеся коллективными движениями атомов. Звуковые волны, например, ведут себя так, как будто они состоят из квантов, называемых фононами. И поведение этих фононов подозрительно похоже на поведение фотонов и других частиц.

Есть две серьёзные причины сомневаться в том, что законы природы похожи на законы эмерджентных материалов. Первая причина заключается в особых свойствах гравитации. Чтобы проиллюстрировать это, рассмотрим свойства сверхтекучего гелия, хотя с таким же успехом можно было бы взять и любой другой материал. Со сверхтекучей жидкостью происходит множество интересных вещей. В ней могут существовать волны, ведущие себя как скалярные поля, и объекты, называемые вихрями, похожие на торнадо, движущиеся сквозь жидкость. Но в ней нет ничего такого, что напоминало бы чёрные дыры. И это не случайно. Чёрные дыры обязаны своим существованием гравитационным силам, которые описываются общей теорией относительности Эйнштейна. Но ни один материал не обладает свойствами, которыми общая теория относительности наделяет пространство-время. Для этого есть очень веские причины. В главе 10, где я описывал чёрные дыры, мы увидели, что свойства мира, в котором царствуют квантовая механика и теория относительности, радикально отличаются от всего, что может породить одно только обычное вещество. В частности, голографический принцип – опора современного понимания чёрных дыр – кажется, требует совершенно нового поведения вещества, которого я не видел в известных мне конденсированных средах. На самом деле это признаёт и Лафлин, только он использует данный факт в пользу точки зрения, согласно которой чёрные дыры не могут иметь многих приписываемых им свойств, например хокинговского излучения, в то время как большинство физиков не сомневается в реальности последнего.

Но предположим, что кто-то сумел найти эмерджентную систему, обладающую именно такими свойствами, которые нам нужны. Свойства эмерджентных систем не очень гибкие. Такие системы могут иметь в своей основе очень широкое разнообразие исходных микроскопических состояний, но, как я уже говорил, эти микросостояния приводят к достаточно ограниченному набору конечных макросостояний. Например, вы можете в достаточно широких пределах варьировать структуру и свойства атома гелия, но это не приведёт к каким-либо существенным отличиям в свойствах образуемой гелием сверхтекучей жидкости. Важно лишь, чтобы атомы гелия вели себя как соударяющиеся и отскакивающие друг от друга бильярдные шары. Нечувствительность к начальному микроскопическому состоянию – это та вещь, за которую физики больше всего любят эмерджентные системы. Но вероятность того, что одно из небольшого числа возможных фиксированных конечных состояний окажется состоянием с невероятно тонко настроенными свойствами нашего мира, крайне незначительна. В частности, Лафлин так и не даёт объяснения наиболее драматической из этих прекрасных настроек – небольшой, но ненулевой космологической постоянной. Идея построения Вселенной на основе эмерджентных свойств конденсированных сред представляется мне тупиковой.

Естественный отбор и Вселенная

Ли Смолин попытался объяснить специфические свойства мира – антропные свойства – путём прямой аналогии с дарвиновской эволюцией,[108] причём не в общем вероятностном смысле, как в моей аналогии, которую я приводил ранее, а в гораздо более узком, конкретном смысле. К чести Смолина, он почти сразу же понял, что теория струн способна описать гигантский набор возможных вселенных, и попытался использовать этот факт при построении своей теории. Хотя я и чувствую, что идея Смолина ведёт в тупик, я считаю, что его титанические усилия заслуживают более серьёзного анализа. Вот суть его теории.

В любой вселенной, в которой есть гравитация, могут образовываться чёрные дыры. Смолин рассуждает о том, что может происходить внутри чёрных дыр, в частности в точке сингулярности. Он считает, на мой взгляд, совершенно безосновательно, что вместо коллапса пространства в точке сингулярности происходит воскрешение вселенной. Новые вселенные рождаются внутри чёрных дыр. Если это так, считает Смолин, то чёрные дыры формируются во вселенных, которые сами находятся внутри чёрных дыр, которые формируются во вселенных – и т. д., что приводит к эволюции в направлении максимальной приспособленности вселенных. Под приспособленностью Смолин понимает способность производить большое количество чёрных дыр и, таким образом, плодить многочисленное потомство. Затем Смолин предполагает, что наша Вселенная обладает наибольшей приспособленностью из всех возможных, то есть законы природы в нашем кармане таковы, что они приводят к максимально возможному количеству чёрных дыр. Из чего он заключает, что в антропном принципе нет никакой необходимости. Вселенная не приспособлена идеально для жизни, она идеально приспособлена для производства чёрных дыр.

Идея гениальна, но я не понимаю, что она объясняет. Мы сталкиваемся с двумя серьёзными проблемами. Во-первых, идея Смолина слишком похожа на дарвиновскую, и она требует, чтобы одно поколение отличалось от другого очень небольшими нарастающими изменениями. Как я уже отмечал ранее, модель, предлагаемая ландшафтом теории струн, работает прямо противоположным образом. В оправдание Смолина я должен сказать, что все наши знания о Ландшафте были получены уже после того, как он опубликовал свою теорию. В то время, когда Смолин разрабатывал свою теорию, рабочей парадигмой струнных теоретиков был плоский суперсимметричный регион ландшафта, где все изменения действительно происходят очень маленькими шажками.

Вторая проблема – космологическая, и она имеет очень мало общего с теорией струн. Нет никаких оснований полагать, что мы живём во вселенной, максимально приспособленной для производства чёрных дыр. Смолин приводит ряд аргументов, пытаясь доказать, что любые изменения законов природы в нашей Вселенной приведут к уменьшению количества образующихся в ней чёрных дыр, но я нахожу эти аргументы малоубедительными. В главе 5 я объяснял, что всё обстоит как раз наоборот и что это поистине чудо, что наша Вселенная катастрофически не наполнена чёрными дырами. Относительно небольшое увеличение неоднородности вещества на начальном этапе приведёт к тому, что всё вещество Вселенной сколлапсирует в чёрные дыры задолго до образования звёзд и галактик. Кроме того, увеличение масс элементарных частиц опять же приведёт к росту количества чёрных дыр, поскольку вещество будет более восприимчиво к гравитационному притяжению. На самом деле вопрос следует ставить по-другому: «Почему во Вселенной так мало чёрных дыр?» Ответ, который кажется мне наиболее естественным, заключается в том, что многие, может быть даже большинство карманных вселенных, имеют гораздо больше чёрных дыр, чем наша, но они представляют собой места со слишком неблагоприятными условиями, в которых жизнь не смогла сформироваться.

И вообще аргумент, что мы живём в мире, который максимально приспособлен для собственного воспроизведения, имеет, на мой взгляд, существенные недостатки. Пространство действительно воспроизводится – на этом зиждется хорошо изученный механизм инфляции, – но максимально приспособленная для воспроизводства вселенная не имеет ничего общего с нашим собственным миром. Наиболее приспособленная в смолинском смысле вселенная – это такая вселенная, которая наиболее быстро реплицирует сама себя, а для этого необходима большая космологическая постоянная. Но нет никакого соответствия между приспособленностью для воспроизведения и приспособленностью для поддержания разумной жизни. Наша Вселенная с её ультрамалой космологической постоянной и нехваткой чёрных дыр является очень малоприспособленной для репликации.

Вернувшись к аналогии с деревом жизни, мы увидим, что в биологии приспособленность к максимальной репродуктивности и приспособленность к мышлению тоже не пересекаются. Максимально приспособленными в этом смысле существами являются не люди, а бактерии.

Бактерии размножаются настолько быстро, что единственная клетка способна за 24 часа произвести более десяти триллионов потомков! По некоторым оценкам, общее количество бактерий на Земле составляет более чем тысячу миллиардов миллиардов миллиардов. Человек, возможно, в каких-то отношениях и более приспособлен, но только не в отношении воспроизводства. Мир, который способен поддерживать жизнь, также является очень приспособленным, но опять же, не в отношении его способности к воспроизводству.

Пойдём другим путём. Представьте себе Грегора Замзу в тот роковой день, когда он проснулся в облике гигантского таракана.[109] Очнувшись от тумана сна, он спрашивает себя: «Что я за существо?» Следуя логике Смолина, ответ должен быть таким: «С большой вероятностью я должен принадлежать к классу существ, которые наиболее приспособлены для воспроизводства и поэтому наиболее распространены в природе. Следовательно, я – бактерия».

Но через несколько секунд отражение в зеркале покажет ему ложность первого предположения. Перефразируя Декарта, он может заключить: «Я мыслю, значит, я не бактерия. Я – какое-то особенное, замечательное существо с недюжинными умственными способностями. Я необычен. Я весьма далёк от критерия обычного». Мы так же ни секунды не сомневаемся в том, что мы не обычные, что мы не принадлежим к чему-то усреднённому. Мы не принадлежим к ветви Мегаверсума, которая наиболее приспособлена для воспроизведения. Мы принадлежим к ветви, которая может сказать: «Я мыслю, значит, космологическая константа должна быть очень мала».

Моя реакция на идеи Смолина была достаточно жёсткой. Но эта жёсткость относилась к конкретным техническим вопросам, а не к общей философии Смолина. Мне кажется, что Смолин заслуживает большого уважения за многие важные достижения. Смолин был первым, кто признал, что разнообразие вакуумов теории струн может играть важную позитивную роль в объяснении, почему мир такой, какой он есть. Он также был первым, кто попытался использовать это разнообразие для объяснения уникальных свойств нашего мира.

Но важнее всего, что он сформулировал насущный вопрос, требующий ответа: «Каким образом, используя самые глубокие и мощные идеи современной физики, можно дать подлинно научное объяснение кажущейся очевидности разумного замысла?» Он решительно выступил против предрассудков струнных теоретиков, и я думаю, что он был тогда более прав, чем они.

Как я уже неоднократно подчёркивал, мне не известны удовлетворительные объяснения особых свойств нашего кармана, кроме населённого ландшафта, объяснения, не требующие привлечения сверхъестественных сил. Но с нашим сегодняшним пониманием населённого ландшафта есть реальные проблемы, и некоторые из них весьма серьёзны. На мой взгляд, большая проблема состоит в том, как быть с вечной инфляцией – механизмом, который призван заселять ландшафт. Ни клонирование пространства, ни раздувание пузырей метастабильного вакуума серьёзными проблемами не являются. Оба этих явления основаны на наиболее надёжных принципах общей теории относительности и квантовой механики. Но никто не имеет чёткого понимания, как на основе этих явлений сделать какие-либо предсказания или хотя бы статистические предположения относительно нашей Вселенной.

Для Мегаверсума, заполненного бесконечными карманными вселенными, антропный принцип является эффективным инструментом отбора и исключения большинства из них из списка кандидатов на роль нашей Вселенной. Те вселенные, которые не допускают существования жизни, подобной нашей, могут быть брошены в мусорное ведро. Антропный принцип в такой формулировке обладает мощной объяснительной силой для ответов на вопросы типа: «Почему космологическая постоянная так мала?» Но большая часть полемики вокруг антропного принципа ставит на повестку дня более амбициозную идею: надежду на то, что он может заменить серебряную пулю в предсказании свойств всего окружающего мира.

Эти ожидания необоснованны. Нет никаких причин, по которым каждая особенность природы должны определяться возможностью существования жизни. Часть особенностей могут быть выведены из строгих математических рассуждений, некоторые – из антропного принципа, а некоторые представляют собой чистые случайности.

Как всегда, мир умных рыб (см. главу 6) является удобной аналогией для того, чтобы рассмотреть возможные перспективы.

Давайте посмотрим, как эти рыбы изучают свой мир.

Со временем осетрологам удалось убедить других рыб, что населённая ими планета вращается вокруг раскалённого светящегося ядерного реактора – звезды, дающей энергию для нагревания воды. Теперь вопрос, которым были одержимы их лучшие умы, предстал в совершенно новом свете. Понимая, что температура океана зависит от расстояния до звезды, они сформулировали новую головоломку: «Почему орбитальное расстояние нашей планеты от источника тепла так тонко настроено?» Но ответ осетрологов был тем же самым: «Вселенная велика. В ней много звёзд и планет, и какая-то очень малая часть этих планет совершенно случайно оказалась на благоприятном для существования жидкой воды и рыб расстоянии от своих звёзд».

Но некоторые фишики не удовлетворились таким ответом. Они справедливо заметили, что температура на поверхности планеты зависит не только от орбитального расстояния. Светимость звезды – интенсивность, с которой она излучает энергию, – тоже должна входить в уравнение. «Мы могли бы находиться вблизи небольшой тусклой звезды или вдалеке от яркого гиганта. Существует целый набор вариантов. Ихтиотропный принцип даёт здесь сбой. Он никоим образом не может объяснить, почему наша планета находится именно на таком, а не на другом расстоянии от звезды».

Но в намерения осетрологов никогда и не входило объяснение каждой особенности природы. Их утверждение, что Вселенная является достаточно большой, чтобы содержать очень широкий набор вариантов природных условий, остаётся в силе. Аргумент, что ихтиотропный принцип не может объяснить всё, – это лишь логическая уловка, придуманная фишиками для того, чтобы опровергнуть его.

Существует очень тесная параллель между этой историей и антропным принципом. Возьмём, например, космологическую постоянную и степень неоднородности ранней Вселенной. В главе 2 я рассказывал, как Вайнберг объясняет факт малости космологической постоянной. Если бы она была намного больше, то неоднородности, присутствующие в ранней Вселенной, не смогли бы превратиться в галактики. Но предположим, что исходная неоднородность была немного больше. В этом случае нас устроит и несколько большее значение космологической постоянной. Как и в случае орбитального расстояния и светимости звезды, есть целый набор взаимосвязанных значений космологической постоянной и степени неоднородности, приводящих к возникновению жизни или, по крайней мере, галактик. Антропный принцип сам по себе бессилен для выбора между этими парами значений. Некоторые физики готовы принять это в качестве аргумента против антропного принципа. Ещё раз повторю, что я расцениваю это как логическую уловку.

Вполне возможно, что осетрологи с фишиками сумели в конце концов перейти к более конструктивному диалогу. Для этого они пригласили астрофишиков – экспертов по образованию и эволюции звёзд. Эти учёные рыбы изучили процесс формирования звёзд из гигантских газовых облаков и, как и ожидалось, обнаружили, что образующиеся звёзды обладают очень широким диапазоном светимостей. Не имея возможности непосредственного измерения светимостей различных звёзд, астрофишики тем не менее пришли к выводу, что звёзды, имеющие светимость в определённом диапазоне, должны встречаться чаще других. Астрофишики вычислили, что наиболее долгоживущие звёзды должны иметь светимость в диапазоне от 1026 до 1027 ватт. Их звезда, по всей видимости, попадает в этот диапазон.

Страницы: «« 12345678 »»

Читать бесплатно другие книги:

Ни один писатель не был столь неразрывно связан с русской революцией, как Владимир Маяковский. В бор...
Настает Эра Бездельников. Индустриальную экономику стремительно сменяет информационное общество. И в...
В книгу вошли две повести Андрея Жвалевского и Евгении Пастернак. «Как кошка с собакой» – рассказ о ...
«Спасение» России продолжается!На помощь двум друзьям, занявшим должности наследника русского престо...
Эта книга об искусстве писать красиво, в котором люди практиковались многие века. И не только профес...
Подробнейший обзор об автомобиле «Ленд Ровер Дискавери 3, 4». Плюсы и минусы машины, поломки и досто...