Математика для взрослых. Лайфхаки для повседневных вычислений Поскитт Кьяртан

Смешанные числа и неправильные дроби

Смешанное число — это целое число с дробью, например .

Неправильной называют дробь, числитель которой больше знаменателя, например 13/2 (кстати, = ).

Чтобы преобразовать смешанное число в неправильную дробь, умножьте его целую часть на знаменатель и прибавьте результат к числителю. Запутались? Пора снова браться за пиццы...

Чтобы преобразовать неправильную дробь обратно в смешанное число, относитесь к ней как к операции деления. Конвертируем 7/3: 7 3 = 2 и 1 в остатке. В ответ идет 2 целых, а 1 остается над тройкой, что дает 2 .

Преобразование смешанных чисел в неправильные дроби обычно облегчает их умножение и деление, в чем мы сейчас убедимся.

Умножение дробей и значение слова «от»

Складывать и вычитать дроби бывает неудобно, но, к счастью, с умножением и делением все обстоит гораздо проще.

Умножение дробей часто скрывается за словом «от». Если вы говорите «три четверти от двенадцати», на самом деле вы имеете в виду 3/4 12. При умножении целого числа на дробь нуж­но выполнить две операции: умножить число на числитель и разделить на знаменатель. Вот как это будет выглядеть для 3/4 12.

Чтобы перемножить две дроби, нужно просто перемножить их верхние и нижние части.

Предположим, вы каждые субботу и воскресенье по 7 часов наблюдаете за птицами. Какая это будет часть от целой недели? Суббота и воскресенье составляют 2/7 недели, а поскольку в сутках 24 часа, вы тратите 7/24 от них, пытаясь выследить пеструю камышовку или хохлатого зяблика. Получается выражение

Наверное, вы заметили, что 14 и 168 делятся на 14, что даст в результате 1/12. А не лучше ли вообще не связываться с такими большими числами? При умножении дробей всегда стоит поискать возможность их по ходу дела сократить. Самое оптимальное — найти одно и то же число в числителе и знаменателе дробей, потому что тогда эти числа взаимно уничтожаются.

Вернемся к выражению

Взгляните на две семерки: вверху дроби и внизу. Подсчитав верхнюю и нижнюю части дроби, мы в итоге придем туда, откуда начали, то есть 14/168. Вместо этого зачеркнем обе семерки и заменим их единицами. Давайте посмотрим, что еще можно сделать.

Итак, теперь вы знаете, что тратите двенадцатую часть недели на наблюдения за птицами. Это соответствует одной минуте из каждых 12 минут вашей жизни или же целому месяцу в год! (Если вы начнете высчитывать дроби для всех своих регулярных занятий, например для хобби или поездок на работу, результаты могут вас шокировать. К примеру, большинство людей проводят в ванной комнате около 10 дней в году.)

Есть одна старая математическая головоломка, которую время от времени перепечатывают в газетах. Сколько будет 9/10 8/9 7/8 6/7 5/6 4/5 3/4 2/3 1/2? Тот, кто решает это опубликовть, наверняка сидит в своем кабинете, поглаживая белую кошку, и демонически хохочет, предвкушая, как читатели засядут за вычисления. Однако не тут-то было: эти числа взаимно уничтожаются, и в итоге остается 1/10.

Деление на дробь

Чтобы поделить что-либо на число или на дробь, просто переверните число или дробь вверх ногами и вместо деления умножайте.

Звучит безумно, но, отправившись в гости к своей тетушке, вы поймете, в чем тут дело. Тетя живет в 10 милях от вас, и вы проехали половину пути — сколько это миль? Требуется вычислить «половину от десяти», и это «от» означает, что нужно умножить: 10 1/2. Разумеется, тот же ответ вы получите, если разделите 10 на 2.

Целые числа можно записывать как дроби с единицей внизу, тогда наше выражение можно представить как = . То есть делить на 2 или на 2/1 — это то же самое, что и «перевернуть 2 вверх ногами» и умножать на 1/2.

К задачам, которые связаны с делением на дроби, нужно подходить с умом. Положим, вы обзавелись кучей стульев и знаете, что на покраску одного стула уходит 2/3 банки краски (да, это очень маленькие банки). Если банок у вас 8, сколько всего стульев удастся покрасить?

Быстренько прикинем, что здесь к чему. Представим, что вы красите столы, и на каждый уходит 2 банки краски, а всего банок 8. Сколько столов получится покрасить? Считаем: 8 2 = 4 стола.

Обратите внимание: мы делим на количество банок, которое уходит на покраску одного стола. Со стульями то же самое: нужно делить на количество банок, которое требуется на каждый стул. Таким образом, число стульев, которые удастся покрасить, будет равно 8 2/3. Чтобы посчитать, сколько это, перевернем 2/3 вверх ногами и умножим.

Итак, восьми банок хватит на 12 стульев. Обратите внимание, что после деления на правильную дробь число становится больше, чем было вначале.

Получив такой ответ, убедитесь, что он соответствует действительности. Если на каждый стул нужно 2/3 банки, тогда одной банки хватит на покраску одного стула и еще немного краски останется. Значит, имея 8 банок, вы точно покрасите 8 стульев плюс еще несколько, так что ответ 12 выглядит вполне резонным.

Рыбья проблема

Прежде чем закончить с дробями, давайте-ка из чисто мазохистских побуждений решим по-настоящему зверскую задачку. Сколько бочек нефти понадобится, чтобы доверху наполнить бассейн для рыбок?

Сначала сделаем грубую прикидку решения! Это позволит понять, каким должен быть ответ, и заодно поможет правильно составить выражение. В нефтяную бочку помещается около 10 ведер. Чтобы наполнить бассейн, нужно примерно 80 ведер. Значит, количество бочек приблизительно составит 80 10 = 8. Что ж, похоже на правду.

Теперь перейдем к точным значениям. Вместо 80 10 посчитаем, сколько будет

Сначала преобразуем смешанные числа в неправильные дроби: и . Осталось лишь вы­числить . Что ж, поехали…

Наш ответ: бочек нефти. Это похоже на грубо посчитанный результат (8), так что можем не волноваться. А еще можем упиваться радостью, триумфом и самодовольством.

ПРОПОРЦИИ

Пропорции встречаются на каждом шагу: разводите ли вы жидкость для мытья полов, удваиваете объем ингредиентов в рецепте или пытаетесь заставить свой телевизор показывать картинку без искажений. И если вы не хотите, чтобы пол был испорчен, гости отравлены, а телеведущие напоминали борцов сумо, стоит разобраться, что же такое пропорции.

Какой у вас телевизор?

Форма телеэкрана описывается двумя числами, обозначающими соотношение между его шириной и высотой. У обычного телевизора оно составляет 4:3, то есть если ширина равна 400 мм, то высота должна быть 300 мм. В прежние времена при покупке телевизора с экраном побольше было важно, чтобы его форма оставалась такой же, как у вашего старого телевизора, иначе люди на экране выглядели бы слишком тонкими или чересчур толстыми. То есть соотношение сторон должно быть одним и тем же. Допустим, ширина экрана вашего нового телевизора — 600 мм, тогда какой должна быть высота? Можно превратить пропорцию в дробь, либо в 3/4, либо в 4/3, и умножить ее на 600 мм, но какую из двух дробей взять? Вооружимся здравым смыслом: высота экрана должна быть меньше ширины, значит, умножаем 600 мм на 3/4. Получаем 450 мм. И хотя экран у нового телевизора больше, чем у старого, его форма в обоих случаях одинакова.

У новых широкоэкранных телевизоров соотношение сторон, как правило, 16:9. Если высота такого экрана 350 мм, то какой будет ширина? Она должна быть больше высоты, поэтому умножаем 350 на 16/9 и получаем 622 мм.

Так математика помогает изображению в вашем телевизоре выглядеть правильно независимо от размера экрана. Жаль только, что она никак не влияет на качество телепередач.

Тень от палки

С помощью пропорций можно рассчитать высоту статуи (или дерева, или дома). Для этого нужна солнечная погода, палка и рулетка. Воткните палку вертикально в землю, а затем измерьте длину палки, длину тени от палки и длину тени от статуи.

Солнечный свет образует два подобных друг другу тре­угольника. Это означает, что они разного размера, но в точности одинаковой формы. Соотношение между высотой палки и длиной ее тени будет таким же, как отношение высоты статуи к длине ее тени.

Высота палки — 500 мм, а длина тени — 350 мм. Это образует пропорцию 500:350, которую можно сократить, как обычную дробь:

Итак, мы определили, что высота палки относится к длине ее тени как 10:7. Длина тени статуи равна 4 м, и теперь мы можем вычислить высоту статуи. Высота палки больше, чем длина ее тени, а значит, и высота статуи должна быть больше 4 м. Поэтому умножаем длину тени статуи на 10/7 и выясняем, что высота статуи составляет м.

Пропорции ингредиентов

Для того чтобы получился качественный бетон, важно знать, сколько брать цемента, песка и заполнителя (щебня). Типичная смесь имеет приблизительно такие пропорции:

Цемент : песок : заполнитель = 1 : 2 : 4

Положим, у вас есть 3 тонны песка, и вы хотите использовать их без остатка, тогда сколько понадобится цемента и заполнителя?

Согласно пропорции, на каждую тону цемента приходится 2 тонны песка и 4 тонны заполнителя. Числа в пропорции можно менять, умножая их на одно и то же значение. Нам нужно поменять 2 тонны песка на 3 тонны, поэтому умножаем все три числа на 3/2. Получается соотношение 3/2:3:6.

Это значит, что для приготовления бетонной смеси с 3 тоннами песка понадобитсятонны цемента и 6 тонн заполнителя.

Если вам необходимо 10 тонн бетона, то сколько нужно добавить каждого ингредиента? Из 1 тонны цемента, 2 тонн песка и 4 тонн щебня мы, очевидно, получим 7 тонн бетона.

Чтобы получить 10 тонн бетона, умножим каждое из чисел на 10/7. То есть нам понадобится 10/7 тонн цемента, 20/7 тонн песка и 40/7 тонн заполнителя, иначе говоря, тонны цемента, тонны песка и тонны заполнителя.

ДЕСЯТИЧНЫЕ ДРОБИ

С помощью простых дробей удобно делить вещи вроде пицц и банок с краской. Однако когда имеешь дело с чем-то численным, например деньгами или замерами, гораздо разумнее использовть десятичные дроби. Кроме того, две совсем непохожие простые дроби, такие как 14/19 и 27/35, намного проще сравнивать, преобразовав в десятичные, в чем мы скоро убедимся.

Что творится по ту сторону запятой

Смешанное число731можно также записать в виде десятич­ной дроби 731,625. Очевидно, что число 731 одинаково для обоих случаев; мудреным может показаться равенство 5/8 = 0,625. Чуть позже мы узнаем, как преобразовать 5/8 в десятичную дробь, но сперва давайте посмотрим, что означают в такой дроби разные знаки.

7 считается за 7 сотен, 3 — за 3 десятка, а 1 — за 1 единицу. При движении вдоль линии цифр достоинство каждой следующей цифры в десять раз меньше, чем предыдущей. Переходим за запятую: 6 считается за 6 десятых, 2 — за 2 сотых и 5 — за 5 тысячных. А дальше в десятичных дробях идут десятитысячные, стотысячные и т. д., но это очень усложняет расчеты.

Если при написании десятичной дроби перед запятой целого числа нет, мы просто ставим вместо него ноль, чтобы было понятно, где должен быть десятичный разделитель.

Округление десятичных дробей

Иногда при переводе простых дробей в десятичные после запятой получается всего несколько знаков, а иногда тянется длинный ряд цифр, уходящий в миллионные и миллиардные доли. В таких случаях нужно выбрать приемлемую точность и округлить десятичную дробь. Например, дробь 1/6 в виде десятичной дроби будет выглядеть как 0,166666666… и далее бесконечное количество шестерок. Жизни не хватит такое сосчитать, поэтому ее нужно округлить до трех разрядов после запятой; выйдет нечто среднее между 0,166 и 0,167. Чтобы понять, какое из двух значений правильнее, посмотрим, какой была следующая, четвертая после запятой цифра — это, конечно же, шестерка. Если очередная цифра равна или больше пяти, то предыдущую цифру увеличиваем на единицу. Поэтому выбираем 0,167. Если это кажется неочевидным, можно, как мы уже делали, представить числа на линейке.

Если при делении одного числа на другое не выходит точный результат, цифры после запятой будут рано или поздно повторяться. Такие дроби называются периодическими, а числа, их содержащие, рациональными.

Преобразование простых дробей в десятичные и наоборот

Как мы уже знаем, простые дроби, такие как 5/8, — это непосчитанные операции деления. Десятичные дроби — это результат выполнения операций деления.

От простых дробей к десятичным

Допустим, вам надо посчитать, сколько будет 5 8. Для этого сперва попытаемся разделить 5 на 8 — увы, безуспешно. (Если бы можно было делить с остатком, мы бы сказали, что 8 содержится в 5 ноль раз с остатком 5). Чтобы найти ответ в виде десятичной дроби, нужно представить 5 как 5,000000 и затем делить, как обычно, а перейдя за запятую, использовать нули.

Итак, ответ: 5/8 = 0,625.

Разумеется, вы могли получить такой же результат, посчитав 5 8 на калькуляторе. Я просто показал вам, как выполняется деление, чтобы вы в деталях разобрались, что к чему.

От десятичных дробей к простым

Если в десятичной дроби после запятой стоит всего одна цифра, то у простой дроби знаменатель равен 10, то есть 0,6 = 6/10. Дальше эту дробь можно сократить до 3/5.

Если в десятичной дроби после запятой стоят две цифры, то у простой дроби знаменатель будет равен 100, поэтому 0,75 = 75/100, что можно сократить до 3/4. Однако 0,76 сокращается только до 19/25, а 0,77 = 77/100 и сокращению не подлежит. Большинство десятичных дробей сложно преобразовать в простые. К примеру, 0,692308 лучше округлить до 0,7 и сказать, что это примерно 7/10. (Полный ответ: 0,692308 = 9/13 с округлением до шести знаков после запятой, но вам это уже неважно, так ведь?)

Как десятичные дроби могут помочь в работе с простыми дробями

Как мы уже видели, складывать и вычитать простые дроби зачастую проблематично, однако если преобразовать их в десятичные, все значительно упрощается. Помните, как в разделе «Сравнение, сложение и вычитание дробей» мы складывали 3/4 и 5/6, чтобы узнать количество съеденной пиццы?

Калькулятор подсказывает нам, что 3/4 = 0,75 и 5/6 = 0,83333. Следовательно, 3/4 + 5/6 = 1,58333. Складывать простые дроби с помощью калькулятора в виде десятичных дробей гораздо проще, но представить себе 1,58333 пиццы сможет далеко не каждый.

Еще калькулятор поможет вам сравнивать дроби. Что больше: 14/19, 27/35, 32/41 или 36/47? Преобразуем эти дроби в десятичные, и ответ станет очевиден! Соответственно получим 0,737, 0,771, 0,780 и 0,766. Самая большая десятичная дробь 0,780, а значит, и простая дробь 32/41 больше остальных.

Занятные дроби

1/9 = 0,1111111..., 2/9 = 0,2222222..., 3/9 = 0,3333333... и так далее.

1/11 = 0,090909...

1/7 = 0,142857142857142857… те же повторяющиеся цифры будут в 2/7, 3/7, 4/7, 5/7 и 6/7. Так, 2/7 = 0,2857142857142857.

1/9801 = 0,00 01 02 03 04 05 06 07 08 09 10 11 12 13 ... и так далее.

Умножение и деление на 10, 100 и 1000

При умножении целых чисел на 10 мы просто добавляем ноль в их конец, например 37 10 = 370. Тем не менее будет удобнее и точнее представить, будто мы сдвигаем цифры на один знак влево.

В случае же деления на 10 все цифры сдвигаем на один знак вправо, то есть 37 10 = 3,7. Поскольку в результате цифры сдвигаются за запятую, ее нужно будет приписать. При делении на 100 будем сдвигать цифры на два знака вправо, а при делении на 1000 — на три знака. Когда между цифрами и запятой возникают промежутки, их нужно заполнять нулями: 37 1000 = 0,037.

Десятичные дроби можно умножать и делить на 10, 100 и так да­лее. так же просто, как и целые числа, сдвигая их влево или вправо. Например, 0,0451 100 = 4,51 или 0,0023 10 = 0,00023.

Операции с десятичными дробями

Складывать и вычитать десятичные дроби несложно. Записываем их так же, как и целые числа, в столбик (только следите, чтобы запятые находились точно друг под другом). При вычислении 4,07 – 0,256 может показаться, что 6 вычитать не из чего. Не паникуйте! Просто добавьте в конец 4,07 еще один ноль, чтобы цифре 6 не было так одиноко.

Однако маловероятно, что вам понадобится умножать или делить десятичные дроби вручную, разве что вы сдаете экзамен по арифметике или помогаете ребенку с домашним заданием. Но предположим, что у вас нет калькулятора… Миссис Бомонт обожает йогурты «Молочная легкость», поскольку они содержат всего 0,04 жира. Казалось бы, это немного, но если миссис Бомонт слопает 1,2 литра йогурта, сколько жира попадет к ней в желудок?

Надо вычислить 1,2 0,04. Перемножать такие небольшие скромные десятичные дроби проще всего так: сперва посчитаем, сколько всего цифр стоит после запятых. В нашем случае три (2, 0 и 4). Теперь перемножим числа без запятых: 12 04 = 48 и добавим запятую: только надо убедиться, что после нее идет столько же цифр, сколько мы посчитали вначале. Поскольку у нас было 3 цифры, ответ равен 0,048.

Миссис Бомонт проглотила 0,048 литра (или 48 миллилитров) жира — этого хватит, чтобы сделать свечку размером с морковь. Фуууу!

Как насчет более сложных дробей?

Когда дело доходит до преобразования единиц измерений, с десятичными дробями возникают сложности. Ниже целый раздел «Единицы измерения и их преобразование» посвящен переводу литров в пинты и метров в дюймы, а пока рассмотрим несколько примеров, чтобы понять, как это происходит. И первым делом, как обычно грубо прикинем результат.

Итак, вы летите на фестиваль танцев в стиле кантри; багажа на рейсе разрешается провозить не более 23 кг. Ваши старые надежные весы утверждают, что ваш чемодан весит 48,1 фунта — пропустят ли его в аэропорту? Начнем с того, что 1 фунт = 0,454 кг, значит, вес чемодана в килограммах составит 48,1 0,454.

48,1 — это примерно 50, а 0,454 — приблизительно 0,5. Поэтому в результате должно получиться около 50 0,5 = 25 кг.

Ох... По итогам грубых подсчетов чемодан, возможно, тяжеловат, но прежде чем выкладывать из него любимые, разукрашенные монограммами ковбойские сапоги, давайте найдем точный ответ. Для удобства запишем выражение в простых дробях.

Слава богу, чемодан весит чуть меньше 22 кг, и сапоги летят с вами. Йи-хо!

Десятичные дроби также можно умножать с помощью сетки с диагональными линиями, как показано в разделе «Надежный способ умножения».

Делить десятичные дроби можно тем же способом. Предположим, что, зайдя в комиссионный магазин, вы увидели потрясающие оранжевые брюки в стиле диско, причем их размер в талии составляет 32 дюйма. Консультант измеряет вашу талию и машинально говорит: «1,14 метра». Если 1 дюйм равен 0,0254 метра, не опозоритесь ли вы, пытаясь влезть в эти брюки? Вот выражение для вычисления обхвата вашей талии в дюймах: 1,14 0,0254.

1,14 — это примерно 1, а 0,0254 — около 0,03 или 3/100. Вычисляем приблизительный ответ, разделив 1 3/100. Деление на 3/100 аналогично умножению на 100/3 (см. раздел «Деление на дробь»). Тогда 1 100/3 = 100/3 = около 33.

Похоже, эти брюки стоит примерить, но чтобы перестраховаться, вычислим размер талии точнее:

Выходит, обхват вашей талии 44,88 дюйма, так что оранжевые брюки, скорее всего, лопнут по швам в примерочной кабинке. Однако не переживайте — это будет меньшим позором, чем пойти в них на танцы.

Можно подумать, что 44,8 сильно отличается от 33 нашего грубого подсчета. Но он здесь нужен в основном для того, чтобы убедиться, что запятая в ответе поставлена там, где надо, а то со всеми этими нулями запутаться ничего не стоит. Если бы получился ответ 4,488 дюйма или 0,04488 дюйма, то было бы ясно, что где-то ошибка!

СТЕПЕНИ И КОРНИ

Большинство из нас никогда не используют степени и корни в повседневной жизни, разве что при расчетах площадей и объемов (о чем мы поговорим немного позже). Однако если вы занимаетесь конструированием гоночных автомобилей или собираетесь слетать в космос, степени и корни понадобятся для расчета скоростей, ускорений, тормозных путей и потреб­ления топлива.

Квадраты и квадратные корни

Мы уже встречались с квадратами чисел в таблице умножения. Квадраты обычно связаны с расчетом геометрических площадей, и обозначают их по-разному: 7 в квадрате — то же самое, что и 7 7. Это также можно записать как 72, иначе говоря, 7 в степени 2. Однако, как ни называй, все равно результат равен 49.

А теперь предположим, что у нас есть число 49 и нужно произвести обратное действие, то есть узнать, какое число, будучи умноженным само на себя, даст 49. Это называется квадратный корень из 49 и записывается как 49, или как 491/2, то есть 49 в степени . Но что бы вы ни предпочли, в результате все равно получится 7. (Кроме того, квадратным корнем из 49 может быть число –7, поскольку перемножение двух отрицательных чисел даст положительное число.)

Легче всего извлекать квадратные корни из квадратов целых чисел, таких как 1, 4, 9, 16 и 25, поскольку в этом случае получаются целые значения. С другими числами все куда сложнее. Например, 19 не является квадратом целого числа; тогда какой будет длина каждой стороны квадрата площадью 19 квадратных метров?

Ответ: 19, но сколько это? Мы знаем, что 16 = 4 и 25 = 5, следовательно, квадратный корень из 19 должен дать значение где-то между 4 и 5.

Вычисление корня с помощью карандаша и бумаги требует определенной умственной гимнастики, так что вполне простительно вооружиться калькулятором. Нажимаем клавиши <19 > и получаем 4,3588989… Это десятичная, бесконечно тянущаяся дробь без повторяющихся сочетаний цифр. Такие числа называют иррациональными. Все квадратные корни, которые не являются целыми числами, иррациональны.

Другие степени и корни

Степени могут быть любыми. Помимо квадратов вы еще, скорее всего, столкнетесь только с кубами, например 63 = шесть в степени три = 6 6 6 = 216. Кубы используют в основном при вычислении объемов, в простейшем случае — объема кубического сосуда (все стенки которого — квадраты).

Процесс, обратный возведению в куб, называется извлечением кубического корня и обозначается так же, как извлечение корня квадратного, но рядом со значком корня ставится маленькая цифра 3, так, как здесь:

Стало быть, если нам известно, что объем кубического сосуда — 216 кубических метров, то длина каждой его стороны равна кубическому корню из 216, то есть 6 метрам.

Если степень отрицательна, на число под степенью нужно делить. Например, 103 — десять в степени минус три. Это то же самое, что и

Отрицательные степени часто используют при работе с очень большими или крайне малыми числами, и об этом мы пого­ворим в следующем разделе.

Нормальная форма

Масса Земли примерно равна 6 000 000 000 000 000 000 000 000 кг.

Официальное название этого числа — шесть септильонов, хотя «шесть с двадцатью четырьмя нулями на конце» звучит понятнее. Можно выразить это не словами, а числами так:

Масса Земли составляет примерно 6 1024 кг

Предположим, нам нужно вычислить, сколько будет 6 103. Это то же самое, что и 6 1000, поэтому сдвинем 6 на три знака влево и получим 6000. Аналогично 6 1024 означает 6 с 24 нулями на конце.

Если вы хотите выразить вес точнее, вместо одной цифры, такой как 6, следует взять десятичную дробь с одним знаком перед запятой и умножить на степень десятки, вот так:

Масса Земли равна 5,9736 1024 кг

Это называют записью числа в нормальной форме. Хотя в десятичной дроби гораздо больше цифр, чем одна, множитель 1024 остался прежним. Умножая на 1024, мы все так же сдвигаем цифры на 24 знака влево, заполняя пустоты нулями. Поскольку цифры 9736 уже занимают четыре знака, просто добавим 20 нулей и получим массу: 5 973 600 000 000 000 000 000 000 кг.

Нормальную форму можно также использовать для очень маленьких чисел.

Масса одного атома водорода равна 1,67 10–27 кг

На первый взгляд кажется, что масса атома водорода больше массы Земли. Но это не так. И все благодаря крошечному знаку «минус», из-за которого мы делим, а не умножаем. Поэтому 10 27 — это то же самое, что и 1027, а значит, нужно передвинуть все цифры на 27 знаков вправо.

Большинство калькуляторов используют нормальную форму, чтобы отображать числа, которые не помещаются на экране. Но вместо 1,67 1027 калькулятор, скорее всего, покажет вам 1,67 E27. («Е» обозначает «экспоненту», иначе говоря, степень.)

СРЕДНИЕ ЗНАЧЕНИЯ

Средние значения часто фигурируют в новостях, особенно когда нужно шокировать зрителей статистическими показателями, скажем, такими как рост средних глобальных температур, или средняя продолжительность необходимого школьникам сна, или среднее количесво личных автомобилей у футболистов. На самом деле есть три разновидности средних значений — среднее арифметическое, мода и медиана7. Но когда люди говорят о «среднем значении», обычно они имеют в виду среднее арифметическое.

Среднее арифметическое

Расчет средних значений поможет вам спрогнозировать ситуацию в будущем. Например, если в прошлом году вы 7 дней отдыхали в Браунпуле и истратили за это время 350 фунтов, то среднее арифметическое ваших ежедневных расходов составит 350 7 = 50 фунтов. Допустим, в этом году вы планируете поехать туда уже на 10 дней. Значит, на этот раз вам понадобится около 50 10 = 500 фунтов. А теперь посмотрим, как расчет среднего арифметического может помочь серьезному деловому человеку...

В прошлую субботу Лэрди припарковал свой фургончик с пирогами у ограды санатория. Сорок его обитателей ухитрились, дотянувшись через заграждение из колючей проволоки, купить у Лэрди пироги. Один человек купил всего один пирог, пятнадцать — по два пирога и т. д. Вот результаты.

Чтобы узнать среднее количество пирогов, приходящееся на одного человека, нужно вычислить такое выражение:

всего продано пирогов всего покупателей

Чтобы подсчитать общее количество проданных пирогов, сложим значения из нижней строки таблицы и получим 136 пирогов, а сложив значения из второй строки, узнаем общее число покупателей — 40.

136 40 = 3,4

Таким образом, в среднем на человека приходится 3,4 пирога. Теперь, зная среднее арифметическое, Лэрди может примерно подсчитать, сколько пирогов привезти в следующий раз. Предположим, он надеется обслужить 1000 человек прежде, чем его застукают и арестуют, тогда он может рассчитывать на продажу примерно 3,4 1000 = 3400 пирогов.

Мода и медиана

Мода — это число, которое наиболее часто встречается в данной совокупности. Большинство покупателей приобрели по два пирога, значит, мода равна 2. Если остановить случайного человека, ковыляющего от ограды санатория к жилому корпусу, и спросить, сколько он купил пирогов, наиболее вероятным ответом будет 2.

Медиана — это число, находящееся в середине ранжированного ряда, и его можно использовать в качестве приблизительного значения среднего арифметического. Если число всех значений нечетное, медиану найти очень просто. Лэрди записал возраст первых пяти покупателей, расположив числа в порядке возрастания:

Медиана в этом случае равна 31.

Если же число всех значений четное, надо взять два значения, стоящие посередине, и вычислить их среднее арифметическое. Лэрди узнал вес восьми своих постоянных покупателей и расположил числа в порядке возрастания.

Посередине находятся числа 73 и 78, поэтому медиана веса восьми постоянных покупателей равна 75,5 кг.

АЛГЕБРА

Даже если вы, изучая в школе математику, все же совладали с делением больших чисел и десятичными дробями, то знакомство с алгеброй наверняка стало последней каплей, заставившей вас с диким воплем кинуться прочь, к пожарному выходу. И вас можно понять. Вычисление выражений, состоящих из чисел, кажется логичным, для того числа и придуманы. Но вычисление выражений с буквами? Какая-то бессмыслица… или нет?

Зачем все это?

Алгебра напоминает язык вроде русского или английского. Это быстрый способ описать и систематизировать задачу и, после того как вы усвоите основные правила, без лишней суеты найти ее решение. Представьте, что вы, будучи заграницей, хотите узнать у прохожих, где находится ближайшее вегетарианское кафе. Вы можете потратить не один час, пытаясь жестами изобразить морковку, а можете получить ответ за пару секунд, если знаете язык страны.

Что же касается букв, то ими просто обозначены числа, которые пока неизвестны. Чуть позже мы рассмотрим выражение для расчета стоимости чашки кофе, где искомая цена для краткости обозначена буквой c, чтобы не писать каждый раз «цена чашки кофе».

Мы даже не будем трогать буквы поначалу, а просто поглядим, как взаимодействуют между собой числа, чтобы прояснить основные правила.

Знаки «плюс», «минус» и «равно»

В середине этого простого выражения стоит знак равенства, поэтому оно называется уравнением: 7 – 2 = 4 + 1

Результат вычитания с левой стороны идентичен сумме чисел с правой стороны; оба равны 5. Суть алгебры в том, чтобы расположить определенным образом числа и буквы в уравнении и получить ответ.

Каждое число может быть либо положительным, либо отрицательным.

Перед отрицательными числами обязательно нужно ставить знак «–». Перед положительными числами тоже положено ставить знак «+», но делать мы это будем не всегда.

Уравнение можно представить себе в виде доски-качалки, где знак «равно» — точка опоры. Положительные числа — это грузы, прижимающие доску к земле, а отрицательные — воздушные шары, тянущие ее вверх.

7 – 2 = 4 + 1

Если хотите переместить числа с места на место на одном конце доски, их знаки нужно перемещать вместе с ними. Поменяв местами числа с левой стороны, получим: –2 + 7 = 4 + 1

Знак «минус» должен оставаться перед числом 2, иначе уравнение станет неверным. Перед 7 появился знак «плюс» как напоминание, что оно положительное. Предположим, что нам нужно оставить в левой части уравнения только число +7. Существует всего одно золотое правило.

С уравнением можно делать все что угодно8 при условии, что с его обеими частями производятся одни и те же действия.

Чтобы в левой части осталось только +7, нужно избавиться от –2. Для этого добавим +2; однако, согласно правилу, это число нужно добавить к обеим частям уравнения.

–2 +7 +2 = 4 + 1 + 2

–2 и +2 с левой стороны уравнения взаимоуничтожатся, то есть дадут 0. С правой же стороны +2 останется, и мы получим: 7 = 4 + 1 + 2

Выполнив подсчеты, вы убедитесь, что 7 и вправду равняется 4 + 1 + 2. При этом мы продемонстрировали маленькую хитрость.

Страницы: «« 12345678 »»

Читать бесплатно другие книги:

Книга для детей от пяти лет, познавательная. Учит аккуратности и умению следить за собой. Дети долго...
Эрик Ларсон – американский писатель, журналист, лауреат множества премий, автор популярных историчес...
Прошло двадцать пять тысяч лет с того момента, как человечество сделало свой первый шаг в космос, во...
В 2045 году реальный мир – не самое приятное место. По-настоящему живым Уэйд Уоттс чувствует себя ли...
Эта книга включает в себя необходимый минимум техники самозащиты, рассчитанный на самый широкий круг...
Максим Трубопроводов отправляется в качестве первооткрывателя в Москву, по которой не ступала нога Л...