Симпсоны и их математические секреты Сингх Саймон
В случае нулевой размерности мы имеем нульмерную точку, которую можно сдвинуть, скажем, в направлении x, чтобы получить путь, образующий одномерную линию, которую затем можно развернуть в перпендикулярном направлении y, чтобы создать двумерный квадрат. Именно с этого начинает свои объяснения профессор Фринк, так как двумерный квадрат можно сдвинуть в направлении z, перпендикулярном плоскости квадрата, и получить в итоге трехмерный куб (или фринкаэдр). И наконец, если не физически, то хотя бы математически можно пойти на шаг дальше и сдвинуть куб в еще одном перпендикулярном направлении (обозначенном как направление w), чтобы образовать четырехмерный куб. Куб в четырех (или более) измерениях известен как гиперкуб.
Схематический рисунок гиперкуба – это всего лишь эскиз, эквивалент контурного изображения, используемого для того, чтобы передать суть статуи Давида Микеланджело. Тем не менее контурное изображение гиперкуба позволяет выявить закономерность, которая помогает объяснить геометрию фигур в пространстве с четырьмя и более измерениями. Давайте проанализируем количество конечных точек, или углов (известных как вершины), имеющихся у каждого объекта, когда мы переходим от одного измерения к другому. Количество вершин подчиняется простой закономерности: 1, 2, 4, 8, 16, …. Другими словами, если d – это количество измерений, тогда число вершин равно 2d. Следовательно, десятимерный гиперкуб содержит 210 или 1024 вершины.
Несмотря на то что профессор Фринк хорошо разбирается в высоких размерностях, это, к сожалению, не помогает ему спасти Гомера, который продолжает бродить по своей новой вселенной. Это влечет за собой серию невероятных событий, которые заканчиваются посещением Гомером магазина эротических тортов. Во время своих приключений Гомер сталкивается с несколькими фрагментами математики, которые материализуются в трехмерном пространстве.
Например, вскоре после прохождения Гомера через портал вдали от него проносится на первый взгляд случайная последовательность чисел и букв: 46 72 69 6E 6B 20 72 75 6C 65 73 21. На самом деле эти буквы представляют собой числа в шестнадцатеричной системе счисления: в ней используются обычные цифры от 0 до 9, а также еще шесть цифр, обозначенных латинскими буквами от A до F: A = 10, B = 11, C = 12, D = 13, E = 14 и F = 15. Каждая пара шестнадцатеричных цифр представляет символ в коде ASCII (сокр. от American Standard Code for Information Interchange – Американский стандартный код обмена информацией), который является протоколом конвертации букв и знаков препинания в числа, главным образом в компьютерных целях. Согласно протоколу ASCII, число 46 соответствует букве F, 72 – букве r и т. д. Если перевести таким образом всю последовательность, то получится смелое заявление, восхваляющее гиков: Frink rules! («Фринк рулит!»).
Через несколько мгновений в трехмерном пространстве благодаря сценаристу Дэвиду Коэну появляется еще один фрагмент математики:
1782 + 1841 = 1922
Это еще одно ошибочное доказательство последней теоремы Ферма, наподобие созданного Коэном для эпизода «Волшебник Вечнозеленой аллеи», о котором мы говорили в главе 3. Эти числа тщательно подобраны таким образом, чтобы обе стороны уравнения были почти равны. Если сравнить сумму первых двух степеней с третьей степенью, результат окажется точным до первых девяти цифр, выделенных жирным шрифтом:
1 025 397 835 622 633 634 807 550 462 948 226 174 976 (1 782)
+ 1 515 812 422 991 955 541 481 119 495 194 202 351 681 (1 841)
= 2 541 210 258 614 589 176 288 669 958 142 428 526 657
2 541 210 259 314 801 410 819 278 649 643 651 567 616 (1 922)
Это означает, что расхождение между левой и правой частями уравнения составляет всего 0,00000003 процента, но это более чем весомый аргумент, чтобы считать данное решение уравнения ошибочным. На самом деле есть быстрый способ определить, что 1782 + 1841 = 1922 – ложное решение, не прибегая к громоздким вычислениям. Для этого достаточно обратить внимание на присутствие в уравнении четного числа (1782), возведенного в двенадцатую степень, которое в сумме с нечетным числом (1841), также возведенным в двенадцатую степень, предположительно равно четному числу (1922) в двенадцатой степени. Здесь четность и нечетность играют большую роль, поскольку нечетное число, возведенное в любую степень, всегда дает только нечетный результат, тогда как четное число, возведенное в любую степень, дает исключительно четный результат. Исходя из того, что сумма нечетного и четного числа всегда нечетная, левая сторона равенства может быть только нечетной, тогда как правая должна быть четной. Таким образом, очевидно, что это ошибочное решение:
четное + нечетное четное
Моргните – и пропустите еще пять намеков на нердовские штучки, которые проплывают мимо Гомера в трехмерной вселенной. Первый – вполне безобидный обычный чайник. Почему же он нердовский? Когда в 1975 году один из пионеров компьютерной графики Мартин Ньюэлл из Университета штата Юта решил сгенерировать на компьютере какой-то объект, он выбрал именно этот предмет быта. Чайник был достаточно простым объектом, но в то же время содержал довольно сложные элементы, такие как ручка и кривые поверхности. С тех пор так называемый чайник из Юты стал отраслевым стандартом для демонстрации возможностей компьютерной графики. Именно такой чайник присутствует в сцене с чайной вечеринкой в мультфильме «История игрушек» (Toy Story), в спальне Бу из мультфильма «Корпорация Монстров» (Monsters, Inc.), а также еще в нескольких фильмах.
Второй намек – пролетающие мимо Гомера цифры 7, 3 и 4. Это зашифрованная ссылка на компанию Pacific Data Images, которая занималась созданием сцен с компьютерной графикой. Цифры на поле набора телефона ассоциируются с буквами P, D и I, представляющими собой акроним названия компании.
Третий – проносящееся мимо космологическое неравенство (m0 > 3H0 / 8G), описывающее плотность вселенной Гомера. Составленное одним из близких друзей Коэна Дэвидом Шиминовичем, оно подразумевает высокую плотность, а это значит, что сила тяжести в итоге приведет к коллапсу вселенной, что на самом деле и происходит в конце истории.
Буквально перед исчезновением вселенной Гомера Коэн оставляет для проницательного зрителя особенно интригующий математический фрагмент. В сцене, показанной на приведенном выше рисунке, за левым плечом Гомера в несколько непривычном виде виднеется уравнение Эйлера. Оно также присутствует в эпизоде «ДеньгоБАРТ».
И наконец, в той же сцене за правым плечом Гомера можно увидеть соотношение P = NP. Хотя большинство зрителей даже не заметили бы его, не говоря уже о том, чтобы проанализировать, соотношение P = NP представляет собой ссылку на одну из самых важных нерешенных задач в теории вычислительных систем.
Утверждение P = NP касается двух классов математических задач. P означает polynomial, «полиномиальная задача», а NP – nondeterministic polynomial («недетерминированная полиномиальная задача»). Грубо говоря, задачи класса P легко решить, тогда как задачи класса NP трудно решить, но легко проверить.[51]
Например, умножение – это легкая задача, которая относится к классу P. Даже если умножаемые числа становятся больше, время на выполнение вычислений увеличивается умеренными темпами.
Напротив, разложение числа на множители (поиск его делителей) – задача класса NP. Она достаточно простая для малых чисел, но для больших становится практически невыполнимой. Например, если вас попросят разложить на множители число 21, вы сразу же найдете ответ: 21 = 3 7. Однако разложить на множители число 428 783 гораздо труднее. В действительности вам, возможно, понадобится около часа, чтобы с помощью калькулятора определить: 428 783 = 521 823. Важно то, что если бы вам дали числа 521 и 823, вы за несколько секунд смогли бы проверить, являются ли они делителями числа 428 783. Таким образом, разложение на множители – это классическая задача класса NP, поскольку в случае больших чисел ее трудно решить, но легко проверить.
Или… возможно, задача разложения на множители не так сложна, как нам кажется?
В этом случае перед математиками и программистами встает следующий фундаментальный вопрос: действительно ли задачу разложения на множители трудно решить, или мы просто не знаем способа, который бы нам позволил ее упростить? То же касается и множества других задач класса NP: они и правда настолько сложны, или все дело в наше незнании более доступного варианта их решения?
Этот вопрос представляет собой нечто большее, чем обычный академический интерес, поскольку высокий уровень сложности решения задач класса NP лежит в основе некоторых важных технологий. Например, такие задачи используются в алгоритмах шифрования, опирающихся на предположении о том, что большие числа трудно разложить на множители. Однако если разложение на множители окажется не такой уж сложной задачей и кто-то найдет легкий способ ее решения, это разрушит системы шифрования, что, в свою очередь, поставит под угрозу всеобщую безопасность, от покупок в интернете до международных политических и военных контактов на самом высоком уровне.
Эту проблему часто описывают так: P = NP или P NP?. Другими словами, могут ли якобы сложные задачи (класса NP) однажды оказаться такими же легкими, как простые задачи (класса P), или нет?
Поиск решения загадки P = NP или P NP? входит в список самых востребованных математиками задач. Существует даже награда за ее решение. В 2000 году Математический институт Клэя, основанный филантропом Лэндоном Клэем в Кембридже, включил эту задачу в список семи задач тысячелетия, и назначил вознаграждение в 1 миллион долларов за окончательный ответ на вопрос: P = NP или P NP?.
Дэвид Коэн, который изучал задачи класса P и NP во время учебы в магистратуре Калифорнийского университета в Беркли, подозревает, что в действительности задачи класса NP гораздо проще, чем мы считаем. Именно поэтому соотношение P = NP появляется за плечом Гомера в трехмерной вселенной.
Однако Коэн придерживается мнения меньшинства. Когда в 2002 году специалист по теории вычислительных систем из Университета штата Мэриленд Уильям Газарк провел опрос среди сотни исследователей, только 9 процентов ответили, что P = NP, тогда как 61 процент респондентов отдали предпочтение P NP. В 2010 году в ходе аналогичного опроса в пользу P NP высказались уже 81 процент респондентов.
Безусловно, в математике истина определяется не уровнем популярности, но если мнение большинства окажется правильным, то включение соотношения P = NP в фрагмент «Трехмерный Гомер» будет выглядеть несколько неуместным. Однако это не должно стать проблемой в краткосрочной перспективе, поскольку, по мнению половины опрошенных математиков, эта задача не будет решена в текущем столетии.
И наконец, в эпизоде «Трехмерный Гомер» есть еще одна математическая ссылка, заслуживающая упоминания. А если точнее, она появляется в конце всего эпизода «Маленький домик ужасов на дереве 6», в его финальных титрах. По сложившейся традиции титры к эпизодам «Симпсонов», посвященным Хеллоуину, всегда представлены несколько необычно. Например, Мэтт Грейнинг появляется в них как Летучая Мышь Грейнинг, Крыса Грейнинг, Мэтт «Привидение» Грейнинг и Ужасный Мэтт Грейнинг.
Эта традиция возникла под влиянием комиксов под названием «Байки из склепа» (Tales from the Crypt), в которых регулярно появлялись видоизмененные имена авторов и художников. Их издатель, EC Comics, приобрел печальную известность после того, как в 1954 году Подкомитет сената по делам несовершеннолетних провел слушания по вопросу комиксов, по результатам которых был сделан вывод о том, что «Байки из склепа» и другие публикации издательства негативно сказываются на молодом поколении страны. Это привело к тому, что из всех комиксов были удалены зомби, оборотни и им подобные персонажи. В результате в 1955 году «Байки из склепа» прекратили свое существование. Тем не менее у них до сих пор немало поклонников, большинство которых еще даже не родились, когда комикс скоропостижно скончался. К их числу относится и Эл Джин – именно он предложил идею включить видоизмененные титры в эпизоды серии «Маленький домик ужасов на дереве».
Все это объясняет, почему в титрах к эпизоду «Маленький домик ужасов на дереве 6» можно увидеть такие имена, как Брэд «Колосажатель» Бирд, Оборотень Ли Хартинг, Что-с-тобой-стряслось Грейнинг. А если вы посмотрите очень внимательно, то заметите очаровательную ссылку на теорему Пифагора и автора сценария к фрагменту «Трехмерный Гомер»:
Дэвид + С. = Коэн
Шутка 1
Вопрос: Что такое полярный медведь?
Ответ: Прямоугольный медведь после перехода в полярную систему координат.
2 балла
Шутка 2
Вопрос: Что значит «Семь реалов! Семь реалов!»?
Ответ: Попугайская ошибка. (Англ. parroty error («ошибка попугая») созвучно с parity error – «ошибка четности»; испанские монеты выпускались достоинством восемь реалов.)
2 балла
Шутка 3
Рассел Уайтхеду: «Мой Гедель меня убивает!» (Имя Kurt Gdel звучит как kurt girdle, а girdle означает «корсет».)
3 балла
Шутка 4
Вопрос: Что коричневое, пушистое, бежит к морю и эквивалентно аксиоме выбора?
Ответ: Лемминг Цорна (созвучно с «лемма Цорна»).
2 балла
Шутка 5
Вопрос: Что желтое и эквивалентно аксиоме выбора?
Ответ: Лимон Цорна.
2 балла
Шутка 6
Вопрос: Почему чем большая точность интерполирующей функции вам нужна, тем дороже обходится ее вычисление?
Ответ: Дело в законе спроса и предложения. (Англ. supply («предложение») созвучно со spline – «сплайн».)
3 балла
Шутка 7
Два математика, Исаак и Готфрид, приходят в паб. Исаак начинает жаловаться на отсутствие математических знаний у простых людей, но Готфрид настроен более оптимистично. Чтобы доказать свою точку зрения, Готфрид ждет, пока Исаак уйдет в туалет, подзывает официантку и объясняет ей, что после возвращения Исаака задаст ей вопрос, на который она должна ответить: «Одна третья икс в кубе». Официантка переспрашивает: «Одна треть яиц вкупе?» Готфрид повторяет свое предложение, на этот раз более медленно: «Одна… третья… икс… в… кубе». Официантка вроде бы понимает (более-менее) и уходит, снова и снова бормоча себе под нос: «Одна треть яиц вкупе».
Вернувшись, Исаак снова выпивает с Готфридом, и спор продолжается. В конце концов Готфрид подзывает официантку, чтобы доказать свою точку зрения: «Исаак, давай проведем эксперимент. Мисс, позвольте мне задать вам простой вопрос по интегральному исчислению. Чему равен интеграл от икс в квадрате?» Официантка останавливается и неуверенно произносит: «Одна треть яиц вкупе». Готфрид самодовольно улыбается, но официантка, уже собираясь уходить, оборачивается, дерзко смотрит на двоих математиков и говорит: «…Плюс константа».
6 баллов
Всего – 20 баллов
Персонажи «Футурамы» (слева направо): Зепп Бранниган (25-звездный генерал и капитан звездолета «Нимбус»); Мамочка (коварная владелица компании MomCorp); профессор Хьюберт Дж. Фарнсворт (160-летний основатель компании Planet Express); Лила (капитан «Межпланетного экспресса»), Бендер (беспутный робот); Филипп Дж. Фрай (парень из ХХ столетия, проснувшийся в XXXI столетии); Зойдберг (врач «Межпланетного экспресса», прибывший с планеты Декапод-10); Киф Крокер (член экипажа «Нимбуса», влюблен в Эми), а также Эми Вонг (член экипажа «Межпланетного экспресса», влюблена в Кифа).
FUTURAMA © 2002 Twentieth Century Fox Television. Все права защищены
Глава 14
Рождение «Футурамы»
После выхода эпизода «Трехмерный Гомер» в октябре 1995 года мультсериал «Симпсоны» поднялся на новый математический уровень, однако Мэтт Грейнинг уже начал подумывать о другом проекте. Его первый анимационный телесериал получил поистине всемирный успех, и телекомпания Fox попросила Грейнинга взяться за родственный сериал.
В 1996 году Грейнинг в сотрудничестве с Дэвидом Коэном приступил к созданию научо-фантастического мультсериала. Коэн был единомышленником Грейнинга, тоже увлекался научной фантастикой, и особенно полюбил ее после просмотра сериала «Звездный путь». К тому же Коэн очень ценил творчество таких выдающихся писателей-фантастов, как Артур Кларк и Станислав Лем. Именно серьезное отношение к научной фантастике стало для Коэна отправной точкой нового сериала: «Мы с Мэттом Грейнингом с самого начала решили не делать сериал слишком глупым. У нас совсем не было желания высмеивать научную фантастику, разве что сделать ее забавной».
Кроме того, Коэн обладал всеми необходимыми знаниями для решения неизбежных технологических проблем, возникающих в процессе научно-фантастических приключений, например – как преодолевать межгалактические расстояния за разумное время. Это вечная проблема в научной фантастике, поскольку ни космические корабли, ни что-либо другое не могут передвигаться быстрее скорости света, а свету понадобится два миллиона лет, чтобы долететь до ближайшей спиральной галактики. Коэн предложил два решения, которые позволили бы персонажам нового мультсериала перемещаться между галактиками за разумное время. Одно сводилось к включению в сюжет информации о том, что в 2208 году ученым удалось превысить скорость света, а другое, еще более смелое, заключалось в использовании в новом сериале двигателя, который способен достигать сверхсветовых скоростей, ускоряя Вселенную вокруг него, а не корабля, на котором он установлен.
Грейнинг и Коэн начали работать над сюжетом, основанном на приключениях персонажа по имени Филипп Дж. Фрай, нью-йоркского разносчика пиццы, который был заморожен в криогенной камере в первые часы 2000 года. Проснувшись через тысячу лет в Новом Нью-Йорке, Фрай с нетерпением ждет начала новой жизни в XXXI веке, надеясь на то, что его нынешняя карьера будет более достойной, чем прежняя. Но как это ни печально, он с досадой узнает, что ему должны вживить специальный карьерный чип, обрекающий на ту же работу – разносчика пиццы. Единственное отличие состоит в том, что вместо доставки пиццы в Нью-Йорке он будет развозить ее по разным планетам, работающим в компании «Межпланетный экспресс».
Определившись с Фраем, Грейнинг и Коэн приступили к созданию других персонажей команды «Межпланетного экспресса». В частности, коллегами Фрая стали: Лила – одноглазая девушка-мутант, неоднократно разбивавшая сердце Фрая; Бендер – робот с порочными хобби, такими как воровство, азартные игры, мошенничество, выпивка и еще кое-что похуже; профессор Хьюберт Дж. Фарнсворт –160-летний основатель компании «Межпланетный экспресс»; доктор Джон Зойдберг – омароподобный врач компании «Межпланетный экспресс»; Гермес Конрад – бывший олимпийский чемпион по лимбо и бухгалтер компании; а также Эми Вонг – стажер.
Во многих отношениях «Футурама» должна была напоминать любой классический комедийный сериал, в котором действие происходит на работе, наподобие американского сериала «Такси» или британского – «Компьютерщики» (The IT Crowd). Единственное отличие состояло в том, что в новом фантастическом мультсериале была возможна любая сюжетная линия, поскольку экипаж «Межпланетного экспресса», доставляющий посылки по всей Вселенной, мог встречаться с разными инопланетянами на удивительных планетах со своими специфическими проблемами.
Несмотря на первоначальный интерес со стороны телекомпании Fox, Грейнинг вскоре понял, что его эксцентричные персонажи и их комические приключения не произвели особого впечатления на топ-менеджеров компании. Когда представители Fox попытались вмешаться, Грейнинг продолжал стоять на своем. Давление усилилось, но Грейнинг сопротивлялся еще больше. В конце концов, после событий, которые Грейнинг назвал самым худшим опытом своей взрослой жизни, ему удалось взять верх, после чего работа над новым сериалом началась на тех же условиях, что и у «Симпсонов», согласно которым авторам сериала предоставили полный контроль над процессом его создания.
После получения официального разрешения сериалу было дано название «Футурама» – по аналогии с выставкой на Всемирной ярмарке в Нью-Йорке в 1939 году, которая предлагала посетителям путешествие в «мир завтрашнего дня». Затем Грейнинг и Коэн начали формировать команду сценаристов, потому что по негласной договоренности сериал «Футурама» не должен был переманивать сценаристов «Симпсонов». Как и следовало ожидать, у некоторых новых членов команды было образование в области информационных технологий, математики и других точных наук. Один из новых сценаристов, Билл Оденкирк, получил степень доктора наук по органической химии в Чикагском университете. В действительности он был одним из создателей 2,2’-бис(2-инденил) бифенила, который используется в качестве катализатора при производстве пластмасс.
На этапе формирования команды сценаристы мультсериала получили право вступить в профсоюз. Поскольку уже был один член профсоюза по имени Дэвид С. Коэн, а сценаристы – члены профсоюза не могли иметь одинаковые имена, автор «Футурамы» сменил свое имя на Дэвид Х. Коэн, где буква «Х» отображала то, что прежде всего представляло для Коэна интерес – научная фантастика и математика. Другими словами, Коэн был как Х-филом (любителем сериала The X-Files – «Секретные материалы»), так и x-филом (любителем алгебры).
Первый эпизод «Футурамы» вышел на экраны 28 марта 1999 года. Хотя все ожидали, что в этом научно-фантастическом сериале будет много научных фактов, более эрудированных зрителей впечатлило не это, а количество и качество нердовских ссылок.
Например, в эпизоде «Я, сосед» (I, Roommate, сезон 1, эпизод 3; 1999 год) рассказывается о том, как Фрай решает поселиться в одной квартире с Бендером – раздражительным роботом, склонным к сквернословию. На стене в их новой квартире висит табличка:
Это ссылка на язык программирования Бейсик (BASIC, Beginner’s All-purpose Symbolic Instruction Code – «универсальный код символических инструкций для начинающих»), в котором каждой команде присваивается номер и все инструкции выполняются по порядку. Команда GOTO часто встречается в программах на языке Бейсик; в данном примере команда 30 GOTO 10 означает вернуться к строке 10. Следовательно, надпись на табличке передает идиоматическое выражение «Дом, милый дом». Если полностью следовать логике этой надписи, она означает: «Дом, милый дом, милый дом, милый дом…».
Шутка о Бейсике – всего лишь часть общего фона для данной сцены, она подчиняется первому правилу команды сценаристов «Футурамы»: трудные для понимания ссылки применять только тогда, когда они не мешают сюжету. Такая же не совсем понятная шутка присутствует и в эпизоде «Марсианский университет» (Mars University, сезон 1, эпизод 11; 1999 год), в котором мы буквально мгновение видим доску с написанными на ней сложными уравнениями из области физики, известной как «суперсимметричная теория струн», только в «Футураме» эта теория носит название «супер-дупер-симметричная теория струн», а главная шутка связана с диаграммой под названием «собака Уиттена», что представляет собой шутливую ссылку как на Эда Уиттена, так и на кота Шредингера.
Эда Уиттена, одного из основателей теории суперструн, принято считать величайшим физиком-теоретиком и умнейшим ученым, который не удостоился Нобелевской премии. В качестве компенсации Уиттен может претендовать хотя бы на то, что его имя было увековечено в «Футураме». Кот Шредингера – это знаменитый мысленный эксперимент, который проводится в нашем воображении, а не в лаборатории. Эрвин Шредингер, получивший Нобелевскую премию по физике в 1933 году, задал такой вопрос: что произойдет внутри деревянного ящика, в котором находится кот, немного радиоактивного материала и механизм выпускания яда, который может сработать в результате непредсказуемого радиоактивного распада? Будет ли кот жив или мертв через минуту? Произойдет ли за эту минуту радиоактивный распад, запускающий механизм выделения яда? В XIX столетии физики сказали бы, что кот либо мертв, либо жив, но мы не знаем, какой из вариантов верен. Однако в первые десятилетия XX века была разработана новая квантовая теория устройства Вселенной, предлагающая весьма странную идею о том, что кот находится в так называемой суперпозиции состояний, а это означает, что кот и мертв, и жив одновременно… до тех пор, пока ящик не будет открыт и ситуация не станет очевидной.
Шредингер и его кот присутствуют еще в одном эпизоде «Футурамы» под названием «Закон и оракул» (Law and Oracle, сезон 6, эпизод 17; 2011 год). Дорожная полиция гонится за мчащимся с огромной скоростью Шредингером, который в конце концов попадает в аварию. Когда он выбирается из-под обломков, его спрашивают о коробке. Полицейские – это URL (произносится как Эрл) и Фрай, который временно покинул компанию «Межпланетный экспресс».
Эрл. Что в коробке, Шредингер?
Шредингер. Ммм… Кот, немного яда и атом цезия.
Фрай. Кот! Живой или мертвый? Живой или мертвый?
Эрл. Отвечай ему, болван!
Шредингер. Он одновременно и жив, и мертв, пока вы не откроете коробку и не вызовете коллапс волновой функции.
Фрай. Как бы не так! [Фрай открывает коробку, из которой выскакивает кот и нападает на него. Эрл поближе рассматривает коробку.]
Эрл. Кроме того, здесь полно наркоты.
Разумеется, это книга о математике, а не о физике, поэтому пора сфокусироваться на десятках сцен из «Футурамы», в которых есть все, от искривленной геометрии до бесконечно больших чисел. Одна из таких сцен включена в эпизод «Гудок» (The Honking, сезон 2, эпизод 18; 2000 год), в котором рассказывается о том, как Бендер отправляется в населенный привидениями замок покойного дяди Владимира, чтобы присутствовать при оглашении его последней воли. Когда робот сидит вместе с друзьями в библиотеке, на стене появляются написанные кровью цифры 0101100101. Бендер больше озадачен, чем испуган, но, увидев эти цифры в зеркале в обратном порядке, – 1010011010 – он приходит в ужас.
Хотя в самом эпизоде не дается никакого объяснения, зрители, знакомые с двоичной системой счисления, поняли внушающий ужас смысл этой сцены. Если перевести двоичное число 0101100101 в десятичную систему счисления, получается 357. У этого числа нет никакого неприятного глубинного смысла, но его зеркальное отражение действительно ужасает. Мы можем перевести число 1010011010 из двоичной в десятичную систему следующим образом:
Число 666 всегда ассоциируется с дьяволом, поскольку это – число зверя. Следовательно, число 1010011010 можно считать числом двоичного зверя.
Как ни странно, математики, которым не свойственна склонность к дьявольской нумерологии и поклонение дьяволу, испытывают привязанность к числу 666. Они даже нашли особое простое число, которое содержит такую серию цифр: 1 000 000 000 000 066 600 000 000 000 001. Это простое число Бельфегора, названное так в честь одного из семи князей ада. Кроме цифр 666 в самом центре, оно содержит тринадцать несчастливых нолей с каждой стороны числа зверя.
Это скрытое сообщение в эпизоде «Гудок» представляет собой ссылку на классический фильм ужасов The Shining («Сияние»), снятый в 1980 году. В одной из его самых знаменитых сцен мальчик по имени Денни заходит в спальню матери и рисует помадой на двери слово REDRUM. Мать просыпается и обнаруживает рядом с кроватью сына с ножом в руках, а затем замечает отражение этой надписи в зеркале туалетного столика, которая теперь читается как MURDER («убийство»).
Число 666, записанное в виде перевернутого двоичного числа, – изящный математический код, являющийся одним из многих закодированных сообщений, присутствующих в «Футураме». Все эти сообщения демонстрируют разные принципы криптографии – области прикладной математики, которая занимается вопросами создания и взламывания шифров.
Например, в нескольких эпизодах «Футурамы» есть рекламные щиты, таблички или граффити, содержащие надписи, составленные из инопланетных символов. Самый простой такой текст присутствует в эпизоде «Смертельный осмотр» (Lethal Inspection, сезон 6, эпизод 6; 2010 год), где мы видим следующую надпись:
Криптографы называют это подстановочным шифром, поскольку каждая буква алфавита заменяется на какой-либо другой символ, в данном случае – на инопланетный. Шифр такого типа впервые взломал математик IX столетия Абу аль-Кинди, который понял, что каждая буква имеет свои особенности. Более того, эти особенности переходят к тому символу, который используется вместо нее в закодированном сообщении. Определив их, можно расшифровать текст.
Например, частота встречаемости буквы – одна из ее самых важных особенностей. В частности, буквы e, t и a чаще всего встречаются в тексте на английском языке, тогда как самые распространенные символы в инопланетном сообщении – это и : оба символа встречаются по шесть раз каждый. Следовательно, они, по всей вероятности, используются вместо e, t или a, но как определить точнее? Полезная подсказка дана в первом слове, , в котором повторяется символ . В английском языке не так уж много слов с повторением букв «aa» или «tt», но зато масса с буквами «ee», например been, seen, teen, deer, feed и fees. Следовательно, есть все основания предположить, что = e. Проделав еще немного подобной детективной работы, можно расшифровать это сообщение так: «Need extra cash? Melt down your old unwanted humans. We pay top dollar» («Нужны наличные? Сдайте своих старых ненужных людей. Мы платим большие деньги»).
Неудивительно, что поклонники «Футурамы» из числа знатоков математики легко взломали этот инопланетный шифр, поэтому Джефф Уэстбрук (который писал сценарии как для «Футурамы», так и для «Симпсонов») разработал его более сложную версию.
Усилия Уэстбрука привели к созданию текстового шифра с автоключом, напоминающего шифр, впервые изобретенный Джироламо Кардано (1501–1576), одним из величайших итальянских математиков эпохи Возрождения. Шифр работает так: сначала присваиваются числа всем буквам алфавита: A = 0, B = 1, C = 2, D = 3, E = 4, …, Z = 25. После этого процесс шифрования требует выполнения еще двух шагов. Во-первых, каждую букву необходимо заменить на сумму чисел, соответствующих всем буквам всех слов до данной буквы включительно. Следовательно, словосочетание BENDER OK преобразуется следующим образом:
Второй и последний этап шифрования подразумевает замену каждой суммы чисел соответствующим символом из следующего списка:
Существует всего 26 символов, которым присвоены числа от 0 до 25. Тогда какой же символ соответствует буквам R, O и K, суммы чисел которых составляют 42, 56 и 66? Его следует выбирать по такому правилу[52]: числа больше 25 необходимо сокращать на 26 снова и снова до тех пор, пока они не попадут в диапазон от 0 до 25. Следовательно, чтобы найти символ для буквы R, мы вычитаем 26 из 42, что дает нам 16, а это число соответствует символу . Применив то же правило к оставшимся буквам, словосочетание BENDER OK будет зашифровано в таком виде: .
Однако если бы перед BENDER OK были другие слова, то это словосочетание было бы зашифровано совсем иначе, поскольку изменилась бы общая сумма чисел, соответствующая каждой букве. Все это сделало разработанный Уэстбруком шифр с автоключом крайне трудным для взлома. Он использовал его для кодирования различных сообщений в нескольких эпизодах, и они стали серьезным вызовом тем поклонникам «Футурамы», которые считали своим хобби взлом кодов, появляющихся в мультсериале. В действительности прошел целый год, прежде чем кто-то из зрителей «Футурамы» таки расшифровал эти сообщения.
Хотя вполне резонно было ожидать появления сложных зашифрованных сообщений в эпизоде «Футурамы» под названием «Код да Винчи» (The Duh-Vinci Code, сезон 6, эпизод 5; 2010 год), его математический аспект связан с совершенно другой областью математики. В этом эпизоде члены команды «Межпланетного экспресса» анализируют детали картины Леонардо да Винчи «Тайная вечеря» и вдруг замечают нечто необычное в изображении Иакова, одного из апостолов, сидящего у левого края стола. Мощная рентгеновская установка позволяет определить, что в первоначальном варианте да Винчи нарисовал деревянного робота. Для того чтобы выяснить, был ли Иаков первым роботом, члены экипажа отправляются в Рим, где находят могилу святого Иакова. Важно то, что они находят также склеп с такой зашифрованной надписью:
IIXI (XXIII • LXXXIX)
На первый взгляд эти римские числа могут показаться обычной датой. Но если присмотреться повнимательнее, можно увидеть, что надпись включает скобки, знак минус и точку, символизирующую знак умножения. Здесь присутствует даже крайне необычное представление римских чисел: одно римское число, возведенное в степень, представленную другим римским числом (IIXI). Если записать все эти римские числа в более привычном виде, мы начнем понимать смысл надписи:
IIXI (XXIII • LXXXIX)
2 (23 89)
Поскольку 2 = 2048, а 23 89 = 2047, результат вычитания равен 1. В этом нет ничего особенного, но если немного видоизменить уравнение, оно покажется нам знакомым:
2 – (23 89) = 1
2 – 1= (23 89)
2 – 1 = 2047
Теперь мы видим, что число 2047 получено в соответствии с общей формулой 2p 1. В данном случае p равно 11, но это может быть и любое другое число. Как было сказано в главе 8, формула 2p 1 – это рецепт, который использует в качестве ингредиентов простые числа для образования новых простых чисел, и эти новые числа называются простыми числами Мерсенна. Однако формула 2 – 1 представляет особый интерес, так как дает в результате число 2047, которое не является простым, а является произведением чисел 23 и 89. В действительности число 2047 – это наименьшее число типа 2p 1, которое не относится к категории простых чисел.
Эта ссылка полностью соответствует основным критериям классической шутки в режиме стоп-кадра. Во-первых, зашифрованная надпись не имеет никакого отношения к сюжету эпизода, а просто говорит о том, что сценаристам нравится развлекаться с числами. Во-вторых, невозможно быстро записать эти римские числа, перевести их в десятичную систему счисления и понять смысл надписи за те несколько мгновений, пока надпись видно на экране.
Еще одна шутка в режиме стоп-кадра появляется в эпизоде «Положи свою голову мне на плечо» (Put Your Head on My Shoulders, сезон 2, эпизод 7; 2000 год). Когда Бендер открывает компьютерное агентство знакомств, мы видим надпись, которая гласит, что оно «конфиденциальное и дискретное» (англ. discreet and discrete). Первое определение подразумевает, что Бендер намерен уважать неприкосновенность частной жизни клиентов, как и подобает агентствам такого типа. Но слово «дискретное» звучит более чем странно в контексте брачного агентства, поскольку в математических кругах это определение используется для обозначения области исследований, имеющей дело с данными, которые не меняются плавно или непрерывно. Задача на переворачивание блинов – одна из областей дискретной математики, поскольку в этом случае можно рассматривать один переворот или два переворота, а не полтора или любую другую долю переворота блинов. Возможно, на эту шутку в режиме стоп-кадра сценаристов вдохновил старый анекдот о дискретной математике.
Вопрос: Что вы скажете о математике, у которого много романтических связей, но который не любит об этом говорить?
Ответ: Дискретные данные.
Другие шутки в режиме стоп-кадра, присутствующие в «Футураме», связаны с надписями на вывесках, такими как «Студия 123» в эпизоде «Перерождение» (Rebirth, сезон 6, эпизод 1; 2010 год). Если вычислить результат этого выражения, получится 123 = 1 2 27 = 54, а это ссылка на знаменитый нью-йоркский ночной клуб 1970-х под названием «Студия 54». Точно так же мы на какое-то мгновение видим надпись «Историческая дорога 66» вместо «Историческая дорога 66» в эпизоде «Исход паразитов» (Parasites Lost, сезон 3, эпизод 2; 2001 год), а в эпизоде «Акционеры будущего» (Future Stock, сезон 3, эпизод 21; 2002 год) появляется улица с иррациональным названием «-я авеню».
Хотя искушение назвать все эти математические шутки поверхностными довольно велико, во многих случаях сценаристы долго думали над идеями, положенными в их основу. Яркий тому пример – комплекс Madison Cube Garden, который присутствует в нескольких эпизодах «Футурамы». Когда Дэвид Коэн придумал концепцию воплощения нью-йоркского комплекса Madison Square Garden в XXXI веке, далее возник вопрос, как именно его нарисовать в контексте «Футурамы». Было очевидно, что это должен быть спортивный комплекс кубической формы с фундаментом, четырьмя стенами и стеклянной крышей. Однако Кен Килер и его коллега Джей Стюарт Бернс решили тщательно изучить геометрию куба, с тем чтобы выяснить, нет ли более интересного варианта для ориентации и дизайна комплекса Madison Cube Garden. В итоге сценаристы настолько серьезно отнеслись к этому вопросу, что потратили на изучение геометрии куба несколько часов, из-за чего остальным членам команды пришлось устроить перерыв.
Не особо задумываясь о том, к чему это их приведет, Бернс и Килер задались вопросом, какие сечения можно получить, разрезав куб в той или иной плоскости. Например, горизонтальный срез, разделяющий куб на две равные части, дает квадратное сечение. Если разрезать куб по диагонали от верхней грани до противоположного нижнего ребра, получится прямоугольное сечение. Если срезать угол, то треугольное, причем в зависимости от угла среза сечение может представлять собой равносторонний, равнобедренный или разносторонний треугольник.
По-прежнему движимые чистым любопытством, Бернс и Килер задумались над тем, нельзя ли получить сечение более экзотической формы. Отложив в сторону блокноты для зарисовок, они начали строить бумажные кубы, а затем резать их. После жарких споров и кипы смятой бумаги на Бернса и Килера снизошло озарение. В конце концов они поняли, что можно создать шестиугольное сечение, разрезав куб под определенным углом. На первый взгляд это кажется неправдоподобным, но представьте, что вы проводите линию между средними точками двух смежных ребер куба, как показано пунктиром на представленном ниже рисунке. Далее остается только сделать срез от этой линии до линии, отмеченной точечным пунктиром, и в результате будет получено сечение в форме правильного шестиугольника. Сечение имеет шесть сторон, поскольку срез проходит через все шесть граней куба.
Существует еще один способ получить такое сечение. Представьте, что куб изготовлен из куска хлопчатобумажной ткани, прикрепленной к одному из его углов. Сделайте горизонтальный срез ровно посредине свободно свисающего многогранника. Если бы куб можно было каким-то образом оставить нетронутым после разрезания… если бы его можно было мягко опустить на поверхность… если бы самый нижний угол можно было как-то прикрепить к этой поверхности, то вы получили бы почти идеальную модель комплекса Madison Cube Garden. Для того чтобы завершить ее построение, область над сечением необходимо представить в виде прозрачной крыши, тогда как нижнюю область можно использовать в качестве наклонной поверхности для размещения сидений.
За время, прошедшее с момента создания Бернсом и Килером комплекса Madison Cube Garden с уникальной геометрией, он был местом проведения матчей Лиги смертельных боев роботов, боев гигантских муравьев, а также Олимпийских игр 3004 года. На самом деле компекс Madison Cube Garden появляется в десяти эпизодах, что делает его самым известным фрагментом математики в «Футураме», хотя и не самым интригующим.
Эта честь принадлежит числу 1729.
Глава 15
Число 1729 и романтическое происшествие
Герой «Футурамы» Зепп Бранниган – это 25-звездный генерал и капитан звездолета «Нимбус». Хотя у Браннигана много восторженных поклонников, считающих его храбрым воином, в действительности он одержал большинство побед в борьбе против более слабых соперников, таких как пацифисты из Туманности Ганди или пенсионеры из Туманности пожилых людей. Бранниган – по сути своей позер, тщеславие и невежество которого вызывают раздражение у членов его экипажа. В действительности терпеливый помощник Браннигана лейтенант Киф Крокер изо всех сил старается скрыть свое презрение к некомпетентному руководителю.
Киф – обитатель планеты Амфибиус 9, появление которого в эпизодах «Футурамы» зачастую связано с его сложными отношениями с Бранниганом или романтическими – со стажером «Межпланетного Экспресса» Эми Вонг. Всякий раз, когда Киф и Эми оказываются в одной области Вселенной, они делают все возможное, чтобы встретиться и провести немного времени вместе. В эпизоде «Киф, похоже, залетел» (Kif Gets Knocked Up a Notch, сезон 4, эпизод 1; 2003 год) Эми посещает Кифа на борту «Нимбуса», где Киф ведет ее в голозал, который используется для моделирования реальности посредством проецирования трехмерных голографических изображений различных объектов и существ. Эми визжит от радости, когда в голозале появляется знакомое ей животное.
Эми. Спирит! Киф, я всегда мечтала об этом пони, но родители сказали, что у меня и так их слишком много.
Киф. Да, я запрограммировал его для тебя. Четыре миллиона команд на Бейсике!
В эпизоде «Я, сосед» мы уже встречались с шуткой, в основу которой положено знание языка программирования Бейсик. Хотя ссылки на компьютерные науки – традиция «Футурамы», один из сценаристов сериала, не принадлежащий к числу нердов, не оценил строку диалога с упоминанием о четырех миллионах команд на Бейсике. Он посчитал эту шутку слишком трудной для понимания и предложил ее удалить. Но Эрик Каплан (сценарист, который изучал в свое время философию науки) сразу же отверг эту идею. Патрик Веррон, присутствовавший тогда на совещании, вспоминает об этом так: «Эрик Каплан высказал там знаменитое замечание. Кто-то сказал: “Четыре миллиона команд на Бейсике – кто это поймет?” И Каплан в сердцах выпалил: “Да ну их к черту!” С тех пор это стало мантрой. Если зрители не понимают чего-то, они получат следующую шутку».
В том же эпизоде есть еще более непонятная математическая ссылка, находящаяся на боковой стороне космического корабля «Нимбус». Проницательные фанаты «Футурамы» обязательно заметят, что регистрационный номер корабля – BP-1729. Было бы проще всего проигнорировать этот номер, считая его произвольным числом, но сценаристы «Футурамы» никогда не упускают случая воздать должное математике, поэтому было бы правильнее исходить из предположения, что каждое число появляется на экране неспроста.
На самом деле число 1729 должно иметь определенный смысл, так как оно возникает в различных ситуациях в нескольких эпизодах «Футурамы». Например, в эпизоде «Рождественская история» (Xmas Story, сезон 2, эпизод 4; 1999 год) появляется Мамочка, коварная владелица компаний MomCorp и Mom’s Friendly Robot Company. Учитывая, что Мамочке принадлежит завод, построивший Бендера, она считает себя его матерью, поэтому присылает ему открытку с серийным номером:
Кроме того, в эпизоде «Парабокс Фарнсворта» (The Farnsworth Parabox, сезон 4, эпизод 15; 2003 год) экипаж «Межпланетного экспресса» втягивается в авантюру с параллельными вселенными, причем каждая вселенная заключена в коробку с определенным номером. Проверяя коробки в поисках своей вселенной, Фрай запрыгивает в одну из них и оказывается во вселенной 1729.
Так что же делает число 1729 таким особенным? Может, оно появляется в различных эпизодах «Футурамы» по той причине, что указывает на особый фрагмент числа е? Если мы точно определим 1729-й десятичный знак числа е, то увидим, что с него начинается первая последовательность всех десяти цифр в этом знаменитом иррациональном числе:
Однако кто-то наверняка посчитает это наблюдение тривиальным, тогда, может, это одно из чисел харшад – категории чисел, которую выделил авторитетный индийский математик и школьный учитель Даттатрея Рамчандра Капрекар (1905–1986). На древнеиндийском языке санскрит слово «харшад» означает «даритель радости», а ее причина в том, что такие числа без остатка делятся на сумму своих цифр. Следовательно, если мы сложим цифры числа 1729, то получим 1 + 7 + 2 + 9 = 19, а 1729 действительно делится на 19 без остатка.
Кроме того, 1729 – особое число харшад, так как оно является результатом умножения суммы своих цифр на число, обратное этой сумме: 19 91 = 1729. Это делает данное число примечательным, но не уникальным, потому что есть еще три числа с аналогичным свойством: 1, 81 и 1458. Но поскольку авторы «Футурамы» не одержимы числами 1, 81 или 1458, должна быть другая причина того, почему число 1729 неоднократно появляется в сценариях к разным эпизодам мультсериала.
На самом деле сценаристы выбрали число 1729 в качестве регистрационного номера звездолета «Нимбус», серийного номера Бендера и номера параллельной вселенной потому, что оно упоминается в одной из самых знаменитых бесед за всю историю математики, которая состоялась в конце 1918 – начале 1919 года между двумя величайшими математиками ХХ столетия, Годфри Харди и Шринивасой Рамануджаном. Трудно даже себе представить, что у двух людей с такими разными биографиями столько общего.
Годфри Харолд Харди (1877–1947) вырос в семье учителей в графстве Суррей (Англия). В двухлетнем возрасте он записывал числа, достигающие миллионов, а чуть позже вычислял делители чисел из церковных гимнов, чтобы немного развлечься во время церковных служб. Харди получил стипендию для обучения в престижном Уинчестерском колледже, а затем учился в Тринити-колледже Оксфордского университета, где стал членом тайного общества под названием «Кембриджские апостолы». К тридцати годам Харди уже был одним из немногих британских математиков мирового уровня. На самом деле в начале ХХ столетия французы и немцы (среди прочих) превзошли британцев в плане математической строгости и амбиций, но исследования и лидерские качества Харди помогли восстановить репутацию страны в этой области. Всего этого уже было достаточно для того, чтобы Харди занял достойное место среди великих математиков, но он сделал еще более весомый вклад, открыв талант гениального юноши по имени Шриниваса Рамануджан, которого считал самым одаренным математиком современной эпохи.
Шриниваса Рамануджан родился в 1887 году в южном индийском штате Тамил-Наду. В возрасте двух лет он заболел оспой, но выжил, в отличие от троих младших братьев и сестер, которые умерли в младенческом возрасте. Бедные родители посвятили всю свою жизнь единственному ребенку и записали его в местную школу. Со временем школьные учителя начали замечать, что Рамануджан демонстрирует поразительные способности к математике и порой даже ставит их в тупик. Интерес Рамануджана к математике в значительной мере связан с тем, что однажды в библиотеке он наткнулся на книгу Джорджа Шубриджа Карра A Synopsis of Elementary Results in Pure Mathematics («Сборник элементарных результатов чистой математики»), в которой были собраны доказательства тысяч теорем. Мальчик анализировал эти теоремы и методы их доказательства, но ему приходилось выполнять громоздкие вычисления с помощью мела и грифельной доски, используя загрубевшие локти в качестве ластика, поскольку он не мог позволить себе бумагу.
Единственный недостаток такой одержимости математикой состоял в том, что Рамануджан пренебрегал другими предметами. В итоге, когда пришло время сдавать экзамены, Рамануджан получил похие оценки, из-за чего индийские колледжи отказали ему в предоставлении стипендии, необходимой для продолжения учебы. В итоге Рамануджан нашел работу клерка и пополнял свой скудный доход за счет преподавания математики студентам. Парень отчаянно нуждался в дополнительном доходе, после того как в 1909 году женился (ему исполнился тогда двадцать один год, а его невесте Джанакиаммал – всего десять).
В тот период Рамануджан в свободное от работы время начал развивать новые математические идеи. Он чувствовал, что они важные, но ему не к кому было обратиться за советом и поддержкой. В отчаянном стремлении глубже изучить математику и получить признание Рамануджан стал писать английским математикам в надежде на то, что кто-то из них согласится быть его наставником или хотя бы выскажет свое мнение по поводу открытых им теорем.
Одна партия писем дошла в конце концов до Микая Джона Мюллера Хилла из Университетского колледжа Лондона. Содержание писем произвело на Хилла определенное впечатление, но он сделал молодому индийцу замечание по поводу применения устаревших методов и элементарных ошибок. Хилл в менторском тоне написал, что работы Рамануджана должны быть на понятном языке и без ошибок, а также что он не должен использовать символы, которых не может объяснить. Хотя это была безжалостная оценка, но по крайней мере Хилл ответил, в отличие от Генри Фредерика Бейкера и Эрнеста Уильяма Хобсона, вернувших работы Рамануджана без каких-либо комментариев.
В 1913 году Рамануджан написал письмо Годфри Харди, в котором объяснял: «У меня нет университетского образования, но я прошел обычный школьный курс. После окончания школы я использовал свободное от работы время для занятий математикой. Я не изучал традиционный официальный курс, предшествующий университетскому курсу, но я прокладываю для себя новый путь».
Когда пришло второе письмо, Харди обнаружил, что Рамануджан прислал ему в общей сложности 120 теорем для анализа. Молодой индийский гений впоследствии рассказывал, что многие из этих теорем ему нашептывала во сне Намагири, воплощение индийской богини Лакшми: «Во сне со мной произошло нечто необычное. Там был экран, как будто сделанный из текущей крови. Я смотрел на него. Вдруг какая-то рука начала на нем писать. Я внимательно следил за происходящим. Эта рука написала несколько эллиптических интегралов. Я их запомнил и записал сразу же после того, как проснулся».
Когда Харди углубился в работы Рамануджана, его оценка менялась от «мошенничества» до «гениальности настолько редкой, что в это трудно поверить». В итоге он пришел к выводу, что эти теоремы «должны соответствовать истине, поскольку если бы это было не так, ни у кого не хватило бы воображения их придумать». Харди называл Рамануджана «математиком высочайшего качества, человеком исключительной оригинальности и силы». В конечном счете он начал готовить почву для того, чтобы 26-летний Рамануджан приехал в Кембридж. Харди очень гордился тем, что стал человеком, который спас столь редкостный талант, и впоследствии называл это одним из самых романтических происшествий в своей жизни.
В апреле 1914 года два великих математика наконец встретились и совместно сделали ряд открытий в нескольких областях математики. В частности, они внесли большой вклад в изучение такой математической операции, как разбиение. Как следует из названия, операция разбиения сводится к разделению совокупности объектов на отдельные группы. Ключевой вопрос: сколько способов разбиения существует для заданного количества объектов? На представленном ниже рисунке показано, что есть только один способ разбиения одного объекта, но для группы из четырех объектов таких способов уже пять.
В случае небольшого количества объектов найти способы их разбиения не составляет труда, но по мере увеличения числа объектов уровень сложности задачи повышается. Это объясняется тем, что количество возможных вариантов разбиения стремительно увеличивается без какой-либо закономерности. Десять объектов можно разделить всего 41 способами, для 100 объектов существует уже 190 569 292 способов, а в случае 1000 объектов получается поразительное количество способов разбиения – 24 061 467 864 032 622 473 692 149 727 991.
Настоящим прорывом стало создание Харди и Рамануджаном формулы для определения количества способов разбиения очень большого числа объектов. Так как эта формула требует трудоемких вычислений, Харди и Рамануджан придумали также приближенную формулу, позволяющую получить хорошую оценку количества способов разбиения любого заданного числа объектов. Кроме того, Рамануджан сделал очень интересное наблюдение, которое до сих пор будоражит умы ученых: если число объектов заканчивается цифрой 4 или 9, то количество способов разбиения всегда делится на 5. В качестве иллюстрации этого утверждения можно привести такой пример: 4, 9, 14, 19, 24 и 29 объектов дают 5, 30, 135, 490, 1575 и 4565 способов разбиения соответственно.
Рамануджан добился многочисленных, сложных и блестящих достижений, а его гениальность получила признание в 1918 году, когда он был избран самым молодым членом Королевского общества. Переезд в Кембридж позволил разуму Рамануджана пережить невероятный расцвет, а вот суровая английская зима и изменение рациона питания негативно сказались на его здоровье. В конце 1918 года Рамануджан покинул Кембридж и лег в частную лечебницу Colinette House в пригороде Лондона Патни. Именно в этих условиях и состоялась та самая беседа, которая связывает Рамануджана с «Футурамой».
Вот что говорил об этом Харди: «Помню, как я однажды отправился проведать его в Патни. Я приехал на такси с номером 1729 и заметил, что это число кажется мне довольно скучным и что я надеюсь, в нем нет никакого плохого предзнаменования. “Нет, – ответил он, – это очень интересное число; это наименьшее число, которое можно представить в виде суммы кубов двумя разными способами”».
Эти двое явно не относились к любителям светской болтовни и сплетен. Как всегда, их разговор был посвящен числам, а его суть можно выразить так:
1729 = 1 + 12 = 9 + 10
Другими словами, если бы у нас было 1729 маленьких кубиков, мы могли бы сложить их в виде двух кубов со сторонами 1 1 1 и 12 12 12 или 9 9 9 и 10 10 10. Только немногие числа можно разделить на два куба, и еще меньше чисел, которые можно разделить на два куба двумя разными способами…, а число 1729 – минимальное число с таким свойством. В честь комментария Рамануджана по поводу номера такси, в котором ехал Харди, в математических кругах это число принято называть «числом такси».
Импровизированное замечание Рамануджана пробудило у математиков такой интерес, что они поставили вопрос несколько иначе: чему равно минимальное число, которое можно представить в виде суммы двух кубов тремя разными способами? Ответ – 87 539 319, поскольку:
Это число, которое тоже называют числом такси, присутствует в полнометражном мультфильме «Большой куш Бендера» (Bender’s Big Score, 2007 год). Когда Фрай вызывает такси, на его крыше красуется номер 87 539 319. Безусловно, это вполне естественно, когда в качестве номера такси (в обычном смысле) выступает число такси (в математическом смысле).
Таким образом, неоднократно упоминая число 1729 в эпизодах «Футурамы», а также включив в один из эпизодов число 87 539 319, сценаристы мультсериала отдают дань уважения Рамануджану, история которого мало кому известна за пределами мира математики. Эта вдохновляющая история о гениальном человеке, который стал знаменитым благодаря преподавателю Кембриджского университета, увы, имеет трагический конец. В 1919 году Рамануджан, страдавший от различных болезней, в том числе от авитаминоза и туберкулеза, вернулся в Индию в надежде, что более теплый климат и привычная вегетарианская диета помогут ему восстановить здоровье. Однако, прожив в Индии около года, 26 апреля 1920 года он умер в возрасте тридцати двух лет.
Тем не менее идеи Рамануджана до сих пор остаются и навсегда останутся в самом сердце современной атематики. Отчасти это объясняется универсальностью языка математики, а отчасти абсолютным характером математических доказательств. В отличие от идей в области искусства и гуманитарных наук, математические теоремы никогда не выходят из моды. Сам Харди сказал об этом следующее: «Архимеда будут помнить даже тогда, когда Эсхила забудут, потому что языки умирают, а математические идеи бессмертны. Возможно, “бессмертие” – глупое слово, но, по всей вероятности, математик имеет на него наибольшие шансы, что бы оно ни означало».
Присутствующие в «Футураме» ссылки на числа такси можно связать с Кеном Килером, которого считают одним из самых математически одаренных сценаристов как «Симпсонов», так и «Футурамы». По словами самого Килера, его увлеченность математикой сформировалась под влиянием отца, Мартина Килера – врача, любившего играть с числами. Каждый раз, когда они всей семьей ходили в ресторан и получали счет в конце ужина, отец искал в этом чеке простые числа и предлагал детям присоединиться к поискам. Кен Килер помнит, как когда-то он спросил отца, существует ли быстрый способ сложения квадратов целых чисел. Например, чему равна сумма квадратов первых пяти чисел, или первых десяти чисел, или первых n чисел? Доктор Килер подумал немного, а затем дал совершенно правильный ответ в виде формулы: n/3 + n/2 + n/6. Формулу доктора Килера можно проверить с помощью примера, скажем, когда n = 5:
Сумма квадратов первых пяти чисел: 1 + 4 + 9 + 16 + 25 = 55.
Формула доктора Килера:
Для математика это не особо трудная задача, но не забывайте, что доктор Килер таковым не был. Кроме того, он решил ее с помощью оригинального и в высшей степени интуитивного подхода, короткое формальное объяснение которого, сформулированное Кеном Килером, представлено в Приложении 3.
Именно увлеченность отца математикой стала одной из причин, побудивших Кена Килера изучать прикладную математику в университете, а затем получить по этому предмету докторскую степень. Однако потом для него настали трудные времена, подталкивающие сделать выбор: Кен буквально разрывался между научной карьерой и попытками попробовать свои силы в написании комедий – еще одной области, которой он увлекался. Хотя Килер получил престижную работу в AT&T Bell Labs в Нью-Джерси, еще раньше он отправил резюме продюсерам шоу Late Night with David Letterman («Позднее шоу с Дэвидом Латтерманом»). Это был переломный момент. Когда Килеру предложили присоединиться к команде сценаристов шоу, он бросил научную работу и никогда об этом не пожалел. Килер написал сценарии для телесериалов «Крылья» (Wings) и «Критик», а затем влился в команду сценаристов мультсериала «Футурама», работая бок о бок с десятком других авторов, увлеченных математикой. Вряд ли еще где-либо в Голливуде привязанность Килера к числу 1729 получила бы столь полное понимание.
Килер внес еще один математический вклад в сериал «Футурама» – кинотеатр под названием Loews 0-Plex (кинотеатр 0-плекс Loews), который впервые появляется в эпизоде «Бешеный Бендер» (Raging Bender, сезон 2, эпизод 8; 2000 год). В ХХ веке компания Loews владела крупнейшей сетью многозальных кинотеатров (мультиплексов), но обозначение «0-плекс» подразумевает, что в XXXI столетии масштаб ее деятельности вырос многократно. Обозначение «0» (произносится как «алеф-ноль») – это математический символ, который представляет бесконечность. Следовательно, название кинотеатра означает, что в нем бесконечное число залов. По словам Килера, когда кинотеатр 0-плекс Loews впервые появился в «Футураме», в черновом варианте сценария был комментарий, который гласил, что этот кинотеатр с бесконечным числом залов «все равно был бы недостаточно большим, для того чтобы показать фильм “Рокки” и все его сиквелы одновременно».
Хотя символ 0 наверняка неизвестен большинству читателей, еще один символ для обозначения бесконечности – – мы все прекрасно знаем. Вы можете вполне резонно спросить, чем же они отличаются Символом обозначается общая концепция бесконечности, тогда как символ 0 применяется только к бесконечности определенного типа!
Концепция «бесконечности определенного типа» может показаться неправдоподобной, но представленная в одной из предыдущих глав история об отеле Гильберта продемонстрировала два очевидных вывода:
1. Бесконечность + 1 = бесконечность
2. Бесконечность + бесконечность = бесконечность
Вывод о том, что ничего нет больше бесконечности, а также что у всех бесконечностей, так сказать, одна и та же величина, был бы слишком прост. Однако на самом деле бесконечности бывают разных размеров, что можно продемонстрировать с помощью достаточно простого доказательства.
Давайте для начала рассмотрим множество десятичных чисел в диапазоне от 0 до 1. К ним относятся как простые десятичные числа, такие как 0,5, так и числа с гораздо большим количеством десятичных знаков, например 0,736829474638…. Очевидно, что таких десятичных чисел бесконечное множество, поскольку у любого десятичного числа (скажем, 0,9) есть число еще больше (0,99), затем еще больше (0,999) и т. д. Далее мы можем сопоставить бесконечное множество десятичных чисел от 0 до 1 с бесконечным множеством натуральных чисел 1, 2, 3, …. Одно бесконечное множество больше другого или они имеют одинаковую величину?
Для того чтобы определить, какая из бесконечностей больше (в случае, если это вообще возможно), давайте представим, что произойдет, если мы попытаемся сравнить все натуральные числа со всеми десятичными числами от 0 до 1. На первом этапе следует составить список всех натуральных чисел, а затем – отдельный список всех десятичных чисел от 0 до 1. В контексте данного доказательства все натуральные числа должны располагаться по порядку, тогда как десятичные могут находиться в любом порядке. Затем эти списки необходимо разместить рядом друг с другом, по принципу один к одному.
Гипотетически, если бы мы могли сопоставить натуральные и десятичные числа таким способом, то должно быть одинаковое количество чисел обоих типов, а значит, оба бесконечных множества имели бы одну и ту же величину. Однако установление такого взаимно однозначного соответствия невозможно.
Это становится очевидным на последнем этапе анализа бесконечности, который подразумевает создание числа, состоящего из первой цифры первого десятичного числа (в данном случае 7), второй цифры второго десятичного числа (5) и т. д. Это дает нам последовательность 7–5–3–4–1…. Затем, прибавив 1 к каждой цифре (0 1, 1 2, …, 9 0), мы получим новую последовательность: 8–6–4–5–2…. И наконец, ее можно использовать для создания десятичного числа – 0,86452….
Число 0,86452… интересно тем, что оно, по всей вероятности, не может входить в предположительно исчерпывающий список десятичных чисел от 0 до 1. На первый взгляд это утверждение кажется слишком смелым, но его можно проверить. Новое число не может быть первым числом в списке, поскольку мы знаем, что первые цифры не совпадают. Точно так же оно не может быть вторым числом в списке, потому что вторые цифры не совпадают, и т. д. В общем виде это число не может быть n-м числом в списке, так как n-е цифры не совпадают.
Незначительно измененные варианты этого доказательства могут продемонстрировать, что есть еще много других чисел, которые отсутствуют в исходном списке десятичных чисел. Иными словами, если мы попытаемся сопоставить два бесконечных множества, список десятичных чисел от 0 до 1 не может не быть неполным, предположительно потому, что бесконечное множество десятичных чисел больше бесконечного множества натуральных чисел.
Это доказательство представляет собой упрощенную версию диагонального метода Кантора – неопровержимого доказательства, опубликованного Георгом Кантором в 1892 году. Доказав, что некоторые бесконечные множествабольше других, Кантор был уверен в том, что бесконечное множество натуральных чисел – это минимальная бесконечность, поэтому обозначил его как 0, где – первая буква древнееврейского алфавита. Кантор также считал, что множество десятичных чисел от 0 до 1 – это следующее по величине бесконечное множество, поэтому обозначил его как 1 (алеф-один). Поскольку существуют бесконечные множества большего размера, их было бы логично записать как 2, 3, 4,….
Таким образом, хотя в кинотеатре 0-плекс Loews из «Футурамы» бесконечное количество залов, мы теперь знаем, что это минимальное бесконечное множество. Если бы это был кинотеатр 1-плекс, в нем было бы гораздо больше залов.
В «Футураме» есть еще одна ссылка на предложенную Кантором классификацию бесконечных множеств. Математики называют множество 0 счетным бесконечным множеством, потому что оно описывает масштаб бесконечности, который ассоциируется с натуральными числами, тогда как бесконечные множества большей величины обозначаются термином «несчетные бесконечные множества». Как отметил Дэвид Х. Коэн, второй термин упоминается в эпизоде «Мебиус Дик» (Mbius Dick, сезон 6, эпизод 21; 2011 год): «Мы ненадолго попадаем в эту странную четырехмерную вселенную, где встречаем множество копий Бендера, вращающихся вокруг друг за другом, а затем он возвращается в реальный мир и говорит: “Это была самая крутая несчетная бесконечная толпа парней, которую я когда-либо встречал”».
Глава 16
Односторонняя история
В эпизоде «Мебиус Дик» космический корабль «Межпланетный экспресс» путешествует по галактике и случайно попадает в Бермудский тетраэдр, космическое кладбище десятков знаменитых исчезнувших кораблей. Экипаж «Межпланетного экспресса» решает исследовать эту область пространства, но тут на них нападает внушающий ужас четырехмерный космический кит, которому Лила дает имя Мебиус Дик.
В этом имени содержится как ссылка на роман Германа Мелвилла «Моби Дик», так и на удивительный математический объект, известный как лента Мебиуса, или петля Мебиуса. Ленту Мебиуса независимо друг от друга открыли в XIX столетии немецкие математики Август Мебиус и Иоганн Листинг. Воспользовавшись следующими простыми инструкциями, вы сами можете построить такую ленту. Вам понадобится:
1) полоска бумаги;
2) скотч.
Сначала возьмите полоску бумаги и переверните ее на пол-оборота, как показано на рисунке ниже. Затем склейте два конца полоски скотчем, чтобы получить ленту Мебиуса. Вот и все. Лента Мебиуса – это, по сути, петля с поворотом.
На первый взгляд в ленте Мебиуса нет ничего особенного, но простой эксперимент позволяет раскрыть одно ее удивительное свойство. Возьмите маркер и нарисуйте линию вдоль ленты, не отрывая кончик маркера от бумаги и не пересекая край, до тех пор пока не вернетесь в исходную точку. Вы заметите две вещи: во-первых, для того чтобы вернуться в исходную точку, вам понадобится пройти два круга; во-вторых, ваша линия пройдет по каждой стороне ленты. Это очень странно, поскольку мы исходим из предположения, что у листа бумаги две стороны, на которых можно нарисовать линию только тогда, когда вы можете оторвать перо от бумаги или обогнуть край. Так что же происходит в случае ленты Мебиуса?
Лист бумаги имеет две стороны (верхнюю и нижнюю), и сделанная из бумаги петля также имеет две стороны, но лента Мебиуса отличается наличием одного необычного свойства: у нее только одна сторона. Две стороны исходной полоски бумаги превратились в одну после того, как один конец полоски был перевернут перед соединением. Это необычное свойство ленты Мебиуса лежит в основе моей третьей любимой математической шутки:
Вопрос: Зачем цыпленок перешел ленту Мебиуса?
Ответ: Чтобы попасть на другую сторону… ну… в общем…
Хотя на самом деле мы не видим ленту Мебиуса в эпизоде «Мебиус Дик», это весьма прозрачный намек на планы включить эту необычную математическую шутку в следующий эпизод «Футурамы». Когда я осенью 2012 года встречался с Дэвидом Х. Коэном в офисе «Футурамы», он рассказал мне об одном из эпизодов следующего сезона[53] под названием «Двумерное шоссе» (2-D Blacktop)[54], в котором главную роль играет профессор Фарнсворт. Коэн объяснил, что по сюжету эпизода пожилой владелец компании «Межпланетный экспресс» превращается в помешанного на скорости типа, который увеличивает мощность двигателя космического корабля для того, чтобы принять участие в гонках по гоночной ленте Мебиуса. Интересное свойство такого маршрута состоит в том, что Фарнсворту понадобится пройти два круга, прежде чем он сможет попасть в исходную точку.
Коэн раскрыл несколько деталей сюжета: «Лила злится на профессора, и между ними возникает спор, который заканчивается гонкой по ленте Мебиуса. Лила выигрывает, но у профессора в запасе есть отличный гоночный ход под названием “дрифт между измерениями”. Фарнсворт выкручивает руль, одновременно задействуя аварийный тормоз, что выбрасывает его в пространство, в котором на одно измерение больше, чем было раньше. Так он вылетает из третьего измерения, на какое-то время попадает в четвертое, а затем снова появляется в третьем измерении дальше по трассе».
К сожалению, переход из одного измерения в другое и обратно приводит к тому, что профессор теперь движется в направлении, противоположном направлению движения Лилы. Их корабли сталкиваются друг с другом, из-за чего попадают во второе измерение! Следующая сцена происходит в двумерном пространстве.
Во многих отношениях сюжет эпизода «Двумерное шоссе» противоположен сюжету «Трехмерного Гомера». В эпизоде «Симпсонов» речь идет о последствиях перехода в более высокое измерение, по аналогии с сюжетом одного из эпизодов сериала «Сумеречная зона». Напротив, в «Двумерном шоссе» исследуются последствия перехода в пространство меньшей размерности, причем этот сюжет также написан под влиянием классического произведения в жанре научной фантастики.
Сюжет эпизода «Двумерное шоссе» – дань уважения научно-фантастическому роману Эдвина Эббота[55] под названием Flatland (подзаголовок «Роман о многих измерениях»). Действие начинается в двумерном мире, известном как Флатландия. Этот мир состоит из единственной поверхности, населенной различными фигурами, такими как сегменты линий (женщины), треугольники (мужчины рабочего класса) и квадраты (мужчины среднего класса). По сути, чем больше количество сторон у фигуры, тем выше ее статус. Следовательно, у женщин в этом мире самый низкий статус, многоугольники представляют высшие слои общества, а окружности – это верховные жрецы. Будучи теологом, изучавшим математику в Кембриджском университете, Эббот стремился к тому, чтобы читатели воспринимали его «Флатландию» и как социальную сатиру, и как приключения в мире геометрии.
Главный герой и рассказчик – Квадрат, которому снится сон о путешествии в Лайнландию, одномерный мир, обитатели которого (точки) могут перемещаться только по одной линии. Квадрат беседует с точками и пытается объяснить им концепцию второго измерения, а также разнообразие фигур, населяющих Флатландию, но точки остаются в недоумении. Они даже не могут понять истинную природу самого Квадрата, поскольку его форма непостижима с их одномерной точки зрения. Точки видят Квадрат в форме линии, так как это и есть то сечение, которое образует квадрат, перемещаясь по Лайнландии.
После того как Квадрат просыпается и понимает, что снова находится в своей родной Флатландии, его приключения продолжаются после посещения Сферы – объекта из экзотического третьего измерения. Безусловно, в этот раз именно Квадрат сбит с толку, поскольку он может воспринимать Сферу только как окружность, ведь именно такую форму имеет сечение, образуемое Сферой при перемещении по Флатландии. Однако происходящее начинает обретатьсмысл, когда Сфера переносит Квадрат в трехмерное пространство. Когда Квадрат смотрит из третьего измерения вниз на своих земляков, обитающих в Флатландии, он уже может рассуждать о четвертом, пятом и даже более высоких измерениях.
Вернувшись во Флатландию, Квадрат пытается всем рассказать о третьем измерении, но никто не желает его слушать. Более того, власти стремятся прекратить это богохульство. На самом деле лидеры Флатландии уже знают о существовании Сферы, поэтому берут Квадрата под арест, с тем чтобы сохранить информацию о третьем измерении в тайне. У этой истории трагический конец: Квадрата сажают в тюрьму за то, что он сказал правду.
Так каким же образом эпизод «Двумерное шоссе» воздает должное роману «Флатландия»? Когда корабли профессора Фарнсворта и Лилы сталкиваются, в результате прямого удара они превращаются в плоские версии себя и перемещаются в плоском мире с плоскими животными, растениями и облаками.
Анимация в этом фрагменте эпизода строго придерживается правил двумерного мира, а это значит, что ни один объект не может перемещаться мимо другого объекта; в таком мире они могут только обходить друг друга. Однако когда я смотрел предварительный монтаж этих кадров вместе с редактором Полом Колдером, он заметил, что пушистый край одного облака слегка накладывается на край другого облака. В двумерном мире такое наложение невозможно, поэтому этот фрагмент необходимо подкорректировать, прежде чем эпизод выйдет на экраны.
Пытаясь понять последствия пребывания в новом мире, Лила и профессор постепенно осознают, что при переходе из третьего во второе измерение у них исчезли каналы пищеварительной системы. Это необходимая часть процесса перехода, поскольку пищеварительный канал в двух измерениях – верный путь к беде. Для того чтобы понять суть проблемы, представьте себе профессора в виде плоской, вырезанной из бумаги фигуры, повернутой лицом направо. Затем проведите линию от рта до ягодиц, символизирующую желудочно-кишечный канал. И наконец, разрежьте фигуру вдоль этой линии и слегка отодвиньте две части тела профессора друг от друга: пищеварительный канал представляет собой трехмерный тоннель, но в двух измерениях это просто щель. Теперь вы видите, в чем проблема. При наличии пищеварительной системы в двумерном пространстве тело профессора просто распалось бы на две части. Очевидно, что то же самое произошло бы и с Лилой.
Однако без пищеварительного тракта профессор и Лила не могут есть. Другие обитатели двумерного мира каким-то образом впитывают питательные вещества, в отличие от поглощения пищи и выделения продуктов ее переработки, но профессор и Лила не умеют этого делать.
Короче говоря, для профессора и Лилы сложилась ситуация, когда и с пищеварительным трактом не выжить, и без него не жить. Единственный выход – бежать из двумерного мира, пока они не умерли голодной смертью. К счастью, им на помощь приходят сценаристы. Коэн объясняет это так: «Профессор и Лила поняли, что происходит. Они могут использовать дрифт между измерениями, чтобы переместиться из второго в третье измерение. И здесь появляется удивительная последовательность кадров, когда они пролетают сквозь огромный фрактальный ландшафт, представляющий собой область между вторым и третьим измерением. Эта сцена содержит фрагмент поразительной компьютерной графики».