Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса Ливио Марио

Прежде всего, вы вправе поинтересоваться, почему Евклида вообще заинтересовало определение именно такого деления отрезка и зачем было давать этому соотношению особое название? Ведь разных способов поделить отрезок бесконечно много. Ответ на этот вопрос можно найти в культурно-мистическом наследии Пифагора и Платона. Вспомним, что пифагорейцы были одержимы числами. Они считали, что нечетные числа – это мужское начало и добро, а четные, соответственно, – женское начало и зло. Особое родство они ощущали с числом 5: ведь это оюз 2 и 3, первого четного (женского) числа с первым нечетным (мужским). (Число 1 вообще считалось не числом, а генератором остальных чисел.) Поэтому для пифагорейцев число 5 представляло собой воплощение любви и брака, и пентаграмму – пятиконечную звезду – они сделали символом своего братства (рис. 63). И вот тут-то на сцену впервые вышло золотое сечение. Если взять правильную пентаграмму, то отношение боковой стороны любого треугольника к его основанию (a/b на рис. 63) в точности равно золотому сечению. Подобным же образом отношение любой диагонали правильного пятиугольника к его стороне (c/d на рис. 64) также равно золотому сечению. А значит, чтобы построить пятиконечную звезду или пятиугольник при помощи циркуля и линейки (именно так проделывали геометрические построения древние греки), требуется разделить отрезок в золотом сечении.

Рис. 62

Рис. 63

Рис. 64

Платон обогатил мистический смысл золотого сечения дополнительными обертонами. Древние греки полагали, что все во Вселенной состоит из четырех стихий – земли, воды, воздуха и огня. В «Тимее» Платон попытался объяснить структуру вещества на основании пяти правильных многогранников, которые впоследствии были названы в его честь платоновыми телами (рис. 65). Это выпуклые тела – тетраэдр, куб, октаэдр, икосаэдр и додекаэдр – единственные, у которых все грани (у каждого многогранника по отдельности) одинаковы и представляют собой правильные многоугольники, а все вершины лежат на сфере. Каждое из первых четырех тел Платон связывал с определенной стихией: земля ассоциировалась с устойчивым кубом, всепроникающий огонь – с острым тетраэдром, воздух – с октаэдром, а вода – с икосаэдром. А о додекаэдре (рис. 65, d) Платон в «Тимее» писал: «В запасе оставалось еще пятое многогранное построение, его бог определил для Вселенной и прибегнул к нему в качестве образца» (пер. С. Аверинцева). Итак, додекаэдр отражал вселенную в целом. Обратите внимание, что додекаэдр, обладающий двенадцатью пятиугольными гранями, прямо-таки воплощает в себе золотое сечение. И его объем, и площадь поверхности можно выразить в виде простых равенств с участием золотого сечения (так же обстоят дела и с икосаэдром).

То есть исторический опыт показывает, что методом многочисленных проб и ошибок пифагорейцы и их последователи открыли способы строить определенные геометрические фигуры, которые для них воплощали важные понятия вроде любви и космоса. Тогда неудивительно, что и они, и Евклид, задокументировавший эту традицию, изобрели понятие золотого сечения, необходимого для этих построений, и дали ему название. В отличие от любого другого произвольного соотношения, число 1,618… стало предметом пристального изучения с богатой и интересной историей и даже в наши дни то и дело заявляет о себе в самых неожиданных местах. Например, спустя две тысячи лет после Евклида немецкий астроном Иоганн Кеплер открыл, что это число – чудесным образом – имеет отношение к последовательности чисел под названием числа Фибоначчи. Последовательность Фибоначчи – 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,… – характерна тем, что каждый ее член, начиная с третьего, представляет собой сумму двух предыдущих (2 = 1 + 1; 3 = 1 + 2; 5 = 2 + 3 и так далее). А если поделить любой член последовательности на непосредственно предшествующий (например, 144 89; 233 144 и так далее), окажется, что отношения колеблются в окрестности золотого сечения, причем чем больше члены последовательности, тем ближе их отношения к золотому сечению. Например, при округлении до шестого знака после запятой у нас получатся следующие числа: 144 89 = 1,617978; 233 144 = 1,618056; 377 233 = 1,618026 и так далее.

Рис. 65

В новое время выяснилось, что числа Фибоначчи и, соответственно, золотое сечение описывают расположение листьев на стеблях некоторых растений – это явление называется филлотаксис – и структуру кристаллов некоторых алюминиевых сплавов.

Почему я считаю определение золотого сечения, которое дал Евклид, изобретением? Потому что изобретательство Евклида выделило это соотношение из общей массы и привлекло к нему внимание математиков. С другой стороны, в Китае, где понятие золотого сечения не было изобретено, в математической литературе нет никаких упоминаний ни о чем похожем. В Индии, где его опять же не изобрели, оно вскользь затронуто лишь в нескольких второстепенных тригонометрических теоремах.

Примеров, которые показывают, что вопрос «Что есть математика – изобретение или открытие?» некорректно сформулирован, можно найти множество. Наша математика – это сочетание изобретений и открытий. Аксиомы евклидовой геометрии как понятия были изобретением, как и, скажем, правила игры в шахматы. Кроме того, аксиомы были дополнены различными изобретенными понятиями – треугольниками, параллелограммами, эллипсами, золотым сечением и тому подобным. А теоремы евклидовой геометрии, напротив, по большей части представляют собой открытия: это пути, связывающие разные понятия. В некоторых случаях доказательства приводили к формулировке новых теорем – математики изучали, что можно доказать, и из этого выводили теоремы. В других, как описано в «Методе» Архимеда, они сначала находили ответ на заинтересовавший их вопрос, а потом уже работали над доказательством.

Понятия – это, как правило, изобретения. Простые числа как понятие были изобретены, однако все теоремы о простых числах – открытия[158]. Математики древнего Вавилона, Египта и Китая не изобрели понятие простых чисел, хотя их математика достигла огромных успехов. Можно ли сказать, что они просто не «открыли» простые числа? Не в большей степени, чем заявить, что в Великобритании не «открыли» единую кодифицированную конституцию. Государство способно выжить и без конституции – и математика способна развиваться без понятия простых чисел. Так и получилось!

А известно ли нам, почему греки изобрели понятия вроде аксиом и простых чисел? Конечно, наверняка сказать нельзя, но можно предположить, что это произошло в ходе неустанных попыток исследовать самые фундаментальные составляющие Вселенной. Простые числа – это строительный материал чисел, точно так же как атомы – это строительный материал вещества. Подобным же образом аксиомы были источником, из которого должны вытекать все геометрические истины. Додекаэдр символизировал Вселенную в целом, а золотое сечение послужило понятием, благодаря которому этот символ был воплощен.

Все это говорит еще об одном интересном аспекте математики: она часть человеческой культуры. Стоило грекам изобрести аксиоматический метод, как все их последователи, европейские математики, тут же взяли с них пример и переняли у них эту систему представлений и практических приемов. Антрополог Лесли А. Уайт (1900–1975) как-то раз лаконично охарактеризовал этот культурный аспект (White 1947): «Если бы Ньютон вырос среди готтентотов [южноафриканское племя], он и считал бы по-готтентотски». Культурная составляющая математики, скорее всего, отвечает и за то, что многие математические открытия (например, инварианты узла) и даже некоторые крупные изобретения (например, математический анализ) были сделаны одновременно несколькими независимыми учеными.

Говорите ли вы по-математически?

В предыдущем разделе я сравнил смысл абстрактного понятия числа со значением слова. Можно ли считать математику своего рода языком? Открытия математической логики, с одной стороны, и лингвистики – с другой, показывают, что в некоторой степени так и есть. Труды Буля, Фреге, Пеано, Рассела, Уайтхеда, Гёделя и их современных последователей, в особенности в областях вроде философской семантики и синтаксиса и в параллельных направлениях лингвистики, показали, что грамматика и логические рассуждения тесно связаны с алгеброй символической логики. Но почему тогда на свете существует более 6500 языков и только одна математика? На самом еле у многих языков при всем их разнообразии общая основа. Скажем, американский лингвист Чарльз Хокетт (1916–2000) в 60-е годы привлек внимание к тому обстоятельству, что все языки обладают встроенными механизмами для создания новых слов и фраз («луноход», «веб-страница», «банкомат» и так далее)[159]. Подобным же образом все человеческие языки допускают отвлеченные понятия («сюрреализм», «отсутствие», «величие»), отрицание («нет», «не бывает»), условные конструкции («Если бы бабушке приделали колесики, она стала бы автобусом»). Пожалуй, важнейшие свойства любых языков – это незамкнутость и свобода стимуляции. Первое – это способность создавать неслыханные ранее высказывания и понимать их[160]. Например, я легко могу создать предложение вроде «Плотину Гувера скотчем не починишь», и, хотя вам, скорее всего, эта фраза раньше не попадалась, вы без труда ее поймете. Свобода стимуляции – это власть выбирать, как реагировать на полученный стимул и реагировать ли на него вообще. Например, на вопрос, который ставит автор-исполнитель Кэрол Кинг в своей песне «Будешь ли ты и завтра любить меня?», можно ответить и «Откуда я знаю, не умру ли я до завтра», и «Конечно», и «Да я и сегодня тебя не люблю», и «Не больше, чем свою собачку», и «Честное слово, это ваша лучшая песня!», и даже «Интересно, кто в этом году выиграет Открытый чемпионат Австралии по теннису». Легко видеть, что многие эти черты (абстракция, отрицание, незамкнутость и способность развиваться) характерны и для математики[161].

Как я уже отмечал, Лакофф и Нуньес подчеркивают роль метафор в математике. Кроме того, когнитивисты настаивают, что все человеческие языки прибегают к метафорам для выражения практически чего угодно. Но и это еще не все: с 1957 года, когда знаменитый лингвист Ноам Хомски опубликовал свою революционную книгу «Синтаксические структуры» (Noam Chomsky, «Syntactic Structures»), многие лингвисты занялись так называемой универсальной грамматикой – общими принципами, которые управляют всеми языками[162]. Иначе говоря, то, что кажется на первый взгляд вавилонским разнообразием языков, на самом деле обладает неожиданным структурным сходством. Вдумайтесь – ведь иначе невозможно было бы составить словари для перевода с одного языка на другой!

Вероятно, вас до сих пор удивляет, что математика такая однородная – и по тематике, и по системе условных обозначений. Особенно интересна первая часть этого вопроса. Большинство математиков согласны, что математика в известном нам виде развилась из основных отраслей геометрии и арифметики, которые разрабатывали и применяли на практике древние вавилоняне, египтяне и греки. Однако так ли уж неизбежно, что математика должна отталкиваться именно от этих дисциплин?

Специалист по информатике Стивен Вольфрам в своей объемной книге «Наука нового типа» (Wolfram 2002) доказывает, что это не обязательно. В частности, Вольфрам демонстрирует, как можно развить математику совершенно нового типа, если начинать с простого набора правил (клеточных автоматов), которые действуют как короткие компьютерные программы. Эти клеточные автоматы можно (по крайней мере, в принципе) сделать основными инструментами моделирования природных явлений – вместо дифференциальных уравнений, которые главенствовали в естественных науках на протяжении трех столетий. Но что же тогда подтолкнуло древние цивилизации к открытию и изобретению именно нашей «марки» математики? Наверняка сказать невозможно, но, вероятно, это связано в основном с особенностями человеческой системы восприятия. Люди без труда замечают и распознают грани, прямые линии, плавные кривые. Скажем, обратите внимание, с какой точностью лично вы можете определить (на глаз), когда линия идеально прямая, и с какой легкостью отличаете правильную окружность от немного эллиптической. Вероятно, эти особенности восприятия оказали сильное влияние на то, как люди видят мир, и поэтому привели к созданию математики, основанной на дискретных объектах (арифметика) и на геометрических фигурах (евклидова геометрия).

Единство системы обозначений, вероятно, стало результатом так называемого «Эффекта “Майкрософт Виндоус”». Операционной системой «Майкрософт» пользуется весь мир, и не потому, что этого нельзя избежать, а просто потому, что она захватила большую часть рынка программного обеспечения и имеет смысл приобретать ее просто ради удобства связи и доступности различных приложений. Подобным же образом западная система условных обозначений некоторым образом навязана математическому миру.

Интересно, что астрономия и астрофизика, возможно, еще не до конца сыграли свою роль в ответе на вопрос об изобретении или открытии. Не так давно поиски планет вне Солнечной системы показали, что около пяти процентов всех звезд обладают по крайней мере одной гигантской планетой вроде Юпитера и что эта доля примерно одинакова по всему Млечному пути. Точный процент планет земного типа пока не известен, но есть вероятность, что в галактике их миллиарды. Даже если лишь очень маленькая, но все же отличающаяся от нуля доля этих «Земель» находится в обитаемой зоне (на орбите, которая проходит от звезды на таком расстоянии, что делает возможным существование на поверхности планеты жидкой воды), вероятность возникновения жизни как таковой и, в частности, разума на таких планетах больше нуля. А если нам удастся открыть разумную жизнь и наладить с ней коммуникацию, можно будет получить бесценные сведения о том, какие формальные методы объяснения устройства космоса разрабатывают другие цивилизации. И тогда мы не просто добьемся невообразимых успехов в понимании происхождения и эволюции жизни, но и получим возможность сравнить свою логику с логическими системами потенциально более развитых существ.

Если же взять куда более спекулятивную ноту, то некоторые космологические сценарии, например так называемая хаотическая теория инфляции, предсказывают возможность существования множественных вселенных. Не исключено, что в иных таких вселенных не только значения фундаментальных физических постоянных (например, силы различных типов взаимодействий или отношения масс субатомных частиц) отличаются от наших, но и вообще правят совсем другие законы природы.

Астрофизик Макс Тегмарк утверждает, что каждой возможной математической структуре должна соответствовать (или, по его словам, соответствует) своя Вселенная[163]. Если это так, то перед нами доведенная до предела версия позиции «Вселенная есть математика»: с математикой идентифицируется даже не один мир, а целый их ансамбль. К сожалению, эти умозаключения не просто радикальны и на данный момент не подлежат экспериментальной проверке, но и противоречат, по крайней мере, в упрощенном виде, так называемому принципу заурядности.[164]. Как я писал в главе 5, если выбрать на улице случайного прохожего, то с вероятностью 95 % его рост попадет в пределы двух стандартных отклонений от среднего роста. Подобную же аргументацию следует применять и к свойствам вселенных. Однако количество возможных математических структур с увеличением сложности стремительно возрастает. Это значит, что самая заурядная структура, близкая к средней, должна быть необычайно сложной. А это не вяжется с относительной простотой нашей математики и наших теорий Вселенной, а значит, не соответствует естественным представлениям о том, что наша Вселенная должна быть типичной.

Загадка Вигнера

Вопрос «что есть математика – изобретение или открытие?» сформулирован некорректно, поскольку из такой формулировки следует, что нужно выбрать какой-то один ответ и что эти два варианта взаимоисключающи. Я предлагаю другую версию: математика отчасти открыта, а отчасти изобретена. Люди постоянно изобретают математические понятия и открывают отношения между этими понятиями. Конечно, некоторые эмпирические открытия предшествовали формулировке понятий, однако сами понятия, несомненно, стали стимулом для дальнейших открытий новых теорем. Кроме того, я хочу заметить, что некоторые философы математики, например американец Хилари Патнэм, придерживаются умеренной позиции, так называемого реализма: они верят в объективность математического дискурса (утверждения бывают истинные и ложные, а то, что делает их истинными или ложными, лежит вне сферы влияния человека), однако не убеждены, в отличие от платоников, в существовании «математических объектов» (Putnam 1975). Но ведут ли подобные представления к удовлетворительному ответу на загадку Вигнера – загадку о «непостижимой эффективности» математики?

Позвольте кратко очертить некоторые варианты ответов, предлагаемые современными мыслителями[165].

Вот что пишет Дэвид Гросс, лауреат Нобелевской премии по физике[166].

Существует точка зрения, насколько мне известно, довольно распространенная среди математиков, занимающихся новыми разработками, согласно которой математические структуры, получаемые этими учеными, представляют собой не искусственные творения человеческого разума, а представляются им некоторым образом естественными, как будто они столь же реальны, как и структуры, созданные физиками для описания так называемого реального мира. Иначе говоря, математики не изобретают новую математику, а открывают ее. Если это так, то, пожалуй, некоторые тайны, которые мы исследовали [ «непостижимая эффективность»], уже не так таинственны. Если математика сводится к структурам, представляющим собой реальную часть мира природы, столь же реальную, что и понятия теоретической физики, не приходится удивляться, что она служит эффективным инструментом анализа реального мира.

То есть Гросс опирается здесь на вариант точки зрения «математика есть открытие», который находится где-то между платоновским миром и миром «Вселенная есть математика», но ближе к платоническому мировоззрению. Однако, как мы видели, философски обосновать утверждение «математика есть открытие» трудно. Более того, платонизм не может по-настоящему ответить на вопрос о феноменальной точности, о котором я говорил в главе 8, – и Гросс это признает.

Сэр Майкл Атья, чьи представления о природе математики я в основном разделяю, пишет об этом так (Atiyah 1995; см. также Atiyah 1993).

Если рассматривать мозг в контексте эволюции, то загадочные успехи математики в физических науках можно объяснить – по крайней мере, отчасти. Мозг развивался так, чтобы легче было иметь дело с физическим миром, поэтому, пожалуй, не надо удивляться, что он разработал математику – язык, прекрасно подходящий для этой цели.

Такая аргументация очень похожа на то, что предлагают когнитивисты. Однако Атья при этом признает, что это объяснение едва ли позволяет ответить на самый наболевший вопрос – как математика объясняет относительно скрытые аспекты физического мира. В частности, оно оставляет в стороне вопрос о «пассивной» эффективности математики (о том, что математические понятия находят практическое применение уже после их изобретения, иногда в далеком будущем). Атья отмечает: «Скептик вправе возразить, что борьба за выживание требует от нас только справляться с физическими явлениями на человеческих масштабах, а математическая теория, однако, успешно описывает явления на любых масштабах, от атома до галактики». Единственное, что приходит в голову по этому поводу, – это: «Возможно, объяснение кроется в абстрактно-иерархической природе математики, которая позволяет относительно легко переходить вверх-вниз по шкале масштабов».

Ричард Хэмминг (1915–1998), американский математик и специалист по теории информации, в 1980 году сделал очень подробный и интересный обзор загадки Вигнера (Hamming 1980). Во-первых, по вопросу о природе математики он пришел к выводу, что «математика создана человеком и поэтому приспособлена для того, чтобы человек постоянно и более или менее бесконечно ее изменял». Далее, он предложил четыре возможных объяснения непостижимой эффективности: это (1) эффект отбора, (2) эволюция математических инструментов, (3) ограниченная способность математики к объяснению и (4) эволюция человека.

Вспомним, что эффект отбора – это искажение результатов эксперимента либо из-за использованного аппарата, либо из-за способа сбора данных. Например, если при испытании эффективности диеты исследователь отбрасывает всех, кто прекратил диету досрочно, это исказит результат, поскольку те, кто отказался продолжать испытание, скорее всего, и есть те, на кого эта диета не подействовала. Иначе говоря, Хэмминг предполагает, что по крайней мере в некоторых случаях «изначальное явление возникает из-за применяемого математического инструментария, а не из реального мира… многое из того, что мы видим, зависит от того, какие на нас очки». В качестве примера он с полным правом приводит возможность показать, что любая сила, симметрично исходящая из точки (и сохраняющая энергию) в трехмерном пространстве ведет себя согласно закону обратных квадратов, а следовательно, не стоит удивляться применимости закона всемирного тяготения Ньютона. Точка зрения Хэмминга прекрасно обоснована, однако фантастическую точность некоторых теорий едва ли можно объяснить эффектом отбора.

Второе возможное решение, которое предлагает Хэмминг, опирается на тот факт, что человек отбирает и постоянно улучшает математические методы с целью приспособить их к той или иной ситуации. То есть Хэмминг предполагает, что мы наблюдаем так называемую «эволюцию и естественный отбор» математических идей: люди изобретают много математических понятий, но отбирают самые приспособленные. Я придерживался этих представлений много лет – и считал, что это все объясняет. Подобную интерпретацию предлагает и физик, нобелевский лауреат Стивен Вайнберг в своей книге «Мечты об окончательной теории» (Weinberg 1993). Так может быть, вот он – ответ на загадку Вигнера? Нет никаких сомнений, что подобный отбор и эволюция и в самом деле происходят. Просеяв целый ряд математических формул и приемов, ученые выбирают рабочий арсенал и тут же совершенствуют или меняют его, если это позволяет получить инструментарий получше. Но даже если мы согласимся с этой идеей, откуда вообще взялись математические теории, способные объяснить устройство Вселенной? Третье соображение Хэмминга состоит в том, что наше представление об эффективности математики вполне может оказаться иллюзией, поскольку в мире вокруг нас полным-полно всего такого, чего математика на самом деле не объясняет. В подтверждение я могу, например, отметить, что математик Израиль Гельфанд, как пишут, сказал однажды (Borovik 2006): «Есть только лишь одна вещь, еще более непостижимая, чем непостижимая эффективность математики в физике. И эта вещь – непостижимая неэффективность [курсив мой. – М. Л.] математики в биологии». Не думаю, что это само по себе позволяет дать окончательный ответ на загадку Вигнера. В отличие от героев «Автостопом по Галактике», мы не можем сказать, что ответ на все вопросы жизни, Вселенной и всего на свете – сорок два. Тем не менее есть достаточно большое количество природных явлений, которые математика смогла прояснить настолько, что их удалось объяснить. Более того, диапазон процессов и фактов, которые можно интерпретировать при помощи математики, постоянно расширяется.

Четвертое объяснение Хэмминга очень похоже на то, которое предлагает Атья: «Дарвиновская эволюция в результате естественного отбора дает больше шансов на выживание тем живым существам, разум которых создал лучшие модели реальности – здесь слово “лучшие” означает лучше всего подходящие для выживания и размножения».

Похожих взглядов, но с особым упором на роль логики придерживался и специалист по компьютерным интерфейсам Джеф Раскин (1943–2005), который запустил в компании «Эппл» проект «Макинтош». Раскин полагал так (Raskin 1998)

человеческая логика навязана нам физическим миром и именно поэтому ему соответствует. Математика происходит из логики. Вот почему математика соответствует физическому миру. Здесь нет никакой загадки – хотя нельзя утрачивать способность удивляться и восхищаться природой вещей, даже научившись лучше ее понимать.

Хэмминга даже собственные доводы не настолько убеждали. Вот на что он указывал.

Если взять 4000 лет научной эры, то получится, что миновало – если брать максимальную оценку – 200 поколений. Учитывая, что эволюция человека, которую мы стремимся обнаружить, происходит посредством отбора небольших случайных вариаций, я сомневаюсь, что она способна объяснить непостижимую эффективность математики, разве что лишь самую малую ее часть.

Раскин утверждал, что «основы математики заложены давным-давно в наших предках, возможно, за миллионы поколений до нас». Однако я должен сказать, что мне этот аргумент не кажется таким уж убедительным. Даже если логика была укоренена в мозге наших предков, непонятно, каким образом эта способность могла привести к отвлеченным математическим теориям субатомного мира, например, к квантовой механике с ее невообразимой точностью.

Примечательно, что Хэмминг завершил свою статью допущением, что «всех объяснений, которые я привел, совокупно все равно не хватает, чтобы объяснить то, о чем я веду здесь речь» (то есть непостижимую эффективность математики).

Неужели нам придется в заключение сделать вывод, что эффективность математики так и остается загадкой и с начала книги ничего не изменилось?

Прежде чем опускать руки, давайте попробуем вычленить суть загадки Вигнера, а для этого рассмотрим так называемый научный метод. Сначала ученые узнают различные факты о природе посредством наблюдений и экспериментов. Эти факты прежде всего ложатся в основу каких-то качественных моделей изучаемого явления (например, Земля притягивает яблоки, элементарные частицы при столкновении способны порождать другие частицы, Вселенная расширяется и так далее). Во многих областях естественных наук теории вполне могут даже развиваться, оставаясь нематематическими. Один из лучших примеров прекрасной, многое объясняющей теории такого рода – это дарвинова теория эволюции. Хотя идея естественного отбора не основана ни на каких математических формулах, она достигла замечательных успехов в объяснении происхождения видов. А вот в фундаментальной физике следующим шагом обычно становится попытка построить математическую, количественную теорию (например, общую теорию относительности, квантовую электродинамику, теорию струн и так далее). Наконец, исследователи, опираясь на эти математические модели, предсказывают новые явления, новые частицы и результаты еще не проводившихся экспериментов и наблюдений. Вигнера и Эйнштейна удивлял и восхищал именно невероятный успех последних двух процессов. Как так получается, что физикам раз за разом удается находить математические инструменты, которые не просто объясняют уже существующие результаты экспериментов и наблюдений, но и приводят к совершенно новым озарениям и предсказаниям?

Чтобы ответить на этот вопрос, приведу прекрасный пример, который придумал математик Реубен Херш. Херш предполагал, что, как это делается в многих подобных случаях в математике (и, разумеется, в теоретической физике), нужно разбирать простейший возможный случай[167]. Рассмотрим тривиальный на первый взгляд эксперимент: будем класть черные и белые шарики в непрозрачный кувшин. Представьте себе, что сначала вы кладете четыре белых камешка, а потом семь черных. В какой-то момент в истории человечества люди поняли, что для некоторых целей можно описывать собрание шариков любого цвета абстрактным понятием, которое они изобрели, – натуральным числом. То есть собрание белых камешков можно связать с числом 4 (или IIII, или IV – на этом месте может стоять любой символ, каким пользовались в те времена), а черных – с числом 7. Посредством экспериментов первого типа, о которых я писал выше, люди также открыли, что другое изобретенное ими понятие, арифметическое действие сложения, точно описывает физический акт объединения. Иначе говоря, результат абстрактного процесса, символически обозначаемого как 4 + 7, однозначно предсказывает, каково будет в итоге количество шариков в кувшине.

Что все это значит? Это значит, что люди разработали потрясающий математический инструмент – способ надежно предсказывать результат любых экспериментов подобного рода! И инструмент этот совсем не так тривиален, как может показаться, поскольку он не подходит, к примеру, для капель воды. Если накапать в кувшин четыре капли воды, а потом добавить еще семь, одиннадцать отдельных капель не получится. Более того, чтобы делать прогнозы относительно результатов подобных экспериментов с жидкостями (или газами), людям пришлось изобрести совершенно другие понятия, например вес, и понять, что нужно взвешивать отдельно каждую каплю воды или какой-то объем газа.

Мораль ясна. Математические инструменты выбирались не произвольно, а вполне целенаправленно – исходя из того, насколько точно они способны предсказывать результаты тех или иных экспериментов и наблюдений. Так что, по крайней мере, в этом случае, очень простом, их эффективность, в сущности, гарантирована.

Людям не надо было заранее гадать, какой будет точная математика. Природа щедро дала им возможность определять, что им подходит, а что нет, методом проб и ошибок. Еще им не нужно было во всех случаях обходиться одними и теми же инструментами. Иногда оказывалось, что подходящего математического метода для той или иной задачи не существует, и кому-то приходилось его изобретать (как Ньютон изобрел интегральное и дифференциальное исчисление или современные математики изобрели множество топологических и геометрических приемов в рамках нынешней работы над теорией струн). А иногда метод уже существовал, но предстояло еще открыть, что это готовое решение, которое дожидается подходящей задачи (как в случае, когда Эйнштейн прибег к помощи римановой геометрии или физики-ядерщики – к теории групп). Все дело в том, что пылкое воображение, непоколебимое упорство, неуемное любопытство и пламенная целеустремленность позволили людям найти подходящие математические методы для моделирования огромного количества физических феноменов. Среди прочих качеств математики главным для так называемой «пассивной» эффективности оказалась ее надежность – все, что доказано, остается доказанным практически навечно. Евклидова геометрия в наши дни точно так же точна, как и в 300 году до н. э. Теперь мы понимаем, что без ее аксиом можно обойтись, и что это не абсолютные истины, описывающие пространство, а истины, описывающие определенную вселенную, воспринимаемую человеком, и математическую модель этой Вселенной, изобретенную человеком. Тем не менее, в заданных рамках все теоремы Евклида остаются истинными. Иначе говоря, отдельные ветви математики еще надо встроить в более крупные и обобщенные ветви (в частности, евклидова геометрия – всего лишь одна из возможных версий геометрии), однако корректность в пределах одной ветви сохраняется. И эта неопределенная долговечность позволяла ученым всех эпох искать подходящие математические инструменты в накопившемся арсенале разработанных математических методов и моделей.

Простой пример с шариками в кувшине все же не затрагивает двух составляющих загадки Вигнера. Во-первых, остается неясным, почему в некоторых случаях мы получаем теорию куда большей точности, чем была в нее заложена. В эксперименте с шариками точность «предсказанного» результата (накопление другого количества шариков) не выше, чем точность экспериментов, которые ранее привели к формулировке «теории» (арифметического сложения). С другой стороны, ньютонова теория всемирного тяготения, как оказалось, гораздо точнее, чем результаты наблюдений, которые привели к ее созданию. Почему? Некоторое представление об этом может дать краткий пересмотр истории создания этой теории.

Геоцентрическая модель Птолемея безраздельно правила почти полторы тысячи лет. Ни на какую универсальность она не претендовала, движение каждой планеты рассматривалось отдельно, а о физических его причинах (силе, ускорении) не упоминалось, однако результаты наблюдений она предсказывала достаточно надежно. Николай Коперник (1473–1543) в 1534 году обнародовал гелиоцентрическую модель, а Галилей, так сказать, подвел под нее твердый фундамент. Кроме того, Галилей заложил основу законов движения. Но только Кеплер вывел из наблюдательных данных первые математические, пусть и чисто феноменологические законы движения планет. Кеплер рассчитал орбиту Марса на основании огромного количества данных, которые достались ему в наследство от астронома Тихо Браге[168]. Сотни страниц математических выкладок, которые ему для этого потребовались, он назвал «моей битвой с Марсом». Всем наблюдениям вполне соответствовала круглая орбита – за исключением двух отклонений. Однако Кеплера это решение не устроило, и впоследствии он так описывал ход своих мыслей: «Если бы я считал, что мы можем пренебречь этими восемью минутами [угловыми, это примерно четверть поперечника полной луны], то подправил бы свою гипотезу… соответственным образом. Однако, поскольку отбросить их было невозможно, эти восемь минут и только они подтолкнули меня на путь полной реформы астрономии». Последствия этой дотошности были просто поразительны. Кеплер предположил, что орбиты планет не круглые, а эллиптические, и сформулировал два дополнительных количественных закона, которые действуют для всех планет. Эти законы вкупе с ньютоновыми законами движения и стали основой для закона всемирного тяготения Ньютона. Однако вспомним, что Декарт за это время успел выдвинуть теорию вихрей, согласно которой планеты влекомы вокруг Солнца вихрями кружащихся частиц. Эта теория к особым достижениям не привела – даже до того, как Ньютон доказал, что она противоречива, – поскольку систематических математических моделей для своих вихрей Декарт не разработал.

Чему нас учит этот краткий рассказ? Нет никаких сомнений, что закон всемирного тяготения Ньютона – это плод работы гениального ума. Однако этот гений трудился не в вакууме. Некоторые основы были старательно заложены его предшественниками. Как я отметил в главе 4, даже ученые куда меньшего калибра, чем Ньютон, в частности архитектор Кристофер Рен и физик Роберт Гук, независимо сформулировали закон притяжения, обратно пропорционального квадрату расстояния. Величие Ньютона проявилось в его непревзойденной способности объединить это все в универсальную теорию и в упорстве, с которым он разработал математическое доказательство всех следствий из своей теории. Почему эта модель оказалась такой точной? Отчасти потому, что решала самую фундаментальную задачу – о силе притяжения между двумя телами и их результирующем движении. И больше никаких осложняющих факторов. Ньютон получил полное решение этой задачи – и только ее. Именно поэтому фундаментальная теория оказалась крайне точной, однако следствия из нее должны были постоянно уточняться.

В Солнечной системе тел не два, а больше. Если учитывать влияние других планет (опять же в соответствии с законом обратных квадратов), то орбиты перестают быть простыми эллипсами. Например, оказалось, что орбита Земли медленно меняет положение в пространстве – это движение называется прецессия, именно так перемещается ось вращающегося волчка. Более того, современные исследования показали, что, вопреки ожиданиям Лапласа, орбиты планет в конечном итоге могут даже впасть в хаос (подробнее об этом см. Lecar et al. 2001).

Фундаментальная теория Ньютона впоследствии, разумеется, была включена в общую теорию относительности Эйнштейна. И появлению этой теории также предшествовала череда промахов и фальстартов. Так что предсказать точность той или иной теории невозможно. Не проверишь – не узнаешь, и нужно постоянно делать поправки и уточнения, пока не достигнешь желаемой точности. Те несколько случаев, когда невероятная точность достигалась за один шаг, следует считать настоящими чудесами.

Однако есть и еще одно важное общее обстоятельство, из-за которого поиск фундаментальных законов остается стоящим делом. Речь идет о том, что природа в своей любви к нам управляется именно универсальными, а не местными законами. Атом водорода везде ведет себя совершенно одинаково – и на Земле, и на другом краю Млечного пути, и даже в галактике за десять миллиардов световых лет от нас. Это не зависит от того, куда и когда мы посмотрим. Математики и физики придумали для этого качества особый математический термин: это симметрии, и они отражают устойчивость к переменам в положении, ориентации и моменте, когда запускаешь свои часы. Если бы не эти (и другие) симметрии, у нас не было бы ни малейшей надежды познать структуру мироздания, поскольку эксперименты пришлось бы усердно повторять в каждой точке пространства (если бы в такой Вселенной вообще была возможна жизнь).

Есть и другая особенность мироздания, стоящая за математическими теориями: это так называемая локальность. Она отражает нашу способность строить «картину в целом», словно пазл, начав с описания самых основных взаимодействий между элементарными частицами.

А теперь мы подошли к последнему кусочку паззла Вигнера: каковы, собственно, гарантии, что математическая теория должна существовать? Иначе говоря, откуда взялась, например, общая теория относительности? Неужели не могло оказаться, что математической теории гравитации не существует?

Ответ куда проще, чем вы думаете[169]. Гарантий нет никаких! Существует множество явлений, которые невозможно точно предсказать – даже в принципе. Под эту категорию подпадают, например, самые разные динамические системы, которые впадают в хаос – когда крошечное изменение в начальных условиях приводит к совершенно разным конечным результатам. В частности, такое поведение характерно для рынка ценных бумаг, для перемен погоды в районе Скалистых гор, для шарика, прыгающего на колесе рулетки, для дыма, поднимающегося от сигареты, и, само собой, для орбит планет в Солнечной системе. Не то чтобы математики не пытались разработать оригинальные модели, позволяющие разобраться хотя бы с некоторыми аспектами этих задач, однако никакой детерминистской предсказательной теории создать невозможно. Для работы в областях, для которых нет теории, которая дает больше, чем в нее вложили, созданы целые отрасли теории вероятности и статистики. Подобным же образом понятие вычислительной сложности очерчивает пределы для наших способностей решать задачи при помощи практических алгоритмов, а гёделевские теоремы о неполноте говорят об определенных ограничениях математики – даже внутренних. Так что математика и в самом деле обладает необыкновенной эффективностью в части некоторых описаний, особенно тех, которые относятся к фундаментальной науке, но все же она не может описать нашу Вселенную со всеми ее измерениями. И ученые в какой-то степени определяют, какие задачи исследовать, на основании того, какие задачи уже поддались математическому подходу.

Так что же, выходит, мы разгадали загадку эффективности математики – раз и навсегда? Я старался, как мог, однако сомневаюсь, что все будут полностью согласны с доводами, которые я выдвинул в этой книге. Однако могу процитировать Бертрана Рассела – его книгу «Проблемы философии» (Russell 1912).

Таким образом, мы можем подытожить наше обсуждение ценности философии. Философия должна изучаться не ради определенных ответов на свои вопросы, поскольку, как правило, неизвестны такие истинные ответы, но ради самих вопросов. А эти вопросы расширяют наше понимание того, что возможно, обогащают наше интеллектуальное воображение и убавляют догматическую уверенность, которая служит преградой уму в его размышлениях. Но, прежде всего, дело в том, что ум приобщается к великому через величие Вселенной и становится способным к союзу с нею, что и представляет собой высшее благо (пер. В. Целищева).

Приложение

Литература

Aczel, A. D. 2000. The Mystery of the Aleph: Mathematics, the Kabbalah, and the Search for Infinity (New York: Four Walls Eight Windows).

–. 2004. Chance: A Guide to Gambling, Love, the Stock Market, and Just about Everything Else (New York: Thunder’s Mouth Press).

–. 2005. Descartes Secret Notebook (New York: Broadway Books).

Adam, C., and Tannery, P., eds. 1897–1910. Oeuvres des Descartes. Revised edition 1964–76 (Paris: Vrin/CNRS). Самый полный перевод на английский язык: Cottingham, J., Stoothoff, R., and Murdoch, D., eds. 1985. The Philosophical Writing of Descartes (Cambridge: Cambridge University Press).

Adams, C. 1994. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots (New York: W. H. Freeman).

Alexander, J. W. 1928. Transactions of the American Mathematical Society, 30, 275.

Applegate, D. L., Bixby, R. E., Chvtal, V., and Cook, W. J. 2007. The Traveling Salesman Problem (Princeton: Princeton University Press).

Archibald, R. C. 1914. American Mathematical Society Bulletin, 20, 409.

Aristotle. Ca. 350 гг. до н. э. Metaphysics. In Barnes, J., ed. 1984. The Complete Works of Aristotle (Princeton: Princeton University Press).

–. Ca. 330 BCa. Physics. Перевод R. P. Hardie и R. K. Gaye.

–. Ca. 330 BCb. Physics. Перевод P. H. Wickstead и F. M. Cornford, 1960 (London: Heinemann).

Aronoff, M., and Rees-Miller, J. 2001. The Handbook of Linguistics (Oxford: Blackwell Publishing).

Ashley, C. W. 1944. The Ashley Book of Knots (New York: Doubleday).

Atiyah, M. 1989. Publications Mathmatiques de l’Inst. des Hautes Etudes Scientifiques, Paris, 68, 175.

–. 1990. The Geometry and Physics of Knots (Cambridge: Cambridge University Press).

–. 1993. Proceedings of the American Philosophical Society, 137 (4), 517.

–. 1994. Supplement to Royal Society News, 7, (12), (i).

–. 1995. Times Higher Education Supplement, 29 September.

Baillet, A. 1691. La Vie de M. Des-Cartes (Paris: Daniel Horthemels). Факсимиле публиковались в 1972 (Hildesheim: Olms) и 1987 (New York: Garner) годах.

Balz, A. G. A. 1952. Descartes and the Modern Mind (New Haven: Yale University Press).

Barrow, J. D. 1992. Pi in the Sky: Counting, Thinking, and Being (Oxford: Clarendon Press).

–. 2005. The Infinite Book: A Short Guide to the Boundless, Timeless and Endless (New York: Pantheon).

Beaney, M. 2003. In Griffin, N., ed. The Cambridge Companion to Bertrand Russell (Cambridge: Cambridge University Press).

Bell, E. T. 1937. Men of Mathematics: The Lives and Achievements of the Great Mathematicians

from Zeno to Poincar (New York: Touchstone).

–. 1940. The Development of Mathematics (New York: McGraw-Hill).

–. 1951. Mathematics: Queen and Servant of Science (New York: McGraw-Hill).

Beltrn Mari, A. 1994. “Introduction.” В кн.: Galilei, G. Dilogo Sobre los Dos Mximos Sistemas del Mundo (Madrid: Alianza Editorial).

Bennett, D. 2004. Logic Made Easy: How to Know When Language Deceives You (New York: W. W. Norton).

Berkeley, G. 1734. “The Analyst: Or a Discourse Addressed to an Infidel Mathematician”, D. R. Wilkins, ed. http:///www.maths.tcd.ie/pub/HistMath/People/Berkeley/Analyst/Analyst.html.

Berlinski, D. 1996. A Tour of the Calculus (New York: Pantheon Books).

Bernoulli, J. 1713a. The Art of Conjecturing [Ars Conjectandi]. Перевод E. D. Sylla, с предисловием и примечаниями, 2006 (Baltimore: Johns Hopkins University Press).

–. 1713b. Ars Conjectandi (Basel: Tharnisiorum).

Beyssade, M. 1993. “The Cogito.” В кн.: Voss, S., ed. Essays on the Philosophy and Science of Ren Descartes (Oxford: Oxford University Press).

Black, F., and Scholes, M. 1973. Journal of Political Economy, 81 (3), 637.

Bodanis, D. 2000. E = mc2: A Biography of the World’s Most Famous Equation (New York: Walker).

Bonola, R. 1955. Non-Euclidean Geometry. Translated by H. S. Carshaw. (New York: Dover Publications). Репринт перевода 1912 года (Chicago: Open Court Publishing Company).

Boole, G. 1847. The Mathematical Analysis of Logic, Being an Essay towards a Calculus of Deductive Reasoning. В кн.: Ewald, W. 1996. From Kant to Hilbert: A Source Book in the Foundations of Mathematics (Oxford: Clarendon Press).

–. 1854. An Investigation of the Laws of Thought on Which Are Founded the Mathematical Theories of Logic and Probabilities (London: Macmillan). Репринт издан в 1958 году (Mineola, N. Y.: Dover Publications).

Boolos, G. 1985. Mind, 94, 331.

–. 1999. Logic, Logic, Logic (Cambridge, Mass.: Harvard University Press).

Borovik, A. 2006. Mathematics under the Microscope. http://eprints.ma.man.ac.uk/844/01/covered/MIMS_ep2007_112.pdf

Brewster, D. 1831. The Life of Sir Isaac Newton (London: John Murray, Albemarle Street).

Bukowski, J. 2008. The College Mathematics Journal, 39 (1), 2.

Burger, E. B., and Starbird, M. 2005. Coincidences, Chaos, and All That Math Jazz: Making Light of Weighty Ideas (New York: W. W. Norton).

Burkert, W. 1972. Lore and Science in Ancient Pythagoreanism (Cambridge, Mass.: Harvard University Press).

Cajori, F. 1926. The American Mathematical Monthly, 33 (8), 397.

–. 1928. In The History of Science Society. Sir Isaac Newton 1727–1927: A Bicentenary Evaluation of His Work (Baltimore: The Williams & Wilkins Company).

Cardano, G. 1545. Artis Magnae, sive de regulis algebraices. Published in 1968 under the h2 The Great Art or the Rules of Algebra, в переводе и под редакцией T. R. Witmer (Cambridge, Mass.: MIT Press).

Caspar, M. 1993. Kepler. Translated by C. D. Hellman (Mineola, N. Y.: Dover Publications).

Chandrasekhar, S. 1995. Newton’s “Principia” for the Common Reader (Oxford: Clarendon Press).

Changeux, J. – P., and Connes, A. 1995. Conversations on Mind, Matter, and Mathematics (Princeton: Princeton University Press).

Cherniss, H. 1945. The Riddle of the Early Academy (Berkeley: University of California Press). Reprinted 1980 (New York: Garland).

–. 1951. Review of Metaphysics, 4, 395.

Chomsky, N. 1957. Syntactic Structures (The Hague: Mouton & Co.).

Cicero. 1st century ВС. Discussion at Tusculam. В кн.: Grant, M. 1971. Cicero: On the Good Life (London: Penguin Classics).

Clark, M. 2002. Paradoxes from A to Z (London: Routledge).

Clarke, D. M. 1992. В кн.: Cottingham, J. (ред.). The Cambridge Companion to Descartes (Cambridge: Cambridge University Press).

Cohen, I. B. 1982. В кн.: Bechler, Z. (ред.) Contemporary Newtonian Research (Dordrecht: Reidel).

–. 2006. The Triumph of Numbers (New York: W. W. Norton & Company).

Cohen, P. J. 1966. Set Theory and the Continuum Hypothesis (New York: W. A. Benjamin).

Cole, J. R. 1992. The Olympian Dreams and Youthful Rebellion of Ren Descartes (Champaign: University of Illinois Press).

Connor, J. A. 2006. Pascal’s Wager: The Man Who Played Dice with God (New York: HarperCollins).

Conway, J. H. 1970. В кн.: Leech, J. (ред.) Computational Problems in Abstract Algebra (Oxford: Pergamon Press).

Coresio, G. 1612. Operetta intorno al galleggiare de’ corpi solidi. Репринт в кн.: Favaro, A. 1968. Le Opere di Galileo Galilei. Edizione Nazionale (Florence: Barbera).

Cottingham, J. 1986. Descartes (Oxford: Blackwell.

Craig, Sir J. 1946. Newton at the Mint (Cambridge: Cambridge University Press).

Curley, E. 1993. In Voss, S., ed. Essays on the Philosophy and Science of Ren Descartes (Oxford: Oxford University Press).

Curzon, G. 2004. Wotton and His Words: Spying, Science and Venetian Intrigues (Philadelphia: Xlibris Corporation).

Davies, P. 2001. How to Build a Time Machine (New York: Allen Lane).

Davis, P. J., and Hersh, R. 1981. The Mathematical Experience (Boston: Birkhaser). Переработанное и дополненное издание – 1998 (Boston: Mariner Books).

Dawkins, R. 2006. The God Delusion (New York: Houghton Mifflin Company).

Dawson, J. 1997. Logical Dilemmas: The Life and Work of Kurt Gdel (Natick, Mass.: A. K. Peters).

Dehaene, S. 1997. The Number Sense (Oxford: Oxford University Press).

Dehaene, S., Izard, V., Pica, P., and Spelke, E. 2006. Science, 311, 381.

DeLong, H. 1970. A Profile of Mathematical Logic (Reading, Mass.: Addison-Wesley). Репринт – 2004 (Mineola, N. Y.: Dover Publications).

Demopoulos, W., and Clark, P. 2005. В кн.: Shapiro, S. (ред.) The Oxford Handbook of Philosophy of Mathematics and Logic (Oxford: Oxford University Press).

De Morgan, A. 1885. Newton: His Friend: and His Niece (London: Elliot Stock).

Dennett, D. C. 2006. Breaking the Spell: Religion as a Natural Phenomenon (New York: Viking).

De Santillana, G. 1955. The Crime of Galileo (Chicago: University of Chicago Press).

Descartes, R. 1637a. Discourse on Method, Optics, Geometry, and Meteorology. Перевод P. J. Olscamp, 1965 (Indianapolis: The Bobbs-Merrill Company).

–. 1637b. The Geometry of Ren Descartes. Translated by D. E. Smith and M. L. Latham, 1954 (Mineola, N. Y.: Dover Publications).

–. 1644. Principles of Philosophy, II:64. In Cottingham, J., Stoothoff, R., and Murdoch, D (ред.). 1985. Philosophical Works of Descartes (Cambridge: Cambridge University Press).

–. 1637–1644. The Philosophy of Descartes: Containing the Method, Meditations, and Other Works. Translated by J. Veitch, 1901 (New York: Tudor Publishing).

Detlefsen, M. 2005. In Shapiro, S., ed. The Oxford Handbook of Philosophy of Mathematics and Logic (Oxford: Oxford University Press).

Deutsch, D. 1997. The Fabric of Reality (New York: Allen Lane).

Devlin, K. 1993. The Joy of Sets: Fundamentals of Contemporary Set Theory, 2nd ed. (New York: Springer-Verlag).

–. 2000. The Math Gene: How Mathematical Thinking Evolved and Why Numbers Are like Gossip (New York: Basic Books).

Dijksterhuis, E. J. 1957. Archimedes (New York: The Humanities Press).

Doxiadis, A. K. 2000. Uncle Petros and Goldbach’s Conjecture (New York: Bloomsbury).

Drake, S. 1978. Galileo at Work: His Scientific Biography (Chicago: University of Chicago Press).

–. 1990. Galileo: Pioneer Scientist (Toronto: University of Toronto Press).

Dummett, M. 1978. Truth and Other Enigmas (Cambridge, Mass.: Harvard University Press).

Dunham, W. 1994. The Mathematical Universe: An Alphabetical Journey through the Great Proofs, Problems and Personalities (New York: John Wiley & Sons).

Dunnington, G. W. 1955. Carl Friedrich Gauss: Titan of Science (New York: Hafner Publishing).

Du Sautoy, M. 2008. Symmetry: A Journey into the Patterns of Nature (New York: Harper Collins).

Einstein, A. 1934. “Geometrie und Erfuhrung.” In Mein Weltbild (Frankfurt am Main: Ullstein Materialien).

Ewald, W. 1996. From Kant to Hilbert: A Source Book in the Foundations of Mathematics (Oxford: Clarendon Press).

Favaro, A. (ред.). 1890–1909. Le Opere di Galileo Galilei, Edizione Nationale (Florence: Barbera). Текст много раз переиздавался, последний раз – в 1964–1966 годах.

Fearnley-Sander, D. 1979. The American Mathematical Monthly, 86 (10), 809.

–. 1982. The American Mathematical Monthly, 89 (3), 161.

Feldberg, R. 1995. Galileo and the Church: Political Inquisition or Critical Dialogue (Cambridge: Cambridge University Press).

Ferris, T. 1997. The Whole Shebang (New York: Simon & Schuster).

Finkel, B. F. 1898. “Biography: Ren Descartes.” American Mathematical Monthly, 5 (8–9), 191.

Fisher, R. A. 1936. Annals of Science, 1, 115.

–. 1956. In Newman, J. R., ed. The World of Mathematics (New York: Simon & Schuster).

Fowler, D. 1999. The Mathematics of Plato’s Academy (Oxford: Clarendon Press).

Franzn, T. 2005. Gdel’s Theorem: An Incomplete Guide to Its Use and Abuse (Wellesley, Mass.: K. Peters).

Frege, G. 1879. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (Halle, Germany: L. Nebert). Перевод S. Bauer-Mengelberg. В кн.: van Heijenoort, J. (ред.). 1967. From Frege to Gdel: A Source Book in Mathematical Logic (Cambridge, Mass.: Harvard University Press).

–. 1884. Der Grundlagen der Arithmetik (Breslau: Koebner). Перевод J. L. Austin, 1974. The Foundations of Arithmetic (Oxford: Basil Blackwell).

–. 1893. Grundgesetze der Arithmetik, bond I (Jena: Verlag Hermann Pohle). Книга была частично переведена в 1964 году и опубликована в Furth, M. (ред.). The Basic Laws of Arithmetic (Berkeley: University of California Press).

–. 1903. Grundgesetze der Arithmetik, bond II (Jena: Verlag Hermann Pohle).

Fritz, K. von. 1945. “The Discovery of Incommensurability by Hipposus of Metapontum.” Annals of Mathematics, 46, 242.

Frova, A., and Marenzana, M. 1998. Thus Spoke Galileo: The Great Scientist’s Ideas and Their Relevance to the Present Day. Перевод J. McManus, 2006 (Oxford: Oxford University Press).

Galilei, G. 1586. The Little Balance. In Galileo and the Scientific Revolution. Перевод L. Fermi и G. Bernardini. (New York: Basic Books). Это перевод Favaro, A. (ред.) 1890–1909. Le Opere di Galileo Galilei (Florence: G. Barbera).

–. Ca. 1600a. On Mechanics. Перевод S. Drake, 1960 (Madison: University of Wisconsin Press).

–. Ca. 1600b. On Motion. Перевод I. E. Drabkin, 1960 (Madison: University of Wisconsin Press).

–. 1610a. Sidereal Nuncius, or The Sidereal Messenger. Перевод A. Van Helden, 1989. (Chicago: University of Chicago Press).

–. 1610b. The Sidereal Messenger [Sidereus Nuncius]. В кн.: Drake, S. 1983. Telescopes, Tides and Tactics (Chicago: University of Chicago Press).

–. 1623. The Assayer [Il Saggiatore]. В кн.: The Controversy on the Comets of 1618. Перевод S. Drake и C. D. O’Malley, 1960 (Philadelphia: University of Pennsylvania Press).

–. 1632. Dialogue Concerning the Two Chief World Systems. Перевод S. Drake, 1967 (Berkeley: University of California Press).

–. 1638. Discourses on the Two New Sciences. Перевод S. Drake, 1974 (Madison: University of Wisconsin Press).

Garber, D. 1992. В кн.: Cottingham, J. (ред.) The Cambridge Companion to Descartes (Cambridge: Cambridge University Press).

Gardner, M. 2003. Are Universes Thicker than Blackberries? (New York: W. W. Norton).

Gaukroger, S. 1992. В кн.: Cottingham, J. (ред.) The Cambridge Companion to Descartes (Cambridge: Cambridge University Press).

–. 2002. Descartes’s System of Natural Philosophy (Cambridge: Cambridge University Press).

Gingerich, O. 1973. “Kepler, Johannes.” In Gillespie, C. C., ed. Dictionary of Scientific Biography, vol. 7 (New York: Scribners).

Girifalco, L. A. 2008. The Universal Force (Oxford: Oxford University Press).

Glaisher, . W. L. 1888. Bicentenary Address, Cambridge Chronicle, April 20, 1888.

Gleick, J. 1987. Chaos: Making a New Science (New York: Viking).

–. 2003. Isaac Newton (New York: Vintage Books).

Glucker, J. 1978. Antiochus and the Late Academy, hypomnemata 56 (Gttingen: Vandenhoeck & Ruprecht).

Gdel, K. 1947. В кн. Benaceroff, P., and Putnam, H. (ред.) 1983. Philosophy of Mathematics: Selected Readings, 2nd ed. (Cambridge: Cambridge University Press).

Godwin, M., and Irvine, A. D. 2003. В кн.: Griffin, N. (ред.) The Cambridge Companion to Bertrand Russell (Cambridge: Cambridge University Press).

Goldstein, R. 2005. Incompleteness: The Proof and Paradox of Kurt Gdel (New York: W. W. Norton).

Gosling, J. C. B. 1973. Plato (London: Routledge & Kegan Paul).

Gott, J. R. 2001. Time Travel in Einstein’s Universe (Boston: Houghton Mifflin).

Grassi, O. 1619. Libra Astronomica ac Philosophica. В кн.: Drake, S., and O’Malley, C. D., пер. 1960.

The Controversy on the Comets of 1618 (Philadelphia: University of Pennsylvania Press).

Graunt, J. 1662. Natural and Political Observations Mentioned in a Following Index, and Made Upon the Bills of Mortality (London: Tho. Roycroft).

Страницы: «« 1234567 »»

Читать бесплатно другие книги:

Эстер Гринвуд получает возможность стажироваться в модном женском журнале в Нью-Йорке. Она уверена: ...
Когда счастье искрится, словно пузырьки в бокале шампанского, и ничто не предвещает беды… Когда каже...
Что нужно для того, чтобы сделать детский сон спокойным, не подхватить простуду от первого сквозняка...
О том, как развиваются дети и как их воспитывать, написаны тысячи книг. Но ничто не сравнится с собс...
«Аня в Стране чудес» – книга совершенно уникальная. Трудно сказать, чей талант – автора или переводч...
Данная книга представляет собой, как автор сам называет «не очень научное исследование», посвященное...