Искра жизни. Электричество в теле человека Эшкрофт Фрэнсис
Пытаясь понять, что происходит, AT&T занялась рыбной ловлей. Были выловлены и исследованы сотни акул. В одном из экстравагантных экспериментов акуле даже попытались скормить кусок кабеля. «Кабель пришелся акуле не слишком по вкусу, когда его пытались запихнуть в пасть», – отрапортовал сотрудник AT&T Барретт в своем отчете.
Волоконно-оптические кабели укладываются вместе с подводными промежуточными станциями, которые усиливают оптические сигналы. Для питания этих усилителей требуется высокое напряжение, которое подается по медной оплетке, окружающей пучок оптических волокон. Было похоже, что акула прокусывала изоляцию и открывала доступ морской воды к медной оплетке. Это приводило к короткому замыканию системы электропитания и прерывало связь.
Дистанционно управляемые аппараты уже проводили съемку того, как акулы перекусывают электрические кабели. В одном сюжете акула даже возвращается, чтобы еще раз укусить кабель, который не удалось перекусить с первого раза. Проблема в случае волоконно-оптических кабелей заключалась в том, что они намного тоньше старомодных медных кабелей (зачастую не толще садового шланга диаметром примерно 2,5 см) и, таким образом, более уязвимы для зубов акулы. Кроме того, акуле вовсе не нужно перерезать кабель, чтобы нанести серьезное повреждение, – достаточен резкий изгиб. В конце концов AT&T решила «проблему челюстей», обернув кабель двумя слоями стальной ленты и заключив его в толстую полиуретановую оболочку. Выяснилось также, что акулы обычно не охотятся на глубине более 2000 метров, поэтому дополнительная защита от нападений акул не требуется на глубоководных участках.
Способность чувствовать электричество
Но зачем акулы нападают на кабель? Вокруг высоковольтного кабеля существует электрическое и магнитное поле. Считается, что акул привлекает электрическое поле кабеля, поскольку они могут реагировать на ничтожные электрические поля, возникающие в результате мышечной активности других организмов, и, таким образом, обнаруживать добычу, даже если она хорошо замаскирована. Отсутствие запахов не мешает акуле отыскивать закопавшуюся в песок камбалу. Она также реагирует на искусственное электрическое поле, величина которого аналогична тому полю, что возникает при дыхательных движениях камбалы, и «нападает». Достаточным оказывается ток силой всего лишь четыре микроампера, поэтому неудивительно, что акулы чувствуют слабые сигналы, исходящие от подводных кабелей.
Классический эксперимент Адриануса Калмейна продемонстрировал, как акулы используют электричество для обнаружения добычи. Акул, пойманных в проливе Ла-Манш и Северном море, поместили в резервуар. (а) Камбала, выпущенная в резервуар, немедленно зарывается в песок, но тут же обнаруживается голодной акулой. (b) Акула находит добычу, даже когда она помещена в агаровую камеру и покрыта песком так, чтобы исключить зрительные, механические или химические способы обнаружения. Так как агар имеет такую же проводимость, что и морская вода, он не препятствует распространению электрических сигналов. (с) Акула перестает находить добычу, если агаровую камеру закрыть тонкой пластиковой пленкой, сопротивление которой достаточно высоко для того, чтобы экранировать электрическое поле камбалы. Это показывает, что акула может чувствовать слабый электрический ток, генерируемый мышцами камбалы при дыхании. (d) Когда камбалу заменяют парой электродов, которые испускают электрический сигнал, подобный ее сигналу, акула атакует электроды и пытается их съесть. (e) Акула больше интересуется электродами, чем лежащим рядом куском рыбы, иными словами, на близком расстоянии электрическое поле является более сильным фактором, чем визуальные или химические сигналы.
Все организмы генерируют ничтожные токи, когда возникают импульсы в нервах или сокращаются мышцы. Неподвижность не спасает – сокращения дыхательных мышц и биение сердца все равно вас выдадут. Когда вы читаете эти слова, мышцы вашего тела создают фон из потрескивающих электрических разрядов. Рыбы, живущие в море, очень хорошо чувствуют эти рассеянные токи. Из-за низкого сопротивления воды (благодаря высокой концентрации растворенных в ней солей) ток распространяется намного дальше: некоторые рыбы способны чувствовать электрические поля напряженностью всего 0,01 мкВ/см (одна десятитысячная часть напряженности, создаваемого батарейкой АА). Неподвижный человек, погруженный в морскую воду по шею, создает электрическое поле напряженностью порядка 0,02 мкВ/см на расстоянии одного метра от тела. Этого более чем достаточно для акулы, чтобы учуять вас.
Электрическое поле могут чувствовать не только акулы, но и многие другие рыбы, включая сомов, скатов, миног, двоякодышащих и кистеперых рыб. Есть основания полагать, что некоторые из них способны даже реагировать на изменение земного электрического поля, предшествующее землетрясению. Возможно, с этим связана японская легенда о том, что землетрясения вызывает гигантский сом, намадзу. Эту рыбу можно встретить в многочисленных прекрасных гравюрах в стиле укиё-э и в более прозаичных современных японских приборах раннего предупреждения о землетрясениях.
«Восприимчивость к электрическому полю» развилась по той причине, что органы чувств, воспринимающие электрические токи, позволяют дифференцировать различные виды рыб. Клетки-электрорецепторы, дающие акулам и скатам возможность исключительно тонко чувствовать электрические поля, расположены в особых органах чувств, известных как ампулы Лоренцини{15}. Они сконцентрированы на голове акулы в области носа и рта. До сих пор непонятно, как этим клеткам удается достичь такой невероятной чувствительности. В отличие от акул, у костистых рыб в электрорецепторы превратились рецепторы боковой линии, которые чувствительны к движению. Когда вы в следующий раз приготовите целую рыбу на обед, повнимательнее посмотрите на ее бока. Вы увидите тонкую линию, которая тянется по центру бока от головы до хвоста. Это и есть «боковая линия». У большинства рыб органы чувств, являющиеся частью боковой линии, реагируют на изменения давления воды. Однако у некоторых видов рыб рецепторы боковой линии превратились в орган, реагирующий на электрическое поле.
Охота в потемках
Некоторые земноводные, например аксолотль и гигантская саламандра, а также примитивные яйцекладущие млекопитающие (однопроходные яйцекладущие) вроде утконоса тоже обладают чувствительностью к электрическому полю. Все они не случайно живут в водной среде, поскольку для восприятия электрического поля необходима проводящая среда.
Утконос – самое необычное млекопитающее, обитающее в ручьях и реках Австралии. Оно покрыто мехом, имеет перепончатые лапы, у него есть шпоры, наполненные ядом, на задних лапах, гибкий кожистый нос по форме напоминающий утиный, и, наконец, оно откладывает яйца. Утконос, помимо прочего, очень тонко чувствует электрические поля, что позволяет ему находить добычу в мутных потоках ночью, хотя при нырянии он и закрывает глаза, уши и ноздри. На коже его носа находится большое количество чувствительных к электричеству клеток, порядка 40 000, вытянутых длинными рядами от основания до кончика носа. Такая электрорецепторная система обладает острой направленностью – во время охоты утконос водит головой из стороны в сторону. Возможно, это помогает ему отыскивать добычу, сравнивая сигналы от электрорецепторов на левой и на правой сторонах клюва, подобно тому, как вы поворачиваете голову из стороны в сторону, чтобы определить, откуда слышен звук. Удивительно то, что утконос может также определять расстояние до добычи. Сделать это ему помогает одновременное использование электрических и механических органов чувств – интервал между поступлением электрических сигналов и изменениями давления в воде, возникающими при движении добычи, позволяет оценивать расстояние.
Западная, или австралийская, ехидна – сухопутное яйцекладущее млекопитающее, имеет похожую, но менее сложную электрочувствительную систему. Это животное напоминает ежа с длинным носом, с помощью которого оно отыскивает во влажной опавшей листве дождевых червей и других беспозвоночных. Электрорецепторы у ехидны сосредоточены на коже, покрывающей кончик носа, они помогают ей отыскивать добычу. Тупорылая ехидна, имеющая намного меньше электрорецепторов, питается муравьями. Считается, что она может пользоваться своим электрочувствительным органом только после дождя, когда кормится особенно активно.
Электрорецепторы однопроходных яйцекладущих совершенно не похожи на электрорецепторы рыб и, по всей видимости, сформировались из слизистых желез. Это не случайно для животных, которые непостоянно живут в воде, поскольку обеспечивает поддержание чувствительных клеток во влажном состоянии и повышает их способность реагировать на электрический сигнал. Электродетекторами служат оголенные нервные окончания – специализированный орган чувств отсутствует. Хотя порог чувствительности отдельного окончания нервного волокна составляет лишь 1–2 мВ/см, утконос может обнаруживать поле, напряженность которого почти стократно меньше. Удивительная чувствительность утконоса, возможно, связана с его способностью интегрировать информацию от многих тысяч рецепторов, что кардинально увеличивает способность реагировать на сигнал.
Гвианский дельфин обитает в прибрежных водах и дельтах рек северо-восточного побережья Южной Америки, где взвешенные породы и отложения могут замутнять воду. Он использует электрорецепторы, расположенные во впадинах «носа», для обнаружения слабых электрических полей небольших рыб. По всей видимости, электросенсорные способности служат дополнительным средством обнаружения добычи в непосредственной близости.
Поиск пути
Электрический разряд, генерируемый угрем, не давал покоя Чарльзу Дарвину, который не мог объяснить, из чего эволюционировал электрический орган, поскольку не было никаких промежуточных органов для защиты или нападения, а существовал лишь полностью сформировавшийся орган. Дарвин не понимал, какое преимущество может давать животному способность генерировать электрический разряд. Однако, как нам сейчас известно, слабый электрический разряд имеет очень большое значение.
Рыбы, генерирующие слабые электрические импульсы, силой всего несколько вольт, были обнаружены в конце XIX и в начале XX в. Они обладают сложной электросенсорной системой, в которой генерирование слабых электрических разрядов сочетается с электрорецепцией. Система служит для обнаружения как хищников, так и добычи и просто бесценна для ориентирования в темноте, где зрение бесполезно. Пассивная электрорецепция, как у акул, подобна слуху – это просто обнаружение электрического поля в окружающей среде. Активная электрорецепция больше походит на радиолокатор – рыба генерирует электрическое поле и обнаруживает объекты по искажениям этого поля.
Решающие эксперименты, показавшие функцию этих слабых электрических разрядов, провели Ганс Лиссманн и Кен Мэчин в 1950-х гг. Лиссманна заинтриговал тот факт, что представитель нотоптеровых гимнарх (Gymnarchus) нередко плавает задом наперед и при этом ни на что не наталкивается, умеет обходить препятствия и способен обнаруживать добычу на некотором расстоянии, несмотря на очень низкую видимость. По одной из историй, возможно, вымышленной, на способность гимнарха реагировать на электрическое поле обратили внимание, когда какая-то студентка стала причесываться около аквариума, и это испугало рыбу. Эта история вполне может быть мифом, но Лиссманн сообщал в своем отчете, что такой эффект наблюдался, когда он причесывался (наверное, возникающий во время причесывания электростатический заряд пугал рыбу). Установив электроды в аквариуме, Лиссманн обнаружил, что рыба генерирует непрерывный поток электрических импульсов и что она очень чутко реагирует на любые изменения создаваемого ею электрического поля. Его записи завершаются нотой отчаяния: «К сожалению, в процессе исследований мой гимнарх погиб, и, как оказалось, ему очень трудно найти замену… Я был бы очень признателен любому, кто сообщит мне, где можно добыть такую рыбу».
По всей видимости, Лиссманну так никто и не ответил, поскольку он вскоре после этого, в 1951 г., сам отправился в Африку, чтобы найти объект исследования. Его целью была река Черная Вольта на севере Ганы. В сезон дождей вода в этой реке становится чрезвычайно мутной из-за высокого содержания взвешенных частиц. В такой воде трудно не только рыбе разглядеть добычу, но исследователю увидеть рыбу. Присутствие рыбы обнаруживали с помощью двух электродов, которые опускали в воду с берега (или с лодки) на длинном шесте и подключали к усилителю, преобразовывавшему электрический сигнал в звуковой. Это позволяло «слышать» электрическую рыбу, и Лиссманн обычно регистрировал характерный ровный шум с частотой около 300 циклов в секунду. В результате он поймал-таки нескольких рыб, три из которых ему удалось доставить в целости и сохранности в Кембридж и продолжить исследования.
Лиссманн и Мэчин вознамерились проверить идею о том, что гимнарх обнаруживает объекты в воде по их искажающему воздействию на электрическое поле, генерируемое самой рыбой. Они использовали пористые керамические горшки с разной электропроводностью: одни из них наполнялись дистиллированной водой и имели низкую электропроводность, другие – концентрированным раствором соли для получения более высокой электропроводности, чем могла ожидать рыба. Как оказалось, гимнарх легко различал горшки с разной электропроводностью.
Электросенсорный аппарат гимнарха состоит из электрического органа, который генерирует слабое электрическое поле, и детекторной системы, реагирующей на искажения этого поля под влиянием объектов в окружающей среде. Фактически рыба создает электрический образ своей среды, подобный зрительному образу, который мы используем для ориентирования в пространстве. Электрические импульсы, испускаемые такими рыбами, относительно слабые – их напряжение составляет менее одного вольта. Они генерируются электрическим органом, который работает аналогично электрическому органу угря, но из-за меньшего числа электрических пластинок получаемое напряжение намного слабее. Электрическое поле, создаваемое электрической рыбой, по форме напоминает рисунок, возникающий вокруг стержневого магнита, когда в его поле помещают стальные опилки. Силовые линии (с одним и тем же потенциалом) идут от головы к хвосту, становясь тем слабее, чем дальше они находятся от рыбы[24]. Ток течет под прямым углом к линиям постоянного потенциала и, таким образом, выходит из рыбы перпендикулярно ее телу и входит в нее в районе хвоста.
Если в это электрическое поле попадает какой-либо объект, он искажает его. Так, если сопротивление объекта больше сопротивления воды (например, в случае камня), электрический ток обтекает его, создавая локальное снижение плотности тока и «электрическую тень» на поверхности рыбы. Если же объект имеет более низкое сопротивление (например, другая рыба), то ток пойдет через него, увеличивая плотность тока и создавая «электрическое светлое пятно» на коже. Чем ближе объект, тем больше пятно. Воспринимая эти изменения силы тока, рыба может определять не только присутствие и размер объекта, но и то, из чего он сделан, т. е. принимать решение, нападать, спасаться или просто не обращать внимания. Конечно, если у объекта будет точно такое же сопротивление, как и у воды, то он станет невидимым для рыбы.
Электрическое поле вокруг гимнарха искажается как объектом с более высокой электропроводностью, чем у воды, например рыбой (слева), так и объектом с более низкой электропроводностью, например камнем (справа). Линиями обозначен поток электрического тока.
Электрорецепторы на коже рыбы следят за ее собственным электрическим полем и искажениями, создаваемыми объектами окружающей среды. У рыб вроде гимнарха их примерно 15 000. Электрорецепторы сосредоточены на голове, однако встречаются и на верхней части спины, где их плотность ниже. Есть и особо чувствительное скопление рецепторов на нижней челюсти. Эти бугристые органы восприятия электрического поля представляют собой небольшую ямочку, дно которой выстлано чувствительными клетками, которые действуют как крошечные вольтметры, реагирующие на падение напряжения между двумя сторонами кожи. Они чрезвычайно чувствительны: когда Мэчин построил электрическую модель в попытке смоделировать чувствительный к электричеству орган рыбы, живая рыба постоянно превосходила ее.
Разговор с помощью искр
Разряды, генерируемые электрическими рыбами, можно разделить на две категории: импульсные и волновые. Электрические рыбы с импульсными разрядами, такие как рыба-слон Gnathonemus, испускают поток коротких импульсов, амплитуда которых составляет несколько милливольт. Электрические рыбы с волновыми разрядами, вроде упомянутого выше гимнарха, генерируют непрерывный электрический ток переменной силы. Его синусоидальные колебания удивительно стабильны – прямо как хороший промышленный генератор колебаний – и имеют частоту порядка 800–1000 герц.
И те, и другие рыбы могут перестраивать частоту сигналов, которая варьирует не только в зависимости от вида и пола, но от рыбы к рыбе. Это открывает возможности для своего рода коммуникации. Характерный электрический образ, создаваемый, например, каждой рыбой-слоном, позволяет различать отдельные особи одного и того же вида – очень важный фактор при поиске пары в темноте и в мутной воде. Частота, с которой рыба испускает сигналы, определяет ее место в социальной иерархии стаи. Чем выше ее положение в иерархии (т. е. чем выше статус рыбы), тем выше частота сигналов. Это, возможно, связано с тем, что более высокая частота разрядов требует более значительных энергетических затрат, а потому доступна только «самым сильным» членам иерархии. Более высокая частота – своеобразный электрический эквивалент яркого хвоста павлина.
Способность отличать собственные электрические сигналы от сигналов других обитателей вод жизненно важна для рыбы. Рыбы с волновыми сигналами добиваются этого, испуская сигналы с постоянной частотой. У каждой особи своя частота, точно так же, как и у радиостанций, вещающих на разных частотах. Вместе с тем, поскольку частотный диапазон ограничен, время от времени встречаются особи с одинаковой частотой. Это может создавать проблемы, поскольку не ясно, какой сигнал кому принадлежит, что очень похоже на две радиопрограммы, передаваемые на одной и той же частоте. По сути рыбы глушат свои сигналы, мешая друг другу ориентироваться. Когда такое происходит, рыбы изменяют свои частоты и, таким образом, сохраняют индивидуальность в коммуникационном диапазоне.
В мире, однако, далеко не всегда царят благоденствие и всеобщее согласие. В сражении подавление сигнала противника может дезориентировать его и дать вам преимущество. Именно такую тактику применяют самцы и самки спинопера глазчатого, когда дело доходит до борьбы с соперником. Обычно при встрече с другой рыбой они изменяют свою частоту во избежание наложения, но во время столкновения с соперником намеренно глушат его сигнал, стараясь добиться господства. В иерархии спиноперов глазчатых более крупные и доминирующие самцы испускают сигнал с более высокой частотой и агрессивно повышают его при встрече с потенциальным соперником. Это может привести к войне частот, где каждая из рыб пытается подавить электрический сигнал другой и дезориентировать ее.
Самец рыбы-слона во время ухаживания тоже использует электрические сигналы, но уже для того, чтобы привлечь самку. Разные виды рыб генерируют импульсы разной амплитуды, разной продолжительности и разной частоты, а самки настраиваются на сигналы самцов своего вида. У некоторых видов существуют сложные электрические ритуалы ухаживания, подобные пению птиц в период ухаживания. Самцы ночных гимнотообразных рыб, например, исполняют в честь своих потенциальных подруг целые электрические серенады, а нерест сопровождается электрической феерией. Этот концерт обходится очень дорого – практически 20 % энергии, потребляемой рыбой, идет на электрическое представление. Такое действо позволяет самым сильным самцам заявить о себе, а самкам выбрать наилучшего партнера. Вместе с тем у подобной стратегии есть и негативная сторона. Электрические сигналы воспринимаются также некоторыми хищниками, так что поголовье самцов быстро уменьшается и мало кто из них доживает до конца брачного периода. Чтобы избежать массового истребления, самцы испускают высокочастотные сигналы только ночью, когда самки более восприимчивы и готовы к нересту, и переходят на низкочастотные песни днем. Стратегии ухаживания у самцов электрических рыб, похоже, не менее сложны, чем у их аналогов из рода человеческого.
Глава 7
Сердечное дело
Крепись мое сердце; бывало и хуже.
Гомер
Ранним летним утром Алекс собиралась в школу. Несмотря на волнение перед предстоящим экзаменом, чрезмерного стресса она не испытывала. Все было хорошо, пока Алекс не отправилась в ванную. Она протянула руку к выключателю и рухнула на пол. Оказавшаяся рядом мать быстро пришла на помощь. Но это был не просто обморок. У Алекс наблюдались серьезные проблемы с сердцем, и матери, несмотря на отчаянные усилия, не удалось привести ее в чувство.
По счастливой случайности Алекс жила недалеко от пожарной части, и дежурный принял экстренный телефонный вызов. Он быстро прибыл на место и делал девочке искусственное дыхание и непрямой массаж сердца до тех пор, пока не приехала скорая помощь. Это обеспечило приток кислорода к мозгу и тканям, несмотря на то, что сердце работало с перебоями, а легкие перестали дышать. По дороге в больницу сердце девочки останавливалось и усилиями медиков вновь запускалось не один раз. Она находилась без сознания 17 часов, но в конце концов все же пришла в себя.
Анализ показал, что у Алекс нарушена электрическая активность сердца, ведущая к приступам с потерей сознания и к необратимой остановке сердца. Этим недугом страдала вся семья Алекс. Ее бабушка умерла во сне, не дожив до 30 лет, отец не раз терял сознание в детском возрасте и умер молодым всего за год до того, как у Алекс случился тот приступ. Все свидетельствовало о том, что у них был такой же генетический дефект, как и у Алекс.
Алекс и ее родственники не одиноки. Подобные трагедии случаются и в других семьях – дети и молодые взрослые люди умирают во сне после физической нагрузки или стресса. Рассказывают даже о детях, которые падали в обморок после выговора, сделанного учителем, или после того, как они побегают по площадке. Можно без преувеличения сказать, что некоторые дети в таком состоянии действительно умирали от страха. К счастью, наше более глубокое понимание электрической активности сердца позволяет теперь диагностировать это заболевание по электрокардиограмме или путем простого генетического теста и успешно лечить.
Биение продолжается
Уже не одно столетие известно, что сердце имеет внутренний ритм и продолжает биться, когда его удаляют из тела живого животного. Одним из первых этот феномен описал великий римский врач Гален. За ним последовали и другие, включая Леонардо да Винчи, который отмечал, что сердце сокращается само по себе. Уильям Гарвей демонстрировал, что даже части разрезанного сердца угря продолжают сокращаться. Возможно, именно из-за этой внутренней активности древние греки считали, что душа человека находится в его сердце. Конечно, у сердцебиения совсем не духовное происхождение, оно возникает в результате электрических явлений, происходящих в клетках сердца.
По сути наше сердце – это насос, управляемый электричеством. Кровь входит через верхние камеры (предсердия), которые сокращаются первыми и проталкивают кровь в значительно более крупные нижние камеры (желудочки). Желудочки сокращаются синхронно примерно через полсекунды – правый желудочек гонит кровь в легкие, а левый заставляет ее циркулировать по всему телу.
Обратные клапаны между верхними и нижними камерами позволяют крови течь только в одном направлении – от предсердия в желудочки. Аналогичные обратные клапаны находятся на выходе из желудочков, отделяя их от крупных сосудов. Если эти клапаны дают течь, что может случиться с возрастом, то кровь перекачивается менее эффективно, организм получает меньше кислорода, и человек чувствует постоянную усталость. Камеры с правой и с левой стороны сердца физически разделены, что предотвращает смешивание богатой кислородом крови, выходящей из легких, с кровью, поступающей из тканей. Поскольку клетки сердца связаны друг с другом, они сокращаются синхронно, и сердце бьется как единый орган.
Электрическая система сердца. Клетки, задающие ритм, находятся в синусном узле на стенке правого предсердия. Черными линиями со стрелками обозначены пучки волокон, образующие проводящие пути, по которым электрические сигналы поступают к нижним камерам (желудочкам). Две стороны сердца физически разделены, но сокращаются одновременно. По легочной артерии кровь поступает из правой стороны сердца в легкие. После насыщения кислородом в легких кровь возвращается в левую сторону сердца откуда поступает в аорту и распространяется по всему организму. Момент, когда сердце сокращается, называют систолой, а момент, когда оно полностью расслабляется, – диастолой.
Каждое сокращение инициируется группой задающих ритм клеток (так называемым синусно-предсердным узлом), которые расположены в верхней правой камере сердца и называются водителем ритма. Эти клетки генерируют электрические импульсы, передаваемые остальным клеткам по специализированным проводящим каналам: сначала к предсердно-желудочковому узлу, находящемуся в месте примыкания правого предсердия и желудочков, а затем к стенкам самих желудочков. Время передачи электрических сигналов таково, что они сначала достигают верхних камер, а потом желудочков. Неодновременность моментов возбуждения необходима для того, чтобы сердце могло выполнять роль насоса. При нарушении последовательности возбуждения сердце перестает биться ровно и теряет способность перекачивать кровь находится под угрозой.
Хотя средняя частота сокращений сердца в спокойном состоянии составляет 70 ударов в минуту (т. е. примерно 100 000 ударов в сутки), она очень широко варьирует от человека к человеку. У спортсменов частота сокращений в состоянии покоя значительно ниже, нередко всего 40 ударов в минуту. Рекордно низкая частота сокращений (28 ударов в минуту) была зарегистрирована у велосипедиста Мигеля Индурайна, который выигрывал гонку Tour de France пять раз кряду. В отличие от спортсменов сердце младенцев бьется намного быстрее, чем у взрослых людей (130–150 ударов в минуту). К тому же частота сокращений сердца меняется в зависимости от размера тела. Так, у более мелких животных (включая младенцев) в состоянии покоя частота сокращений выше: сердце крошечной землеройки бьется с частотой 600 ударов в минуту, а у слона – 25 увесистых ударов в минуту.
Электрокардиограмма
Электрические сигналы, генерируемые клетками сердца, вызывают ничтожные изменения электрического потенциала на поверхности тела, которые можно зарегистрировать с помощью электродов, прикладываемых к коже. Это основа получения электрокардиограммы, которую все знают по аббревиатуре ЭКГ.
Собака Августа Валлера по кличке Джимми была самым популярным персонажем на ежегодном вечере, устраиваемом Королевским научным обществом в Берлингтон-хаусе. Это научное собрание для ученых и широкой публики проводится до сих пор и традиционно сопровождается демонстрацией опытов. Джимми с достоинством стоит двумя лапами (левыми) в электропроводном соляном растворе, который соединен со струнным гальванометром Эйнтховена (большой ящик слева), регистрирующим каждое сокращение сердца. Струна подсвечивается прожектором, а ее тень проецируется на простыню. Струна колеблется в такт сокращениям сердца бульдога. Измерение было совершенно безболезненным, что отмечали многие добровольцы из публики, рискнувшие занять место Джимми. Август Валлер виден у левого края фотографии.
Электрическая активность сердца впервые была зарегистрирована Августом Валлером в 1887 г. Он снял кардиограмму у себя и у своей собаки Джимми. Демонстрация его метода на ежегодном вечере Королевского научного общества в Лондоне в 1909 г. была открытой для публики, а отчет о ней опубликовали в журнале Illustrated London News. Это вызвало шквал протестов в парламенте, а г-н Эллис Гриффит, член парламента от графства Англси, потребовал провести расследование, не было ли здесь нарушения Закона о защите животных 1876 г. По сообщению газеты The Times, министр Гладстон{16} ответил на это так: «Насколько я понимаю, собака стояла некоторое время в воде, куда был добавлен хлорид натрия, другими словами, немного обычной соли. Если моему досточтимому другу когда-нибудь доводилось купаться в море, он должен представлять, что чувствуют при этом. (Смех.) Собака – крепко сложенный бульдог – не привязана, и на ней нет намордника. На нее надет кожаный ошейник, украшенный медными заклепками [г-н Гриффит описал этот атрибут более эмоционально, как “кожаный ремень с острыми шипами… охватывающий шею собаки”]. Будь опыт болезненным, стоявшие рядом с собакой сразу ощутили бы на себе ее зубы. (Смех.) Однако ничто не указывает на это». Он мог бы добавить, что после того, как Джимми прошел испытание, представительницы прекрасного пола, присутствовавшие в зале, выстроились в очередь, желая получить запись своего сердцебиения. Они опускали руки в сосуды с соляным раствором, а «их сердца бились намного ровнее, чем у Джимми». Как видно из этого повествования, обеспокоенность, связанная с проведением опытов над животными, имеет в Англии давнюю историю.
Поначалу записи Валлера были плохого качества и не годились для медицинских целей, и он якобы говорил, что даже не думал о возможности широкого использования электрокардиографии в лечебной практике, ну разве что «в редких случаях для записи уникальных аномалий сердечной деятельности». Однако в результате технического прогресса к 1920-м гг. она уже рутинно применялась для диагностики сердечных заболеваний и остается одним из важнейших клинических методов сегодня.
Проблема была решена с появлением очень чувствительных приборов, способных регистрировать ничтожные электрические токи, возникающие на поверхности тела при сокращениях сердца. Пионером в этой области был Уиллем Эйнтховен, получивший Нобелевскую премию в 1924 г. за изобретение струнного гальванометра[25]. Он содержал тонкое стеклянное волокно, покрытое серебром для обеспечения электропроводности и подвешенное между двумя очень сильными электромагнитами. Когда через волокно («струну» гальванометра) проходил ток, электромагнитное поле заставляло его смещаться. Чем больше был ток, тем сильнее смещалось волокно. Для того чтобы незначительные перемещения стали заметными, волокно освещали ярким пучком света, а отбрасываемую тень регистрировали на движущейся фотографической пластинке. Оставалось лишь соединить электропроводную нить с телом. Для этого к концам нити присоединили провода, которые погрузили в сосуды с раствором соли. Погружение рук и ног в раствор замыкало электрическую цепь между «струной» и кожей. Ток от сердца, проходящий через поверхность тела, теперь влиял на движение нити.
Первая модель струнного гальванометра была огромной. Она весила несколько тонн, для управления ею требовались пять человек, а электромагниты нужно было постоянно охлаждать водой. Стеклянное волокно необходимо было сделать очень легким и тонким. Его получали из расплавленного в тигле кварцевого стекла. Тонкую нить из расплава вытягивали самым необычным способом, который больше походил на выдумку бойскаута, а не на плод размышлений серьезного экспериментатора. Расплавленное стекло прикрепляли к стреле, которую выпускали из одного конца комнаты в другой. Стрела тащила за собой расплав и вытягивала стекло в очень тонкую «струну». Волокно затем покрывали серебром, чтобы сделать его электропроводным. Такой метод сегодня, без сомнения, был бы запрещен по соображениям безопасности, к счастью, в наше время есть другие методы записи ничтожно малых токов.
На первых фотографиях видно, как Эйнтховен сидит, погрузив обе руки и левую ногу (с аккуратно завернутой штаниной) в сосуды с электропроводным соляным раствором, от которых тянутся провода к измерительному прибору. В наши дни для улучшения контакта между электродами и кожей обеих рук и левой ноги используют электропроводный гель. Измерительная аппаратура сильно уменьшилась в размерах. Первый прибор Эйнтховена занимал две комнаты, а сейчас существуют портативные мониторы для круглосуточного контроля сердечной деятельности, которые не мешают пациенту заниматься своими повседневными делами.
ЭКГ отражает суммарный электрический сигнал клеток сердца и является очень хорошим неинвазивным методом контроля их функционирования. Каждый электрокардиографический комплекс состоит из начального импульса, называемого «зубцом P», за которым следует значительно более крупный и острый биполярный пик, известный как «комплекс QRS», а затем, две-три сотни миллисекунд спустя, более низкий и медленный «зубец T». Зубец P отражает электрическую активность клеток предсердий, а комплекс QRS и зубец T – начало и конец электрического импульса (потенциала действия) в клетках желудочков. Поскольку эти электрические сигналы вызывают сокращения мышц, зубец P также соответствует сокращению предсердий, а интервал между комплексом QRS и зубцом T указывает на продолжительность сокращения желудочков. Задержка между зубцами P и Q соответствует времени, в течение которого электрический сигнал проходит от предсердий до желудочков, а интервал между зубцами Q и T отражает продолжительность желудочкового потенциала действия. Почему Эйнтховен выбрал для обозначения зубцов ЭКГ средние буквы алфавита, остается загадкой.
Взаимосвязь между потенциалом действия желудочков (потенциал действия, верхняя кривая), электрокардиограммой (ЭКГ, средняя кривая) и сокращением сердца (нижняя кривая). «A» обозначает продолжительность сокращения предсердия, а «V» – продолжительность сокращения желудочков. Интервал QT отражает длительность потенциала действия желудочков.
ЭКГ особенно полезна для обнаружения нерегулярности электрической активности сердца и для диагностики ее причин. Изменение амплитуды и времени появления различных элементов ЭКГ может свидетельствовать о клинических проблемах. Более длинный, чем нормальный, интервал PR, например, сигнализирует о нарушении проводимости между верхними и нижними камерами сердца, называемом блокадой сердца. Перевернутый зубец T появляется после сердечного приступа, а увеличение интервала QT свидетельствует о повышенном риске внезапной необратимой остановке сердца.
Сердечные недуги
Хотя только клетки синусного узла правового предсердия действуют как водители ритма, спонтанно генерировать электрическую активность способны все клетки сердца. Это великое счастье, поскольку позволяет сердцу не останавливаться даже тогда, когда клетки синусно-предсердного узла перестают функционировать: их заменяют другие клетки, которые задают более медленный ритм. К последним относятся клетки расположенного между предсердием и желудочками предсердно-желудочкового узла, которые сокращаются 40–60 раз в минуту, и клетки, образующие проводящие пути в стенках желудочков (которые сокращаются 30–40 раз в минуту). Даже клетки желудочков сокращаются спонтанно. Причина, по которой именно клетки синусного узла обычно задают ритм, проста – их внутренняя частота сокращений самая высокая.
Если сердце бьется слишком медленно (это состояние называют брадикардией), то оно не может подавать кровь к тканям достаточно быстро, и человек чувствует усталость, слабость, головокружение и затруднение дыхания. Ходьба пешком и подъем по лестнице превращаются в испытание. Тахикардия, т. е. слишком быстрое биение сердца, тоже является проблемой. При частоте биения более 100 ударов в минуту у сердца недостаточно времени, чтобы полностью наполниться между сокращениями, и количество перекачиваемой крови сокращается. Как следствие, ткани опять страдают от недостатка кислорода, и человек ощущает постоянную усталость.
Временные нарушения ритма сердцебиения – довольно обычное явление, и многие из нас чувствуют пропуски сокращения. В действительности пропусков сокращений не бывает, просто мы чувствуем это как пропуск. На самом деле сокращение наступает рано, и мы не воспринимаем его как сокращение, поскольку сердце наполняется только наполовину. Затем следует необычно долгая пауза перед следующим сокращением, которое более заметно из-за того, что сердце переполняется. Такие «пропуски сокращений» очень распространенное явление, однако, несмотря на вызываемое ими беспокойство, они не имеют значения. Хотя по большей части пропуски сокращений возникают спонтанно, они также могут провоцироваться стрессом или препаратами вроде кофеина.
Самой распространенной патологией сердцебиения является мерцательная аритмия (AF), которой страдают 5 % людей старше 65 лет. Когда она возникает, верхние камеры сердца начинают сокращаться с перебоями и несинхронно. Это случается в результате нарушения электрической активности клеток синусно-предсердного узла или нарушений распространения электрического возбуждения в предсердиях при повреждении тканей. Если предсердия сокращаются несинхронно, то их способность нагнетать кровь в желудочки снижается, объемная скорость кровотока сердца падает, а пациент чувствует дурноту. Помимо прочего, при этом пульс становится неустойчивым. Мерцательная аритмия может вызвать появление тромбов, которые повышают риск инсульта. Тромб способен закупорить кровеносный сосуд мозга и перекрыть доступ крови к нижележащим тканям, которые отмирают (именно поэтому результатом инсульта нередко является потеря речи или частичный паралич). Иногда нормальный сердечный ритм удается восстановить с помощью лекарств или мягкого электрошока (процедура, известная как электроимпульсная терапия), однако, если мерцательная аритмия не проходит, может потребоваться электрокардиостимулятор.
Один из новых методов лечения мерцательной аритмии заключается в удалении небольшого участка ткани предсердия, который блокирует электрическую активность и тем самым вызывает проблему. Обычно это дает очень хороший эффект, и сердечная аритмия повторяется намного реже, чем при медикаментозном лечении. Операция может выполняться с помощью катетера, который вводится в вену и подводится через кровеносные сосуды к нужному месту сердца. Затем через катетер подают энергию, например высокочастотный импульс, для избирательного разрушения целевых клеток.
Более тяжелым случаем является блокада сердца, когда повреждение проводящих путей не позволяет электрическому сигналу проходить от предсердий к желудочкам (обратите внимание на то, что это не блокирование сосудов сердца). При полной блокаде сердца предсердный сигнал совершенно не проходит. Как следствие, желудочки начинают сокращаться по собственному ритму, и частота биения сердца может упасть вплоть до 30 ударов в минуту. Больной при этом с большим трудом переносит физические нагрузки. В таких случаях без электрокардиостимулятора не обойтись.
К самому серьезному нарушению сердечного ритма следует отнести вентрикулярную фибрилляцию (VF), которая приводит к смерти, если ее не устранить. В этом состоянии наблюдается электрический хаос из-за того, что множество областей в нижних камерах сердца борются за контроль ритма. В результате желудочки сокращаются настолько несинхронно, что сердце непрерывно вздрагивает, но сократиться полноценно не может. Как заметил выдающийся анатом XVI в. Везалий, оно похоже на извивающийся мешок с червями. Когда такое происходит, более-менее значительный кровоток сердца становится невозможным, и сердце довольно быстро останавливается из-за отсутствия кислорода, а больной умирает в течение нескольких минут. Но еще до остановки сердца кислородное голодание приводит к необратимому повреждению мозга. В такой ситуации единственным спасением является немедленное восстановление нормального ритма. Для этого нужно остановить сердце с помощью электрического разряда дефибриллятора и надеяться, что оно вернется к нормальному ритму после самопроизвольного запуска – процесс немного смахивает на нажатие кнопки перезагрузки компьютера.
Сердечные приступы возникают в результате прекращения подачи крови к сердцу, и причиной этого обычно является блокирование одной из коронарных артерий. По мере того как ткани, находящиеся за местом блокирования, лишаются кислорода, они начинают отмирать. Это может спровоцировать вентрикулярную фибрилляцию, поскольку повреждение тканей нарушает синхронное распространение электрических сигналов по сердцу. Различные группы сердечных клеток после этого начинают действовать самостоятельно и сокращаться в разное время. Как и в любом сообществе, сотрудничество между различными частями жизненно важно для эффективной работы сердца.
Восстановление ритма
Если сердце бьется неровно, для корректировки ритма нередко используют электрокардиостимулятор. Первоначально электрокардиостимуляторы представляли собой большие и громоздкие устройства размером примерно со стиральную машину и питались от электросети. Как следствие, свобода перемещения больного сильно ограничивалась. У таких приборов был и еще один серьезный недостаток – они прекращали работу при отключении электричества. В 1950-х гг. доктор Уолтон Лиллехай из Миннесотского университета начал проводить операции на открытом сердце у «синюшных детей». У таких детей был врожденный порок сердца – отверстие между левым и правым желудочками, в результате чего часть крови проходила мимо легких, и поступление кислорода в организм сильно сокращалось. После хирургического устранения отверстия у некоторых детей наблюдалась кратковременная блокада сердца. Повреждение тканей приводило к тому, что электрические сигналы от синусно-предсердного узла не доходили до желудочков, и сердцебиение нарушалось. В этих случаях Лиллехай применял электрокардиостимулятор и не отключал его до тех пор, пока сердце ребенка не восстанавливалось, т. е. в течение одной-двух недель.
Серьезное обесточивание Миннеаполиса в октябре 1957 г. привело к гибели одного из «синюшных детей». Разъяренный Лиллехай связался с Medtronic – компанией, выпускавшей электрокардиостимуляторы, и потребовал от нее что-нибудь работающее от батареек. К его немалому удивлению, меньше чем через месяц инженер компании Эрл Баккен приехал с электрокардиостимулятором, который и впрямь работал от батареек. По размерам он был не больше бутерброда. Миниатюризацию позволили осуществить схемы на полупроводниковых транзисторах.
В своей автобиографической книге «Полноценная жизнь одного человека» (One Man’s Full Life) Баккен написал: «В углу гаража я откопал старый номер журнала Popular Electronics, где была напечатана схема электронного метронома на транзисторах. Схема генерировала импульсы, которые воспроизводились как щелчки через громкоговоритель. Частоту щелчков можно было подстраивать под музыку. Я просто модифицировал эту схему и поместил ее, без громкоговорителя, в металлическую коробку размером 10 на 10 сантиметров и толщиной около четырех сантиметров, выведя наружу клеммы и переключатели. И это, как они сказали, было именно то, что надо». Баккен предполагал, что его прототип будет использоваться как экспериментальное устройство для тестирования на животных, и был поражен, увидев на следующий день свой прибор на пациенте. Лиллехай спокойно сообщил ему, что раз прибор работает, то время терять ни к чему, надо спасать жизни больных. Портативный электрокардиостимулятор оказался настолько удачным, что очень скоро его стали применять по всему миру, а Medtronic превратилась в крупнейшего поставщика.
Всего лишь год спустя 43-летнему больному из Швеции по имени Арне Ларссон поставили первый имплантируемый электрокардиостимулятор. Арне страдал от полной блокады сердца, и его смерть казалась неизбежной. Жена Арне, однако, смотрела на перспективу иначе. Она слышала об экспериментах, проводимых на собаках в Каролинской больнице в Стокгольме, и решила, что технология может спасти ее мужа. Ей удалось найти аргументы и убедить хирурга Оке Сеннинга и инженера Руне Элмквиста взяться за дело. Руне собрал электрокардиостимулятор у себя на кухне. Он отказал через три часа после имплантации, поэтому Арне получил новый прибор, который протянул уже несколько недель. Неудачи не смутили Арне, и в конечном итоге он получил 26 различных электрокардиостимуляторов. Электрокардиостимулятор позволил ему вести практически нормальный образ жизни, и Арне стал одновременно и пациентом-консультантом, и пропагандистом электрокардиостимуляторов по всему миру. Он умер через 43 года после имплантации первого электрокардиостимулятора, когда ему стукнуло 86. Готовность рискнуть и выступить в качестве подопытного кролика продлила ему жизнь в два раза[26].
Идея электрокардиостимулятора очень проста. Прибор подает слабые электрические сигналы, заменяющие собственные сигналы сердца. Чтобы это стало возможным, в правый желудочек сердца внедряют электрод. Обычно его вводят через одну из больших вен, но в некоторых случаях вскрывают грудную клетку, и электрод размещают непосредственно на поверхности сердца. Электрод затем подключают к электрокардиостимулятору, который генерирует слабые электрические разряды, задающие сердцу правильный ритм. Электрокардиостимулятор снабжают батареей и иногда электронной схемой, которая может регистрировать собственный ритм сердца больного и корректировать его по мере необходимости. Когда становится ясно, что устройство работает, его имплантируют в грудную клетку (обычно спереди, в районе плечевого сустава) между мышцей и подкожно-жировой клетчаткой. Первый электрокардиостимулятор, который получил Арне, был размером с хоккейную шайбу, а в наши дни они уменьшились до габаритов десятипенсовой монеты. Электрокардиостимуляторы необходимо заменять раз в пять-десять лет – в зависимости от срока службы батареи. Поскольку электромагнитное излучение может нарушить работу электрокардиостимулятора, больным, которые зависят от этого прибора, следует избегать сильных магнитных полей, сотовых телефонов и электронного оборудования, генерирующего ненаправленное электрическое поле.
Спасатели Пэкера
Всем, наверное, знакома типичная картина отделения экстренной помощи, где над пациентом колдует команда медиков, делающих все для спасения его жизни. Неожиданно регулярный звуковой сигнал кардиомонитора пропадает, нормальная кривая ЭКГ пропадает, появляется горизонтальная линия и кто-то выкрикивает: «Остановка сердца!» За этим следуют быстрые и решительные действия. В считаные секунды на грудь пациента накладывают большие плоские электроды, звучит команда «Отойти от больного!», и дают электрический разряд. Грудь пациента резко дергается, ритм сердца восстанавливается, и кардиомонитор вновь начинает подавать регулярные звуковые сигналы.
Но это драматическое действо далеко от реальности. Пациент обычно не дергается в ответ на электрический разряд. Подпрыгивание – это не более чем художественная вольность. Более серьезное отличие заключается в том, что в реальной жизни электрический разряд не используют для запуска остановившегося сердца. Эффектное возвращение к жизни – обычное дело в современной медицине, но только не в случае остановки сердца, а в случае его фибрилляции, когда желудочки сокращаются настолько несинхронно, что сердце превращается в судорожно подергивающийся комок плоти, неспособный перекачивать кровь. И электрический ток используется вовсе не для запуска сердца, а для его остановки. Как уже говорилось, это делается в надежде, что после самопроизвольного запуска сердца клетки природного водителя ритма в синусном узле возобновят свою работу и нормальный ритм восстановится.
Не исключено, что это широко распространенное заблуждение возникло в результате использования термина «остановка сердца». Он, однако, вовсе не подразумевает, как можно предположить, что сердце перестало сокращаться и находится в неподвижном состоянии. Это лишь указание на то, что прекратилась циркуляция крови. Хотя индивидуальные клетки сердца продолжают сокращаться, они делают это несинхронно, так что сердце перестает выполнять роль насоса. Из-за отсутствия кислорода в течение нескольких минут погибает мозг, и в конечном итоге по той же причине перестает биться и само сердце. Если остановка сердца произошла не в больнице, то больному необходимы искусственное дыхание и непрямой массаж сердца, чтобы поддерживать жизнеспособность до тех пор, пока не будет доставлен дефибриллятор. Искусственное дыхание и сжатие сердца выполняются путем нажатия на грудную клетку основаниями ладоней, кровь при этом выталкивается из сердца и циркулирует по телу. Здесь принципиально важна частота нажатий – если она будет слишком высокой, то сердце не будет успевать наполниться кровью, если слишком низкой, то ткани будут страдать от кислородного голодания. Правильная частота – 100 нажатий в минуту. Как ни удивительно, но хит британской музыкальной группы Bee Gees под названием «Остаться в живых» имеет практически правильный ритм и используется как помощь в обучении врачей. Хотя хит группы Queen «Еще один повержен в прах» тоже имеет практически идеальный ритм, он подходит для обучения не так хорошо.
Дефибрилляторы не входили в состав обязательного оснащения автомобилей скорой помощи в Австралии до 1990 г. Ситуация изменилась, когда у Керри Пэкера, известного своим скандальным и эпатажным характером миллиардера, случилась остановка сердца во время игры в поло. Совершенно случайно в скорой помощи, дежурившей у поля, оказался портативный дефибриллятор. Несмотря на клиническую смерть, продолжавшуюся несколько минут, Пэкер выжил. Говорят, что о своих впечатлениях после пребывания в состоянии клинической смерти он высказался так: «Дьявола я там не увидел. Но я не нашел там и рая». После своего спасения Пэкер пожертвовал крупную сумму (2,5 млн австралийских долларов) на оборудование половины автомобилей скорой помощи в штате Новый Южный Уэльс портативными дефибрилляторами с условием, что правительство оплатит оборудование второй половины автомобилей. С той поры в австралийском обиходе эти приборы называют «спасателями Пэкера». Многие австралийцы обязаны жизнью его щедрому дару.
В последние годы применение дефибрилляторов расширилось, и появились такие модели, которыми могут пользоваться и те, у кого нет медицинской подготовки. В Великобритании их можно найти на железнодорожных станциях, в самолетах и других общедоступных местах. Хотя наиболее широко известны дефибрилляторы внешнего действия, электроды которых помещают на грудную клетку человека, существуют и небольшие имплантируемые устройства для тех, у кого высок риск возникновения фибрилляции. Они непрерывно контролируют ритм сердца и при необходимости производят удар электрическим током для его восстановления. Люди с имплантированными дефибрилляторами могут вести нормальный образ жизни, зная, что у них есть «встроенный спасатель». Эти приборы, похоже, дают довольно сильный разряд – говорят, что человек чувствует, будто его ударили в грудь.
В ад и обратно
В ноябре 2003 г. рок-певец Мит Лоуф, получивший наибольшую известность как исполнитель одной из ролей в фильме «Шоу ужасов Рокки Хоррора» и хита «Летучая мышь из ада», рухнул на сцену во время концерта в Уэмбли прямо на глазах публики. Его быстро доставили в больницу, где у него обнаружили редкую болезнь сердца, известную как синдром Вольфа – Паркинсона – Уайта. Позднее он рассказал, что «помнит, как пел песню “Все закрутилось” и шел туда, где стояли девушки, но вдруг стал падать». Лоуф решил, что у него случился сердечный приступ.
Синдром Вольфа – Паркинсона – Уайта – это врожденная патология, которой страдает 1–3 % населения. Обычно она создает проблемы только в тех случаях, когда сердце бьется очень часто, что случается при тяжелой физической нагрузке. Неожиданная смерть спортсменов в очень хорошей физической форме от остановки сердца, как, например, это произошло с хоккеистом Брюсом Мелансоном, нередко наступает именно из-за синдрома Вольфа – Паркинсона – Уайта. Другим страдающим этой патологией повезло больше. Ламаркус Олдридж, американский баскетболист, выступавший за Portland Trailblazers, был снят с игры против Los Angeles Clippers после жалоб на головокружение, одышку и нерегулярное сердцебиение. Позднее у него обнаружили синдром Вольфа – Паркинсона – Уайта. Приступ и у него, и у Мита Лоуфа был успешно снят.
В нормально функционирующем сердце электрические сигналы, генерируемые в предсердии, поступают в желудочки по специальному проводящему тракту, называемому предсердно-желудочковым узлом. У людей с синдромом Вольфа – Паркинсона – Уайта между предсердиями и желудочками расположен дополнительный мостик из ткани, который образует альтернативный канал для передачи электрических сигналов. Момент подачи электрического сигнала к желудочкам критически важен для правильного сердцебиения, и предсердно-желудочковый узел действует как диспетчер между предсердиями и желудочками, модулирующий распространение электрического импульса. Если предсердия сокращаются слишком часто, предсердно-желудочковый узел пропускает не все сигналы и не позволяет желудочкам сокращаться слишком часто. Дополнительный проводящий тракт, существующий у людей с синдромом Вольфа – Паркинсона – Уайта, не обладает свойствами предсердно-желудочкового узла и может таким образом спровоцировать высокий сердечный ритм. Кроме того, электрический сигнал между предсердиями и желудочками может закольцовываться, поступая через предсердно-желудочковый узел и возвращаясь через дополнительный проводящий тракт. Это приводит к очень высокой частоте сокращений желудочков, фибрилляции и внезапной смерти.
К счастью, синдром Вольфа – Паркинсона – Уайта в настоящее время успешно лечится путем очень простой и эффективной операции – в сердце вводят катетер, находят причиняющий неприятности паталогический мостик и разрушают его с помощью радиочастотных импульсов.
Электрическое сердце
При стимулировании сердечной клетки она испускает электрический импульс, или потенциал действия. Он быстро распространяется по поверхности клетки, а потом по сети тонких трубочек, глубоко проникающих в мышечное волокно. Изменение мембранного потенциала в положительную сторону заставляет открываться кальциевые каналы во внешней мембране и T-трубочках, обеспечивая приток ионов кальция из внеклеточного раствора. Они, в свою очередь, выполняют роль внутриклеточных мессенджеров, вызывающих выброс значительно большего количества ионов кальция из внутриклеточных хранилищ. В результате взаимодействия ионов кальция с сократительными белками мышечные клетки укорачиваются. Фактически электрический импульс обеспечивает одновременное повышение концентрации кальция по всей клетке и, таким образом, плавное и синхронное сокращения каждого мышечного волокна сердца.
Как и в случае нервных клеток, за генерирование электрических импульсов в клетках сердца отвечают ионные каналы. Однако в клетках сердца в формировании потенциала действия участвует намного больше типов каналов. Все начинается с открытия натриевых каналов. Они подобны, но не идентичны тем, что находятся в нервных клетках. Именно поэтому смертельные яды, например яд иглобрюха, в нервах блокируют электрические импульсы, а в сердце нет. Дефекты гена сердечных натриевых каналов (SCN5A) могут приводить к появлению натриевых каналов, которые не функционируют должным образом. В результате возникает редкая наследственная патология, так называемый синдром Бругада, при которой внезапное прекращение электрической активности сердца может приводить к смерти.
Синдром Бругада распространен по большей части в азиатском сообществе. На него приходится около 12 % случаев необъяснимой смерти, и он, если не считать несчастных случаев, является основной причиной смерти мужчин в возрасте до 40 лет в некоторых регионах мира. Так, он настолько обычен на Филиппинах, что даже имеет специальное название «бангунгут», означающее «вскакивание и стоны во сне». Повышенная частота неожиданных смертей во сне отмечается также в Японии и в Таиланде (где это явление называют «лаи таи», т. е. «смерть во сне»). Любопытно, что болезнь поражает мужчин намного чаще, чем женщин. Возможно, именно поэтому в Таиланде верят в то, что болезнь можно отвратить, если спать в женской одежде. Согласно местному поверью, молодые мужчины умирают потому, что их уносит дух вдовы, который можно обмануть, нарядившись женщиной. Поскольку дух охотится не за женщинами, эта хитрость должна защищать от смерти.
К открытию генетической причины синдрома Бругада привела встреча двух ученых, по воле случая оказавшихся рядом в автобусе, который вез в аэропорт участников завершившейся конференции по проблемам сердца. Когда Чарльз Анцелевич высказал удивление по поводу отсутствия страдающих этим видом нарушения сердечного ритма, его сосед сообщил ему, что на самом деле братья Бругада недавно описали именно такую редкую патологию. Результатом этой плодотворной встречи стало открытие того, что причиной синдрома Бругада является мутация с потерей функции в гене сердечных натриевых каналов. Сейчас нам известны уже полсотни мутаций, вызывающих это заболевание. Широким распространением этих мутаций среди населения Южной Азии и объясняется повышенная частота заболевания синдромом Бругада.
Открытие пор в натриевых каналах почти сразу сопровождается открытием кальциевых каналов, которые впускают в клетку ионы кальция, инициирующие выброс кальция из внутриклеточных депо и сокращение. Необходимость ионов кальция для сокращения сердца была открыта по счастливому стечению обстоятельств в начале 1880-х гг. Сиднеем Рингером. Рингер занимался поиском способа поддержания нормального ритма сокращений сердца лягушки. Для этого он добавлял определенные количества неорганических солей в дистиллированную воду, в которой совершенно не было ионов. По крайней мере он так думал. В реальности сам Рингер активно занимался медицинской практикой и был очень занятым человеком, поэтому растворы готовил его лаборант, который не всегда в точности соблюдал инструкции. В своей первой работе Рингер утверждал, что только ионы натрия и калия необходимы для сокращения сердца. Однако позднее он написал: «После публикации [первой работы]… выяснилось, что соляной раствор, который я использовал, был приготовлен не на дистиллированной воде, а на водопроводной воде, подаваемой New River Water Company. Поскольку эта вода содержала следы различных неорганических веществ, я сразу же провел испытание раствора, приготовленного на дистиллированной воде, и обнаружил, что он не дает эффекта, описанного в упомянутой работе. Похоже, что полученные ранее эффекты объясняются наличием каких-то неорганических примесей в водопроводной воде». Оказалось, что этой примесью был кальций, или «известь», как называл его Рингер. Хотелось бы знать, как он поступил со своим лаборантом, похвалил его или наказал (а может, сделал и то и другое)?
Кальциевые каналы важны не только потому, что они впускают ионы кальция, инициирующие выброс запасенного кальция. Эти каналы, помимо прочего, закрываются (инактивируются) медленно при положительных мембранных потенциалах, увеличивая продолжительность сердечного потенциала действия и, таким образом, давая сердцу больше времени на сокращение. Потенциал действия клетки желудочка длится примерно полсекунды, т. е. он в 500 раз продолжительнее, чем потенциал действия нервной клетки.
К окончанию сердечного потенциала действия приводит открытие калиевых каналов, и следующее за этим истечение ионов калия возвращает градиент потенциала на мембране к значению, характерному для состояния покоя. Как следствие, кальциевые каналы закрываются, приток кальция прекращается, и сердце расслабляется. В отличие от калиевых каналов нервных клеток многие калиевые каналы сердца открываются медленно, что способствует еще большему увеличению продолжительности потенциала действия в сердце. Кроме того, в сердце есть калиевые каналы нескольких типов. Одними из наиболее важных являются каналы HERG-типа. Это странное название каналов связано с названием аналогичного ионного канала плодовой мушки дрозофилы. Генетики очень любят это крошечное насекомое за его очень короткий жизненный цикл, плодовитость и возможность легко отделять мутантов. Поскольку мушки очень подвижны и не стоят на месте, их обычно усыпляют эфиром. В 1960-х гг., когда танцы в стиле гоу-гоу были на пике популярности, нашли мутантную мушку, которая дергала лапками и крутилась под наркозом. В результате ее окрестили «эфирной танцовщицей гоу-гоу» – ether--go-go, или для краткости EAG. Вскоре после этого был найден соответствующий канал в сердце, который назвали уже более прозаично – ether--go-go-related, или ERG. Так вот человеческий (human) канал и получил свое название HERG.
Напуганные до смерти
Неожиданный приступ Алекс, случившийся однажды утром, был связан с нарушением сердечного ритма в результате редкой мутации калиевого HERG-канала, которая делала его неработоспособным. Поскольку эти каналы необходимы для окончания сердечного потенциала действия, их потеря приводит к увеличению продолжительности потенциала действия и к увеличению интервала QT на электрокардиограмме. По очевидным причинам это заболевание называют синдромом удлиненного интервала QT, или синдромом LQT. Интервал QT иногда увеличивается очень незначительно, на 2–5 %, однако этого достаточно, чтобы спровоцировать нарушение сердечного ритма, известного как «желудочковая тахикардия типа “пируэт”». Название «пируэт» позаимствовано из балета и относится к искажению формы ЭКГ. Когда такое происходит, сердце теряет способность эффективно перекачивать кровь, в результате быстро наступает кислородное голодание мозга, и человек теряет сознание. Это объясняет, почему больные с синдромом LQT склонны к неожиданным помутнениям сознания. В некоторых случаях аномальная электрическая активность выливается в вентрикулярную фибрилляцию, которая может быть фатальной.
Симптомы синдрома LQT обычно начинают проявляться в подростковом возрасте. Они нередко провоцируются стрессом, например физической нагрузкой, испугом и волнением. Приступы случаются, когда люди бегут за автобусом, ныряют в бассейн, играют в бейсбол или участвуют в телевикторине. Они, как правило, совершенно неожиданны. Большинство больных никогда не жалуются на дурноту или головокружение, они просто теряют сознание. Примерно в третьей части случаев со смертельным исходом люди выглядят совершенно здоровыми и полными сил, а некоторые умирают во сне или при резком пробуждении по звонку будильника. Случаи внезапной сердечной смерти были известны еще Гиппократу, который отмечал, что «те, кто страдает от частых и глубоких обмороков без видимых причин, умирают неожиданно».
Некоторые мутации особенно серьезны, поскольку помимо проблем с сердцем приводят к глухоте: это связано с тем, что такие же ионные каналы находятся в ухе и от них зависит наша способность слышать. Одно из первых описаний приступа со смертельным исходом у человека с этим синдромом дал Мейсснер в 1856 г. Он подробно описал, как глухонемая девочка, посещавшая Лейпцигский институт, потеряла сознание и умерла после публичного обвинения в мелкой краже. Ее смерть произвела сильное впечатление на других детей, которые увидели в этом божественное наказание за плохое поведение. Когда о случившемся сообщили родителям, они не удивились. Как оказалось, в их семье и раньше случались подобные трагические события – один ребенок упал замертво после неожиданного потрясения, а другой скончался после приступа истерики.
Уход из жизни ребенка всегда разрывает сердце, но особено тяжела неожиданная смерть внешне здорового младенца во сне. Такие ситуации отягощаются подозрениями в насильственном умерщвлении и не так уж редко приводят к привлечению родителей к ответственности и обвинению в убийстве. Однако даже и без этого незнание причины смерти собственного ребенка может стать проклятием всей жизни. Сравнительно недавно выяснилось, что в некоторых случаях причиной смерти младенцев являются мутации ионных каналов, обусловливающие предрасположенность к синдрому LQT, т. е. к неожиданной сердечной смерти. Однако какая доля неожиданных смертей младенцев связана с нарушением сердечного ритма, спровоцированным дефектными ионными каналами, остается тайной. Вместе с тем посмертное тестирование для выявления мутаций ионных каналов желательно не только с точки зрения определения причины смерти, но и потому, что другие члены семьи могут быть бессимптомными носителями той же мутации и, следовательно, находиться под риском.
К счастью, в настоящее время синдром LQT поддается лечению, которое позволяет больным вести сравнительно нормальный образ жизни. Лекарства, известные как бета-блокаторы, предотвращают влияние стресса на сердце и, как правило, обладают высокой эффективностью. Многим больным также имплантируют дефибрилляторы, которые реагируют на нарушение сердечного ритма и генерируют электрический разряд, восстанавливающий нормальное сердцебиение.
История терфенадина
Известно, что синдром LQT вызывают мутации во множестве разных генов, в том числе в генах как минимум шести видов ионных каналов (в большинстве своем калиевых). Однако синдром LQT не всегда имеет генетическое происхождение. Его могут также вызывать лекарства, которые блокируют ионные каналы сердца. Терфенадин является очень эффективным антиаллергическим средством, которое в Великобритании одно время отпускалось без рецепта. В 1985 г. было получено разрешение на его продажу в США, где оно получило название селдан. Лекарство быстро стало популярным, и к 1991 г. оно стояло на девятом месте по частоте назначения в Соединенных Штатах. Вместе с тем к этому времени стало известно о ряде случаев возникновения проблем с сердцем у людей, принимавших терфенадин в прописанной им дозировке, в том числе и об увеличении интервала QT с внезапной смертью. В большинстве случаев проблемы возникали у тех, кто принимал также определенные антибиотики, имел нарушения функции печени или уже страдал сердечно-сосудистыми заболеваниями. После этого фармацевтическая компания, выпускавшая лекарство, разослала 1,6 млн писем врачам и фармацевтам с рекомендацией не применять данное средство в описанных выше случаях. Позднее лекарство было вообще изъято из продажи.
Терфенадин обладает подобным побочным действием потому, что он блокирует калиевые HERG-каналы. У большинства людей он не создает проблем, поскольку быстро разрушается в печени с образованием промежуточного продукта обмена веществ, который не блокирует HERG, оставаясь при этом эффективным антиаллергическим препаратом. В результате того, что лекарство принимается перорально, оно сначала проходит через печень, поэтому сердца достигает очень небольшое количество терфенадина. Однако у людей с заболеваниями печени, у которых не хватает ферментов, разрушающих лекарство, или у тех, кто принимает лекарства или вещества (например, грейпфрутовый сок), ингибирующие эти ферменты, появляется риск возникновения нарушений сердечного ритма.
История терфенадина на этом не заканчивается. Очень быстро выяснилось, что многие другие лекарства тоже способны блокировать HERG и, таким образом, вызывать предрасположенность к проблемам с сердцем. В результате в 2001 г. Япония, США и Европейское сообщество постановили, что все новые лекарства должны проверяться на отсутствие влияния на HERG. Последние директивные материалы требуют проведения исследований не только на изолированных клетках и тканях, но и на людях (необходимы тысячи ЭКГ). Изменение регулирования привело к появлению массы небольших биотехнологических компаний, занимающихся HERG-тестированием, и к резкому повышению стоимости разработки лекарств, поскольку многие из них не выдерживают тестирования. Некоторые фармацевтические компании, лекарства которых уже находились на более поздних стадиях испытаний, но, как выяснилось, взаимодействуют с HERG, понесли очень значительные убытки.
Мое сердце трепещет
Она: Доктор, со мною что-то не так.
Он: В самом деле? Что случилось?
Она: Каждый раз, когда рядом оказывается мужчина.
Он: Ну и?
Она: Мое лицо заливает краска,
А сердце начинает отчаянно колотиться:
Бум буди-бум буди-бум буди-бум
Буди-бум буди-бум буди-бум буди-бум.
Так начинается песня знаменитого дуэта, Софи Лорен и Питера Селлерса. Это очень знакомое чувство: у каждого из нас не раз сердцебиение учащалось в результате волнения или испуга, а сердце колотилось так, будто оно вот-вот разорвется.
Такой результат дает выброс гормона адреналина, определяющего реакцию «бей или беги». Адреналин помогает организму справиться с неблагоприятной ситуацией путем повышения частоты и силы сокращений. С этой целью он открывает дополнительные кальциевые каналы в мембранах клеток сердца. Как следствие уменьшается интервал между импульсами, генерируемыми клетками синусного узла, частота сердцебиения повышается, а также резко увеличивается количество кальция, который выбрасывается из внутриклеточных хранилищ, увеличивая силу сокращения. Адреналин вырабатывается железами, расположенными прямо над почками, и выделяется в кровь в ответ на стресс или физическую нагрузку. Родственное вещество, обладающее аналогичным действием, норадреналин, выделяется нервами, которые возбуждают сердце.
Хотя повышение частоты сердцебиения во время физической нагрузки принципиально важно для адекватного снабжения мышц конечностей топливом и кислородом, слишком высокий ритм вреден. Все дело в том, что сами сердечные мышцы при этом не получают достаточного количества кислорода. Результат – стенокардия, сильная боль в груди, которая может отдавать в левую руку. Стенокардия чаще возникает у людей, коронарные кровеносные сосуды которых сужены из-за атеросклеротических бляшек (жировых отложений на стенках сосудов). Вследствие этого тест на физическую нагрузку нередко используют для оценки состояния коронарных сосудов. Стенокардия возникает не только в результате физической перегрузки, ее может спровоцировать вспышка гнева, волнение или сильные эмоции. Я очень хорошо помню, как во время плавания по каналу из Эймёйдена в Амстердам на небольшой яхте на ее винт намотался обрывок сети и сделал двигатель бесполезным. Этот канал является крупнейшей транспортной артерией, и движение судов там очень интенсивное. Огромные тяжелогруженые и неповоротливые баржи приближались к нам с двух сторон. Пока я пыталась поставить паруса, а мой напарник нырял под дно с ножом в руке, чтобы освободить винт, у капитана случился приступ стенокардии. Он спустился в каюту, раздавил стеклянную ампулу с амилнитритом (или нитроглицерином) и некоторое время вдыхал его пары. Это сняло боль, коронарные сосуды расширились, и приток крови к сердцу усилился.
Нитроглицерин выделяет газ оксид азота, который стимулирует выработку химического вещества, циклического гуанозинмонофосфата, вызывающего расширение кровяных сосудов. Виагра (силденафил цитрат) имеет аналогичное действие: повышая уровень циклического гуанозинмонофосфата в сосудах пениса, она вызывает их расширение и эрекцию. Вместе с тем при одновременном приеме обоих препаратов их действие может суммироваться и приводить к расширению кровяных сосудов всего организма и, как следствие, к резкому падению давления. Так что мужчинам, принимающим нитроглицерин для снятия приступов стенокардии, следует избегать виагры. Интересно, что виагра была открыта случайно учеными, которые занимались поиском средств против стенокардии. Она оказалась не слишком эффективной при клинических испытаниях, и ее наверняка забраковали бы, если бы несколько мужчин, участвовавших в испытаниях, не отказались прекратить прием лекарства из-за необычного (и неожиданного) побочного эффекта.
При учащенном сердцебиении нередко принимают бета-блокаторы. Они ингибируют действие адреналина, предотвращая его присоединение к бета-адренорецепторам в мембране клеток сердца и, таким образом, увеличение частоты сокращений сердца. Бета-блокаторы, однако, могут давать очень неприятный побочный эффект: у некоторых мужчин эти препараты вызывают импотенцию{17}. Такие случаи, впрочем, встречаются относительно редко, и, как ни удивительно, исследования показывают, что они чаще наблюдаются у мужчин, которые знают о побочном эффекте бета-блокаторов. Не исключено, что проблема в определенной мере связана с опасениями. Похоже, это один из тех случаев, когда слишком много знать опасно.
Сердце мое, успокойся
Выделяемые нервами химические вещества, которые возбуждают сердце, могут также замедлять темп сердцебиения, а иногда и полностью останавливать сердце. В 1994 г. я поехала в Хьюстон, штат Техас, для участия в научной конференции. Перелет был длинным и утомительным, а в Хьюстоне стояла невероятная жара, но я все же решила пойти на прием по случаю открытия. После бокала (ну, может быть, двух бокалов) вина у меня подогнулись ноги, перед глазами все поплыло, а голова, казалось, вот-вот взорвется. Следующее, что я помню, это черный туннель в огромном полированном холме, который постепенно превратился в носок мужского ботинка. Потом в поле моего зрения появилось множество ботинок. Я лежала на полу вся в холодном поту и смотрела на ноги своих коллег. Впервые в жизни у меня случился обморок. Причина была простой: резкое повышение активности тормозных нервов моего сердца временно остановило его. Как следствие, мозг перестал получать кислород, и я потеряла сознание. После падения на пол подача крови возобновилась, и сознание вернулось.
За замедление частоты сердцебиения отвечает химический нейромедиатор ацетилхолин. Его выделяют окончания ответвлений блуждающего нерва, который идет от мозга к сердцу (в числе других органов). Ацетилхолин присоединяется к мускариновым рецепторам клеток синусного узла. Такое название эти рецепторы получили потому, что они активируются также мускарином, веществом, встречающимся в некоторых грибах, в том числе в знакомом всем мухоморе Amanita muscaria. Присоединение ацетилхолина к мускариновым рецепторам (которые отличаются от ацетилхолиновых рецепторов скелетных мышц) инициирует цепочку реакций, приводящих в конечном итоге к открытию калиевых каналов. Это позволяет ионам калия уходить из клетки, сдвигая ее внутренний потенциал в отрицательную сторону. Как и в нервных клетках, в результате этого натриевые и кальциевые каналы закрываются, снижая электрическую активность и замедляя частоту сердцебиения.
Сердце постоянно испытывает небольшое тормозящее воздействие блуждающего нерва, именно поэтому в состоянии покоя частота сердцебиения ниже спонтанной частоты импульсов задающих ритм клеток синусного узла. У тех, кто перенес трансплантацию сердца, влияние нервов полностью отсутствует, поскольку блуждающий нерв перерезается во время операции, и как результат частота сердцебиения в состоянии покоя у них выше нормальной.
Атропин блокирует действие ацетилхолина в мускариновых рецепторах и используется в медицинской практике для снижения эффекта нейромедиатора у больных с очень низкой частотой сердцебиения или у тех, чье сердце фактически остановилось. Он помогает ускорить сокращения сердца. В больших количествах, однако, атропин является смертельным ядом. Своим названием он обязан имени самой страшной из трех богинь судьбы в греческой мифологии, Атропос, которая перерезает нить жизни и чью руку невозможно остановить.
Атропин также ингибирует мускариновые ацетилхолиновые рецепторы в других тканях. Один из его самых известных эффектов – это расширение зрачка глаза. Блестящие глаза с расширенными зрачками воспринимаются как более сексуально привлекательные, возможно потому, что оргазм также приводит к расширению зрачков. Атропин широко использовали в косметических средствах дамы при дворе королевы Елизаветы. Они получали его из блестящих черных ягод беладонны, смертельно опасного растения, именно поэтому латинское название беладонны – Atropa belladonna – переводится как «прекрасная дама». Все части этого растения ядовиты для людей, однако птицы могут поедать его семена без всякого вреда для себя. Атропин и его производные используются в сегодняшней медицинской практике для расширения зрачка глаза при обследованиях, в частности при обследовании глазного дна. Не исключено, что его эффект знаком и вам – это лекарство делает глаза очень чувствительными к свету (поскольку мышцы радужной оболочки теряют способность сокращаться при ярком освещении). Как результат человек начинает щуриться на солнце, и ему не рекомендуют садиться за руль.
Скачущее сердце
Достаточно лишь разок пробежаться вдогонку за автобусом, чтобы сполна ощутить, какой эффект это физическое упражнение оказывает на частоту сердцебиения. У людей максимальная частота сокращений сердца составляет порядка 200 ударов в минуту, что приблизительно в три раза выше частоты сокращений в состоянии покоя. Частота сердцебиения у других существ может быть намного выше – у колибри, например, во время полета она достигает 1200 ударов в минуту. Такое повышение сердечного ритма происходит в результате выброса норадреналина симпатическими нервами, возбуждающими сердце, и повышения уровня циркулирующего в крови адреналина. Хотя у людей с пересаженным сердцем частота сердцебиения увеличивается в ответ на физическую нагрузку, это происходит более медленно из-за того, что сердце реагирует только на адреналин в крови, а для его выброса в кровь требуется больше времени. Тормозящий эффект ацетилхолина, выделяемого блуждающим нервом, снимается во время физической нагрузки и восстанавливается после ее прекращения: этого не происходит у людей с пересаженным сердцем, поэтому у них сердечный ритм медленнее возвращается в нормальное состояние после прекращения физической нагрузки.
Максимальная частота сердцебиения зависит от возраста (она снижается с годами), однако примерно одинакова у всех людей независимо от их физической формы. Что меняется, так это максимальный объем перекачиваемой крови. У спортсменов частота сердцебиения в состоянии покоя ниже, поскольку регулярные физические нагрузки приводят к увеличению размера сердца и, таким образом, к повышению объема крови, перекачиваемого при каждом сокращении. Как следствие, сердцу требуется меньше сокращений, чтобы перекачать такой же объем крови. Несмотря на одинаковую максимальную частоту сокращений, у спортсменов сердце перекачивает намного больше крови при физической нагрузке, чем у ведущих сидячий образ жизни, – более крупное сердце дает им конкурентное преимущество.
Тихий убийца
Хлорид калия – очень эффективное средство, останавливающее сердце. Он действует быстро, бесшумно, почти не оставляет следов и, как говорят, не причиняет страданий (хотя кто это может подтвердить?). Именно поэтому он является излюбленным средством умерщвления в детективных романах вроде «Лучше не возвращаться» Дика Фрэнсиса, где и лошадей, и людей травили путем впрыскивания раствора хлорида калия. В романе «Лучше не возвращаться» вещество покупали в специализированной компании, однако на практике его очень легко может добыть каждый – оно широко доступно и продается как заменитель соли с низким содержанием натрия. Убийство с помощью хлорида калия – это не художественный вымысел: известен целый ряд случаев, когда медсестер обвиняли и даже осуждали за противозаконное убийство пациентов путем инъекций хлорида калия.
Внутривенное вливание хлорида калия после анестезии, погружающей жертву в сон, используется также законно для приведения в исполнение смертных приговоров в некоторых штатах. Доктор Джек Кеворкян применял его в своем «танатроне»{18}, устройстве для эвтаназии, с помощью которого он помогал уйти из жизни смертельно больным. Доктора Кеворкяна приговорили к тюремному заключению в 1998 г. за убийство второй степени. В это трудно поверить, но хлорид калия в качестве средства для самоубийства пропагандировал бывший немецкий политик Роджер Куш.
Но почему хлорид калия вызывает остановку сердца? При высокой концентрации он деполяризует клетки сердца настолько, что натриевые и кальциевые каналы выключаются (инактивируются). Поскольку эти поры закрыты, потенциал действия не генерируется, и сердце просто останавливается. Однако при медленном вливании хлорида калия сердцебиение, скорее всего, сначала ускоряется, затем наступает вентрикулярная фибрилляция, и только после этого сердце останавливается.
Интересно отметить, что уровень концентрации калия в крови повышается во время физических нагрузок в результате выхода ионов калия из работающих мышц. При сильном физическом напряжении этот уровень бывает достаточным, чтобы остановить сердце. И все-таки мало у кого сердце останавливается во время пробежки. Причина этого ясна не до конца, но по одной из версий все дело в защитном эффекте гормона адреналина, уровень которого также повышается при физических нагрузках. Если концентрация калия в крови не снизится достаточно быстро после прекращения нагрузки, то у человека может развиться сердечно-сосудистый коллапс. Именно поэтому сердечные приступы случаются чаще после завершения партии в сквош, а не во время игры.
Виртуальное сердце
Сейчас мы знаем большинство типов ионных каналов, определяющих электрическую активность сердца. Их очень много. У разных видов сердечных клеток могут быть разные комплекты ионных каналов, а плотность и активность каналов одного типа могут варьировать в зависимости от расположения клеток в сердце. В результате очень трудно предсказать, что произойдет с электрической активностью отдельно взятой клетки при модификации конкретного ионного канала, не говоря уже об электрической активности всего сердца. Здесь неоценимую помощь оказывают компьютерные модели.
Ключевой целью нынешних исследований в области кардиологии является создание компьютерной модели сердца, работающей в реальном масштабе времени. Первенство в этой сфере принадлежит Денису Ноблу, профессору из Оксфорда. Его «виртуальное сердце» довольно хорошо моделирует нормальное сердцебиение, эффекты сердечного приступа, генетические мутации, которые вызывают заболевания у людей, и действие лекарств, блокирующих HERG-каналы. В некоторых случаях к ней обращаются даже фармацевтические компании, чтобы понять механизм действия новых лекарств.
Несколько лет назад, когда модель была еще не так хорошо отработана, компания Roche попросила Нобла лично поприсутствовать на слушаниях в Администрации по контролю за продуктами питания и лекарствами в Филадельфии. К своему удивлению, он увидел, что задние ряды в зале были заполнены трейдерами, которые сжимали в руках телефоны и ловили каждое слово. Цена акций Roche на Уолл-стрит двигалась вверх или вниз в зависимости от того, какие новые факты раскрывались и передавались в Нью-Йоркскую фондовую биржу. После выступления профессора один из чиновников заявил: «Я голосую двумя руками за эту программу». «Никаких проблем, – прозвучало в ответ, – но вам придется купить суперкомпьютер стоимостью 5 млн [10 млн в нынешних ценах], чтобы работать с нею».
Вычислительные мощности увеличиваются настолько быстро, что сегодня для использования этой модели нужен обычный настольный компьютер. Однако моделирование сердечной активности в реальном масштабе времени (именно этого хотелось бы фармацевтическим компаниям) по-прежнему неосуществимо на большинстве современных суперкомпьютеров (по крайней мере на текущий момент).
Глава 8
Жизнь и смерть
Жизнь и смерть балансируют на лезвии бритвы.
Гомер. Илиада
В 1970 г. примерно 15 % урожая кукурузы в США было потеряно в результате эпидемии глазковой пятнистости листьев кукурузы, вызываемой грибком Bipolaris maydis. По оценкам, в тот год недополучили один миллиард бушелей кукурузы стоимостью более миллиарда долларов, и множество мелких фермеров просто разорились. Об этом заболевании в США впервые официально сообщили в 1969 г., однако тогда его очаги были изолированными, и ему не придали значения. Ситуация кардинально изменилась в 1970 г. Теплая, влажная погода в тот год создала идеальные условия для быстрого распространения грибка. Эпидемия, начавшаяся во Флориде, к июню охватила Алабаму, южную часть Луизианы, значительную часть бассейна Миссисипи и частично Техас. К сентябрю заболевание распространилось по всему «кукурузному поясу», включая Висконсин на севере и Канзас на западе.
Оно нанесло очень значительный урон урожаю. Первым признаком заражения было появление бурых пятен на листьях, а потом желтело все растение. В самых тяжелых случаях початки кукурузы загнивали, опадали и разваливались на части при ударе о землю. Некоторые поля были настолько сильно поражены, что во время уборки урожая черные облака спор клубились над машинами.
Такой опустошительный эффект глазковой пятнистости листьев кукурузы был результатом сочетания токсина, выделяемого грибком, и ионного канала, который встречается только в автостерильных линиях кукурузы. Заболевание приобрело характер эпидемии в 1970 г. из-за того, что в тот год большинство площадей было засеяно кукурузой автостерильного типа. Причина такого генетического единообразия уходит корнями в 1800-е гг. Как и многие другие растения, кукуруза является обоеполой и имеет как мужские, так и женские части. Мужские части – метелки на верхушке растения – рассеивают в воздухе пыльцу. Женские части, находящиеся в початке, превращаются в кукурузное зерно после опыления. Дикая кукуруза – самоопыляемое растение, самоопыляются и большинство культурных растений из-за того, что мужские и женские части находятся близко друг к другу. Однако самая лучшая кукуруза является гибридной и получается, когда женские части опыляются пыльцой растений другой линии. Этот эффект был открыт в конце XIX в. после того, как селекционеры заметили, что гибридные растения оказываются более высокими и сильными, чем любой из их родителей, а главное, имеют более крупные початки и зерна. Постепенно гибридную кукурузу стали использовать повсеместно. Более высокое качество гибридного зерна произвело на фермеров большое впечатление, а продавцы посевного материала всячески поощряли использование гибридов, поскольку это заставляло фермеров покупать новое посевное зерно каждый год.
Для получения гибридных растений нужно предотвратить самоопыление. Исторически этого добивались удалением метелок вручную. Эта операция крайне трудоемка и утомительна, поскольку ее необходимо проводить каждый год на многих тысячах растений. Неудивительно, что селекционеры пришли в восторг, когда нашлись разновидности кукурузы, не дававшие пыльцы. Они сразу поняли, что эти растения, обладающие, как говорят, цитоплазмической мужской стерильностью (ЦМС), должны идеально подходить для перекрестного опыления. Семеноводческие компании очень быстро перешли на них. Все, что нужно было, это посадить растения с ЦМС рядом с растениями-опылителями, остальное делал ветер: растения с ЦМС давали только гибридное зерно. Но такое удобство имело свою цену, о которой селекционеры даже не подозревали. В отличие от нормальных растений стерильные ЦМС-разновидности были восприимчивы к глазковой пятнистости листьев кукурузы, поскольку их клетки имели специфический тип ионных каналов.
Как показывает эта история, ионные каналы есть не только в клетках, возбуждаемых электрическими импульсами, вроде нервных и мышечных клеток. Они имеются в каждой клетке нашего организма и любого другого организма на Земле, от самой примитивной бактерии до гигантских калифорнийских секвой, и они регулируют все, что мы делаем.
Сперматозоиды с туроподзарядкой
Ионные каналы начинают играть критическую роль в нашей жизни еще до зачатия, поскольку они влияют на результаты великой гонки сперматозоидов. Тяжелое состязание с единственным победителем – это первая и самая важная гонка, в которой мы когда-либо участвовали и которую каждый из нас (или, скорее, определенная часть каждого из нас) выиграл.
Сперматозоиды должны плыть после эякуляции, прокладывая себе путь к яйцеклетке с помощью извивающегося жгутика. По мере того как они продвигаются из вагины в верхние отделы женских половых путей, окружающая их среда становится более щелочной, а концентрация гормона прогестерона повышается. В результате ритм движений жгутика сперматозоида переключается на более низкую частоту, они становятся более медленными, размашистыми и энергичными и ускоряют перемещение сперматозоида. Это своего рода турбоподзарядка в последний момент, как раз тогда, когда сперматозоиду необходима дополнительная энергия. Без нее сперматозоид не может сделать рывок и пройти через оболочку, окружающую яйцеклетку. Изменение ритма движения жгутика сперматозоида происходит в результате открытия специального ионного канала, называемого Catsper.
Catsper – любимый канал Дэвида Клэпхема, ученого из Гарварда с острым умом, озорной улыбкой и черным юмором. Его коллега Дэцзянь Рен, штудируя базу данных по международному проекту «Геном человека» в поисках пропущенных сокровищ, наткнулся на новый ионный канал, который существует только в мужских половых железах. Эта находка сразу же привлекла внимание Клэпхема, и вскоре сперматозоиды во всех их проявлениях заняли центральное место в исследованиях лаборатории. «Они имеют, – говорит Клэпхем, – все, что положено нервным клеткам, и кое-что еще: у них есть ионные каналы, они возбуждаются, они чувствительны к химическим веществам в окружающей их среде, они двигаются и делают это более энергично около яйцеклетки, ну прямо как мужчины, суетящиеся вокруг женщин».
Канал Catsper – один из самых сложных в человеческом геноме. Пора канала образуется четырьмя разными белками, и она связывается с различными видами вспомогательных белков. Если хотя бы один из них отсутствует, то канал перестает функционировать, сперматозоид перестает переключаться на более энергичные движения жгутика, и наступает бесплодие. Поскольку Catsper имеется только у сперматозоидов, лекарственные средства, блокирующие канал, становятся идеальным контрацептивом. В отличие от более знакомых противозачаточных таблеток они не должны оказывать влияния на женскую гормональную систему, и их не нужно принимать перорально. Однако такое средство не будет долгожданным мужским контрацептивом. Его опять придется принимать женщинам, но не потому, что это дает уверенность в защите, а потому, что это в их половых путях происходит изменение движения сперматозоидов.
Не все сперматозоиды имеют каналы Catsper. Их нет у гигантского сперматозоида крошечной плодовой мухи Drosophila bifurca, который скорее ползет, а не плывет по половому пути самки. У этих левиафанов самый длинный жгутик на Земле. Его длина достигает почти 6 см, он в 600 с лишним раз больше сперматозоида человека и в 20 раз больше самой мухи. Зачем в процессе эволюции развился такой гигантский жгутик, остается загадкой. По одной из гипотез жгутик, скрученный спиралью, образует пробку, которая полностью перекрывает половой путь самки и таким образом не позволяет войти в него другим сперматозоидам. Конкуренция между сперматозоидами за возможность передачи ДНК очень сильна, даже между теми, которые принадлежат одной мужской особи.
У цветковых растений другая проблема, связана она с тем, что их сперматозоиды не способны двигаться и находятся в пыльцевых зернах, предотвращающих обезвоживание. Тем не менее и у растений ионные каналы способствуют оплодотворению. Когда пыльцевое зерно опускается на поверхность женского репродуктивного органа растения (рыльце), оно выбрасывает длинную пыльцевую трубку, которая растет в направлении яйцеклетки и несет с собой сперматозоид. Достигнув яйцеклетки, трубка разрывается и выпускает сперматозоид. Так вот, к разрыву пыльцевой трубки приводит химическое вещество, выделяемое клетками, которые окружают яйцеклетку. Это вещество открывает ионный канал в мембране пыльцевой трубки, в результате чего возникает приток ионов калия, которые втягивают вместе с собой воду, заставляя трубку набухать и разрываться. Освободившись из заточения в пыльцевой трубке, сперматозоид оплодотворяет яйцеклетку.
Создание барьеров
Жизненно важно, чтобы яйцеклетку оплодотворял только один сперматозоид, поскольку клетка, получившаяся в результате оплодотворения несколькими сперматозоидами, не может развиваться нормально. Поэтому у яйцеклетки есть система защиты, благодаря которой она принимает только первый прибывший сперматозоид, а всех остальных кандидатов отвергает. Процесс создания преграды для полиспермии впервые был изучен на яйцеклетках морских ежей, с которыми легче работать из-за их больших размеров. Иногда они бывают настолько большими, что их видно невооруженным глазом. В далеком 1976 г., еще студентом, Ринди Джаффи обнаружил, что, как только первый сперматозоид проникает в яйцеклетку морского ежа, потенциал на внутренней стороне ее мембраны резко меняется с отрицательного на положительный. Возникающая в результате этого разность потенциалов предотвращает проникновение других сперматозоидов в яйцеклетку.
Неожиданностью для ученых стало то, что яйцеклетки млекопитающих имеют другой механизм защиты. У них, как оказалось, преграда для полиспермии является не электрической, а физической – механический барьер, который медленно формируется после оплодотворения. Различие стратегий обусловлено совершенно разными средами, в которых происходит оплодотворение. В океане множество миллионов сперматозоидов практически одновременно достигают яйцеклетки, поэтому электрическая преграда для полиспермии идеальна – ее можно создать практически мгновенно. У млекопитающих в результате долгого и трудного путешествия по половым путям самки до яйцеклетки добираются лишь несколько сперматозоидов, и это очень редко случается одновременно. Здесь вполне уместен более медленный механизм защиты.
Жизнь из смерти
Ая Солиман появилась на свет самым необычным образом – она родилась путем кесарева сечения через два дня после того, как была зафиксирована смерть мозга ее матери Джейн. У Джейн, бывшей чемпионки по конькобежному спорту, произошло смертельное кровоизлияние в мозг, когда она была на 25-й неделе беременности. Ее перевезли вертолетом в больницу Оксфорда, но она скончалась вскоре после прибытия. Хотя мозг Джейн умер, врачи решили поддержать жизнь ее организма, чтобы выиграть время, необходимое для созревания легких плода.
В утробе матери плод плавает в мешке, наполненном водой. Его легкие заполнены жидкостью, он не может дышать воздухом и получает кислород через пупочный канатик, который связывает его с плацентой. Во время родов вода должна быстро удаляться из легких, когда новорожденный ребенок начинает дышать воздухом. Это достигается с помощью специальных эпителиальных натриевых каналов (ENaC) в клетках, выстилающих легкие. В момент рождения каналы ENaC открыты, и ионы натрия в легочной жидкости текут по направлению нисходящего градиента концентрации в клетки легких. Поскольку ионы натрия увлекают за собою воду, легкие быстро осушаются. Пока в них существуют и функционируют каналы ENaC, они быстро освобождаются от любой жидкости. Без каналов ENaC младенцы рискуют захлебнуться собственной жидкостью в момент рождения, и многие страдают от синдрома «влажных» легких.
В процессе нормального развития плода повышение концентрации стероидных гормонов запускает процесс формирования каналов ENaC за несколько недель до родов, обеспечивая полное созревание легких к моменту появления младенца на свет. На 25-й неделе беременности, однако, легкие еще не развиты полностью, и количество каналов ENaC в клетках, выстилающих легкие, слишком мало. Поверхностно-активного вещества, так называемого легочного сурфактанта, которое снижает поверхностное натяжение в альвеолярных мешочках легких и предотвращает их сжатие, также мало. Таким образом, при подготовке к преждевременным родам матери вводят стероиды, если ее состояние позволяет сделать это. Стероиды поступают через плаценту к плоду и обеспечивают созревание легких недоношенного ребенка. Поскольку материнская утроба является оптимальным инкубатором для младенца, функционирование организма Джейн поддерживали с помощью аппарата искусственного жизнеобеспечения, пока вводили стероиды, повышавшие шансы на спасение ее дочери.
У этой истории есть продолжение. Как оказалось, более полному открытию каналов ENaC способствует гормон стресса адреналин, содержание которого в крови матери во время родов резко повышается. Это может объяснять, почему дети, рожденные с помощью кесарева сечения, т. е. без такого стимула, чаще испытывают трудности с очисткой легких, чем родившиеся естественным путем, и почему у них чаще наблюдаются респираторные осложнения в постнатальный период.
Повышение давления
Задачи каналов ENaC не ограничиваются лишь теми, что они выполняют при рождении ребенка. Они играют ключевую роль в регулировании количества натрия в крови человека и, следовательно, определяют наше кровяное давление. Если каналы ENaC перестают функционировать должным образом, кровяное давление может подскочить и создать угрозу инсульта.
Наши почки – это сложнейший аппарат, очищающий кровь, непрерывно отделяющий токсины и продукты жизнедеятельности, а также удаляющий избыточную воду. Удаление продуктов жизнедеятельности происходит примерно в миллионе отдельных функциональных единиц почек, называемых нефронами, где пучки тончайших кровеносных сосудов, капилляров, переплетаются с крошечными канальцами, которые выполняют роль мочесборников. Это поразительно, вся кровь человека проходит через почки дважды в час. Красные кровяные тельца и белки плазмы крови остаются в капиллярах, а соли и вода выталкиваются в почечные канальца. Почти весь выделенный натрий и значительная часть воды всасываются обратно по мере продвижения жидкости по почечным канальцам. То, что остается, собирается в мочевом пузыре и выделяется из организма в виде мочи.
Каналы ENaC в мембранах клеток почечных канальцев обеспечивают обратное всасывание натрия. Как и в легких, поток ионов натрия увлекает за собой воду, а это приводит к увеличению объема крови и, из-за того, что система кровообращения является замкнутой, повышает кровяное давление. Диета, богатая солью (хлоридом натрия), вредна для организма, поскольку натрий приносит с собою воду, повышает объем крови и, как следствие, кровяное давление. И наоборот, если уровень натрия в крови низок, то организм удерживает мало воды, и кровяное давление падает. Именно поэтому так важно потреблять достаточное количество соли в жаркую погоду, когда много соли выводится с потом.
Мутации любого из трех генов, которые кодируют канал ENaC, влияют на кровяное давление. Те, что приводят к повышению активности каналов ENaC, вызывают врожденную форму гипертонии, так называемый синдром Лиддла, ну а те, что уменьшают активность, понижают давление. Последнее особенно опасно для новорожденных и грудных детей, так как вызывает у них опасный для жизни адреногенитальный синдром с потерей солей. В результате уменьшения поглощения натрия в организм поступает меньше воды, организм ребенка быстро обезвоживается и нарушается баланс концентрации других ионов в крови (в частности, ионов калия). Это заболевание смертельно, если его быстро не выявить и не начать лечение.
К счастью, мутации в каналах ENaC встречаются редко. Тем не менее считается, что одной из причин заметно большего числа страдающих высоким давлением среди чернокожих людей, чем среди европеоидов, является сравнительно более широкое распространение изменений в генах каналов ENaC, определяющих предрасположенность к повышенному поглощению натрия. С чем это связано, непонятно, но по одной из гипотез у людей, живущих вблизи Сахары, развился другой механизм поглощения соли, которая там дефицитна. Хотя это качество полезно, когда соль поступает в организм лишь изредка, в современном мире, где многие готовые блюда содержат очень много соли, оно становится недостатком.
Соленая история
В Средние века верили, что, поцеловав ребенка в лоб, можно предсказать его судьбу – соленый лоб считался признаком порчи и угрозы преждевременной смерти. Вместе с тем связь между соленой кожей и ранней смертью не миф, соленая кожа – первое проявление болезни, которую сейчас называют муковисцидозом (кистозным фиброзом). У людей, страдающих этим заболеванием, очень соленый пот и не вырабатываются некоторые пищеварительные ферменты. Но хуже всего то, что их легкие забиваются густым и липким слизистым секретом, который затрудняет дыхание и вызывает хроническую инфекцию, воспаление и медленно прогрессирующее разрушение легких. Это заболевание до сих пор неизлечимо. Оно угрожает жизни, и, несмотря на все современные технологии, более половины страдающих им не доживают до 40 лет.
Муковисцидоз был признан самостоятельным заболеванием в 1938 г., когда Дороти Андерсен опубликовала первое детальное описание расстройства. Несколькими годами позже во время аномально жаркой погоды в Нью-Йорке врач-педиатр Пол ди Сант-Аньезе обратил внимание на то, что многие дети, попавшие в больницу из-за теплового удара, страдали муковисцидозом. Он предположил, что тепловой удар у них провоцировался чрезмерной потерей соли, и сделал анализ потовыделений. В них оказался аномально высокий уровень хлорида натрия. С тех пор и по сей день «потовый тест» используется для диагностирования этого заболевания.
Причиной проблемы являются мутации, нарушающие работу особого ионного канала. Его полное название – муковисцидозный трансмембранный регулятор проводимости, но на практике всегда пользуются латинской аббревиатурой CFTR. Этот канал находится в клетках, выстилающих легкие и протоки таких органов, как потовые железы, поджелудочная железа и яички, и управляет перемещением ионов хлора через клеточную мембрану. Секреция ионов хлора необходима для образования жидкости, переносящей пищеварительные ферменты в кишечник, семенной жидкости и пота. Она также важна для секреции жидкости в легких – там тонкая пленка жидкости захватывает бактерии и перемещает их от основания легких вверх по дыхательным путям в рот, где они проглатываются и благополучно уничтожаются. Без такого подъема дыхательные пути забиваются густой и липкой слизью, в которой размножаются бактерии. Подобные инфекции в конечном итоге повреждают легкие.
В настоящее время при муковисцидозе применяют симптоматическое лечение: борются с легочными инфекциями с помощью антибиотиков, предотвращают скопление слизи в легких с помощью физиотерапии и восполняют отсутствующие пищеварительные ферменты. Вместе с тем ведутся исследования, направленные на восстановление самих дефектных каналов. Примерно у 4 % больных наблюдается мутация в CFTR (известная как G551D), сокращающая время, в течение которого каналы открыты. Не так давно был найден препарат «Ивакафтор», заставляющий такие спящие каналы функционировать нормально, и предварительные исследования показывают, что он может давать клинический результат. Хотя до этого еще далеко, но новый подход дает надежду людям с мутацией G551D. У большинства больных, однако, другая мутация CFTR – F508del, которая не позволяет каналу достичь поверхности мембраны клетки. В этом случае необходимы препараты, корректирующие неправильный внутриклеточный транспорт канала.
Муковисцидоз чрезвычайно редко наблюдается у жителей Востока и чернокожих африканцев и чаще всего встречается у жителей северной части Европы, где он является самым распространенным наследственным заболеванием, в основе которого лежит повреждение одного гена. В Великобритании порядка 9000 человек страдают от болезни, и один из каждых 25 человек, т. е. более двух миллионов, несет в себе один экземпляр дефектного гена: у них нет признаков заболевания, но если у пары носителей появится ребенок, то в 25 % случаев он будет страдать муковисцидозом. Такая распространенность мутации говорит о том, что носители одного экземпляра гена могут обладать преимуществами при отборе. Возможно, такие носители более устойчивы к диарейным заболеваниям вроде холеры. Vibrio cholerae, бактерия, вызывающая холеру, вырабатывает токсин, который открывает каналы CFTR в клетках кишечника. Хлор утекает из этих клеток и уносит с собой воду. Это приводит к массированному выбросу жидкости в кишечник и, как следствие, к сильной диарее и быстрой гибели от обезвоживания. Люди с меньшим комплектом каналов CFTR выделяют меньше ионов хлора и, таким образом, потенциально более устойчивы к обезвоживанию.
Бактерии холеры передаются через фекалии, и при любом стихийном бедствии, вызывающем повреждение канализационной системы, например при землетрясении или наводнении, появляется риск возникновения эпидемии холеры. Землетрясение на Гаити в 2010 г. не было исключением, и после него очень быстро началась эпидемия этой болезни. Хотя холера не является болезнью северной Европы и в наше время характерна лишь для стран третьего мира, так было не всегда. Одним из самых заметных достижений в сфере общей гигиены стало удаление доктором Джоном Сноу ручки водоразборной колонки на Брод-стрит в Лондоне летом 1853 г.
Во время сильной вспышки холеры, не утихавшей 14 недель, Сноу обратил внимание на то, что в районе Саутуорк смертельных исходов в 10 раз больше, чем в районе Лэмбет. Он считал, что холера распространяется с водой, хотя другие видели причину в «отвратительных испарениях», выделяющихся из канализации. Тщательное расследование показало, что один из районов Лондона водой снабжали две разные компании, и люди, которые там жили, дышали одним и тем же воздухом, но потребляли разную воду. Удалив рукоятку колонки, из которой шла зараженная вода, Сноу остановил распространение холеры и подтвердил свое предположение о том, что болезнь распространяется с водой. Начало эпидемии проследили впоследствии до Франсес Льюис, пятимесячной малышки, которая умерла от сильнейшей диареи. Ее мать выливала воду, в которой стирала испачканные пеленки, в сточную канаву у дома, откуда эта вода попала в колодец на Брод-стрит и загрязнила питьевую воду. Последствия оказались катастрофическими.
Клеточная система водоснабжения и канализации
Итак, патологии ENaC и CFTR вызывают заболевания, связанные с нарушением трансмембранных потоков воды в клетках. На протяжении многих лет ученые пытались понять, как вода проходит через клеточные мембраны. Поскольку они состоят из липидов (жиров), то должны быть слабопроницаемыми для воды, а раз так, каким образом она все же проникает через липидный барьер в количествах, необходимых для образования слез, слюны, пота и мочи? Дело в том, что большинство клеток имеют специальные водные каналы, называемые аквапоринами, которые позволяют воде входить в клетку и выходить из нее. Они были открыты по счастливому стечению обстоятельств Питером Эгром. Он объяснил свою находку, которая в конечном итоге принесла ему Нобелевскую премию, «удачей чистой воды». Предполагая, что белок, открытый им, может быть тем самым водным каналом клетки, Эгр протестировал его способность проводить воду на икринках лягушки, которая прекрасно живет в пресной воде. К удивлению Эгра, лягушачьи икринки, ну прямо-таки созданные для демонстрации водных каналов в мембранах, набухали и лопались при погружении в пресную воду.
Эксперимент Эгра наглядно показал силу осмоса – склонности воды течь из области с низкой концентрацией соли в область с более высокой концентрации. Из-за того, что в пресной воде солей намного меньше, чем в внутри клетки, вода всегда стремится проникнуть в лягушачью икринку, однако в нормальном состоянии липидная мембрана препятствует этому. Стоит повысить водопроницаемость мембраны каким-либо образом (например, путем увеличения количества водных каналов, как сделал Эгр), и вода устремится внутрь, заставляя икринку набухать и в конечном итоге лопаться.
Оказывается, существует множество видов аквапориновых каналов, и они имеются в различных клетках, включая клетки головного мозга и красные кровяные тельца, даже в клетках растений и микроорганизмов. Один из самых важных аквапоринов (так называемый аквапорин 2) находится в собирающем протоке почечных канальцев и отвечает за обратное всасывание последних 35 литров из воды, которую наши почки пропускают через себя каждый день, и, таким образом, за нашу способность концентрировать мочу{19}. В секунду через один аквапориновый канал проходят примерно три миллиарда молекул воды. Он обладает высокой избирательностью, которую обеспечивает уникальная структура поры, – только вода, а не ионы, может проходить через него. Водные каналы также необычны тем, что они не открываются и закрываются, подобно ионным каналам, а постоянно находятся в открытом состоянии: количество пропускаемой воды регулируется перемещением каналов внутрь клетки и наружу, в клеточную мембрану. Когда организму нужно запасти воду, появляются дополнительные водные каналы. И наоборот, когда вы пьете слишком много воды, водные каналы удаляются, протоки начинают поглощать меньше отфильтрованной почками воды, и она просто выводится из организма в виде мочи. Такое втягивание и встраивание водных каналов в клеточную мембрану регулируется гормонами и происходит непрерывно. Оно и сейчас происходит в ваших почках.
Что интересно, этот процесс может прерываться под действием алкоголя. Всего несколько кружек пива приводят к прекращению выделения антидиуретического гормона, который вызывает встраивание водных каналов в почечные канальца. Вот почему после пива у вас начинается обильное выделение разбавленной мочи. Именно поэтому на следующее утро после застолья вы просыпаетесь с ощущением обезвоживания в дополнение к головной боли. Поскольку весь алкоголь к этому времени должен метаболизироваться (надо надеяться), уровень гормонов становится выше, водные каналы встраиваются в мембраны канальцев, и усиленное всасывание воды приводит к концентрированию мочи. Вы и сами можете заметить этот феномен, поскольку концентрированная моча наутро после веселья намного темнее, чем бледная водица прошлым вечером.
У людей с нефункционирующим аквапорином 2 выделяется большое количество разбавленной мочи – до 25 литров в день, их организм быстро обезвоживается, и они постоянно хотят пить. Причиной может быть редкая генетическая мутация, при которой болезнь проявляется с момента рождения. Родители, однако, могут не обратить на нее внимания, ведь мокрые пеленки – не такая уж необычная вещь у младенца.
Смертоносные орудия
Ионные каналы критически важны не только для начала жизни, они также непосредственно участвуют в ее завершении. Многие клетки и организмы используют ионные каналы в качестве оружия для нападения. Такие каналы действуют как молекулярные дыроколы, которые встраиваются в мембрану клетки-мишени и формируют огромное отверстие – настолько большую пору, что через нее из клетки могут выходить не только ионы, но и небольшие молекулы и существенные питательные вещества. В пору устремляется вода, и клетка набухает до тех пор, пока не лопнет (лизируется) и не умрет. Каналы, используемые в качестве такого смертоносного орудия, особенно интересны, поскольку они находятся внутри клетки-агрессора в неактивной форме и совершенно неопасны. Однако после высвобождения они образуют структуру, способную встраиваться в мембрану жертвы. Это настоящие трансформеры, переходящие из безобидной неактивной формы в смертоносную в течение нескольких секунд.
Такие каналообразующие молекулы играют важную роль в нашей иммунной системе, защищая нас от вторжения болезнетворных микроорганизмов. Один из видов подобных молекул с красноречивым названием «дефензин»[27] находится в нашей коже и в слизистой оболочке дыхательных путей и служит естественным антибиотиком с широким спектром действия против бактерий, грибков и некоторых вирусов. Другие виды молекулы высвобождаются специальными белыми кровяными тельцами, так называемыми Т-лимфоцитами (или естественными клетками-киллерами). Т-лимфоциты убивают вирусы и бактерии разными путями, в числе которых высвобождение перфоринов – ионных каналов, которые пробивают отверстия в мембранах враждебных клеток. Другим порообразующим оружием в арсенале нашей иммунной системы является так называемый комплемент, который пробивает еще более крупные отверстия в проникших клетках.
Бактерии также ведут нескончаемую химическую войну друг с другом, выделяя или, говоря языком физиологов, секретируя каналообразующие белки, которые убивают другие бактерии. К сожалению, некоторые из них нападают и на клетки людей. Альфа-токсин, выделяемый золотистым стафилококком (Staphylococcus aureus), является одним из самых крупных, самых смертельных и самых изящных. Это грибовидный канал, ножка которого проходит через мембрану, а шляпка располагается на ее наружной поверхности, выступая из клетки. Чтобы избежать повреждения самой бактерии, канал формируется из семи отдельных субэлементов, которые выделяются независимо друг от друга, а затем соединяются, образуя гигантскую пору, пробивающую мембрану клетки-мишени. Бактерии стафилококка вызывают появление на коже карбункулов, фурункулов и нарывов, инфицируют раны и, что опаснее всего, становятся причиной сепсиса, когда кровь разносит токсин и бактерии во все ткани, а красные и белые кровяные тельца повреждаются (отравляя кровь). Способность альфа-токсина лизировать красные кровяные тельца послужила поводом для появления другого его названия – гемолизин.
Staphylococcus pyrogenes, инфекционный агент, вызывающий скарлатину, также выделяет токсин, который разрывает красные кровяные тельца и приводит к появлению характерной мелкой красной сыпи на всем теле и окрашиванию языка в ярко-малиновый цвет. Эта болезнь может быть смертельной – от нее умерла мать американской писательницы XIX в. Луизы Мэй Олкотт, которая написала об этом печальном событии в своем романе «Маленькие женщины». Другие ионные каналы, например те, что выпускают простейшие, вызывающие амебную дизентерию, разрушают наш кишечник.
Борьба с насекомыми
Люди поставили такие каналообразующие бактериальные токсины себе на службу. Одни, которые атакуют клетки бактерий, но не действуют на клетки млекопитающих, используются как антибиотики. Другие применяются как инсектициды. Самым известным токсином является тот, который выделяют бактерии Bacillus thuringiensis. Он встраивается в клетки, выстилающие пищеварительный канал насекомых, лизирует их, и насекомые в конечном итоге погибают от обезвоживания. Токсин выпускается как неактивное вещество-предшественник, которое должно активироваться в пищеварительном канале насекомых, а поэтому он безвреден для людей.
Bacillus thuringiensis широко используются в качестве биологического агента для ограничения численности гусениц в промышленных тепличных хозяйствах, для уничтожения личинок комаров и мошкары, переносящей «речную слепоту» (онхоцеркоз). В последнее время гены токсина бактерий стали встраивать прямо в растения, которые приобретают способность самостоятельно вырабатывать токсин. Вырабатывающие пестициды виды кукурузы, картофеля и хлопка широко выращиваются в США и позволяют кардинально сократить использование синтетических инсектицидов. Вместе с тем практика выращивания таких растений вызывает неоднозначную реакцию отчасти в результате обеспокоенности по поводу генетически модифицированных продуктов. Другая причина связана с опасением, что постоянное воздействие пестицидов на насекомых приведет к появлению видов, устойчивых токсину. Любая мутация рецептора, предотвращающая присоединение токсина, дает несомненное репродуктивное преимущество, и уже появились сообщения об устойчивых к пестициду насекомых. Как и в случае с антибиотиками, преодоление сопротивления – это непрерывная борьба.
Самоубийство клеток
На определенном этапе развития у эмбриона человека руки и ноги перепончатые, как у утки. По мере того как эмбрион растет в материнской утробе, клетки, образующие перепонки между пальцами отмирают в процессе так называемой запрограммированной гибели (или апоптоза), так что к моменту рождения наши пальцы на руках и ногах разделяются. Если процесс формирования тела нарушается, а такое иногда случается, то ребенок рождается с перепонками между пальцев.
Каждый, кто когда-нибудь держал головастиков, наблюдал, как такое самоубийство, т. е. апоптоз с рассасыванием отмирающих клеток, приводит к исчезновению хвоста при превращении головастика в лягушонка. Точно так же апоптоз наблюдает любая женщина каждый месяц, поскольку отторжение слизистой оболочки матки, происходящее в начале цикла, также является результатом запрограммированной гибели клеток. Но главное, пожалуй, то, что самоубийство клеток играет ключевую роль в развитии нервной системы и формировании связей в головном мозге. В начальный период родившиеся нервные клетки выбрасывают свои аксоны в направлении цели случайным образом. Если аксоны достигают правильной цели, то устанавливается предварительная связь, импульсы активно идут по линиям, происходит обмен химическими приветствиями, и связь закрепляется. Нервные клетки, чьи аксоны не отыскали правильную цель, генерируют значительно более слабые импульсы и просто увядают из-за того, что не используются. Многие клетки умирают в процессе развития мозга, и без их самоубийства мозг не смог бы функционировать должным образом. Апоптоз также позволяет избавиться от клеток, которые могут угрожать жизни организма. Иммунная система человека способна убивать клетки, зараженные вирусами, и клетки с поврежденной ДНК, которые приводят к образованию раковой опухоли.
На клеточном уровне, таким образом, смерть вовсе не отрицательное явление. Это неотъемлемая часть жизни каждого многоклеточного организма, и каждый день несколько миллиардов клеток в нашем организме умирают в результате апоптоза. Без этого процесса многоклеточная жизнь невозможна. Если это не приближает нас к пониманию смысла жизни, по крайней мере на клеточном уровне, то смысл смерти определенно становится ясным.
Время жить, время умирать
Когда клетка совершает самоубийство, она сжимается, ее мембрана отходит от цитоплазмы, образуя уродливые вздутия. ДНК разрушается, уже не могут синтезироваться белки, а митохондрии, клеточные энергоустановки, отключаются. На поверхности клеточной мембраны появляются специфические липиды, которые являются сигналом для макрофагов, которые поглощают продукты распада умирающей клетки для утилизации.
Существует несколько путей самоуничтожения клетки, однако, как вы, наверное, уже догадались, один из них предполагает участие ионных каналов. В нем задействованы также митохондрии, крошечные органоиды размером с бактерию, которые имеются почти во всех клетках нашего организма. Прародители митохондрий были когда-то самостоятельными организмами, чем-то вроде сине-зеленых водорослей (цианобактерий), которые образуют знакомую всем зеленую пену на поверхности озер в жаркое лето, однако примерно два миллиарда лет назад эти предшественники митохондрий отказались от самостоятельности и стали частью древних клеток. Таким образом, подобно триллам из киноэпопеи «Звездный путь», мы живем в симбиозе с другим организмом, однако никакой фантастики здесь нет, и наши симбионты микроскопические. Практически все клетки растений и животных содержат митохондрии, которые принципиально важны для жизни – без них многоклеточные организмы не могли бы функционировать. Митохондрии действуют как молекулярные топки, в которых такое топливо, как сахар и жиры, окисляется кислородом и дает химическую энергию. Клетки, которым требуется много энергии, например мышечные клетки, содержат большое количество митохондрий.
У митохондрий есть одна особенность. Они окружены двумя мембранами, целостность которых важна для того, чтобы митохондрия могла вырабатывать энергию. Когда клетка решает пойти на самоубийство, в наружной митохондриальной мембране образуется крупная пора, известная как митохондриальный апоптоз-индуцирующий канал. Это отверстие настолько велико, что из митохондрии в цитоплазму могут вытекать относительно крупные химические частицы, создающие хаос и инициирующие каскад событий, которые неотвратимо ведут к гибели клетки. Важно, однако, заметить, что решение о самоубийстве принимает не митохондрия. Этот процесс инициируется и жестко контролируется клеткой, которая просто использует митохондриальный механизм в своих целях.
Погубленный урожай
Именно на митохондрии действовал токсин глазковой пятнистости листьев кукурузы, который так пагубен для ЦМС-разновидностей кукурузы. Стерильность ЦМС-растений обусловлена наличием уникального ионного канала во внутренней митохондриальной мембране. Как бомба замедленного действия, этот канал нормально закрыт и не влияет на функционирование органоида. Однако присоединение токсина глазковой пятнистости листьев кукурузы активирует бомбу, открывая канал и лишая митохондрию способности вырабатывать энергию. Клетка, лишенная энергии, погибает. По мере распространения грибка токсин убивает растение, клетку за клеткой. К заболеванию восприимчивы только те растения, у которых есть соответствующий ген ионного канала, т. е. ЦМС-разновидности. Взаимосвязь восприимчивости к токсину и мужской стерильности неразрывна, поскольку и то и другое является результатом одного и того же процесса. Даже в отсутствие токсина ионный канал активируется в митохондриях клеток, которые снабжают развивающиеся пыльцевые зерна питательными веществами, и, когда эти клетки чахнут и погибают, вместе с ними погибает и пыльца.
Несмотря на опустошение, нанесенное глазковой пятнистости листьев кукурузы в 1970 г. в США, стране очень повезло. На тот момент более 85 % растений имели ген ЦМС. Сухая погода в сентябре в северных и западных штатах остановила распространение грибка и предотвратила практически полную гибель урожая. Как отмечает Пол Реберн в своей наводящей на размышления книге «Последний урожай» (The Last Harvest), масштабы эпидемии глазковой пятнистости листьев кукурузы и ее огромный экономический эффект объясняются тем, что «кукурузный пояс» США был засеян в основном одной разновидностью кукурузы. Генетическое единообразие современных зерновых культур и практика выращивания всего одного-двух видов растений на огромной площади приводят к тому, что в случае восприимчивости одного растения к новому заболеванию восприимчивыми к нему оказываются и все остальные. Таким образом, под угрозу ставится весь урожай. Более традиционные методы земледелия, при которых выращивается множество местных разновидностей растений, поддерживают генетическое разнообразие, и если одни растения поддаются заражению, то многие другие устойчивы к заболеванию. Это серьезное основание для сохранения как можно большего числа диких видов сельскохозяйственных культур, поскольку без их генов селекционеры могут оказаться не в состоянии вывести сорта, устойчивые к новым опасностям, которые наверняка встретятся в будущем.
Зеленое электричество
Практически все виды жизни на нашей планете зависят от способности растений поглощать энергию солнца и запасать ее в виде молекул сахара. Этот процесс, называемый фотосинтезом, является главным источником всех видов пищи, которую мы едим, всех молекул, из которых состоит наш организм, а также подавляющей части кислорода в атмосфере. В процессе фотосинтеза углекислый газ и вода превращаются в сахар и кислород под действием энергии солнечного света, и все это происходит в органоидах, так называемых хлоропластах, которые находятся в клетках растений.
Чтобы не допустить чрезмерной потери воды, листья большинства растений покрыты толстой воскообразной оболочкой. Однако она также препятствует диффузии углекислого газа и кислорода внутрь листа и из него, поэтому газообмен происходит через специальные поры на нижней части листа, так называемые устьица, которые действуют как микроскопические окна. Беда в том, что устьица не только впускают углекислый газ и выпускают кислород, но и очень эффективно выпускают водяной пар. Это может очень существенно осложнять жизнь растения, так как воду, теряемую через устьица, необходимо возмещать, высасывая ее из почвы. У некоторых пустынных растений во избежание такой ситуации устьица открываются только ночью, что сильно сокращает потерю воды во время жаркого дня. Но у них появляется другая сложность – для фотосинтеза требуются и углекислый газ, и солнечный свет. Получается классический замкнутый круг. В результате большинство растений балансируют процессы фотосинтеза и потери воды, непрерывно открывая и закрывая устьица на протяжении дня в зависимости от освещенности и влажности воздуха.
Устьица сформированы из двух «замыкающих» клеток, которые образуют пору и управляют ее открыванием и закрыванием, регулируя количество содержащейся в них воды. Когда замыкающие клетки набухают и раздуваются, пора между ними открывается, а когда они теряют воду и становятся дряблыми, пора захлопывается. Перемещение воды, влияющее на объем замыкающих клеток и, следовательно, на состояние устьица, регулируется комбинацией насосов и каналов. Повышение интенсивности света вызывает выкачивание положительно заряженных ионов водорода из клетки, создавая отрицательный потенциал на клеточной мембране. Это изменение мембранного потенциала, в свою очередь, открывает калиевые каналы, позволяя ионам калия входить в замыкающие клетки. Вода следует за ионами калия, так что замыкающие клетки увеличиваются в объеме на 40 % и открывают пору устьица. Пока калиевые каналы открыты, пора не закрывается. Когда же уровень освещения падает или растение испытывает недостаток воды, калиевые каналы закрываются. Как следствие, вода уходит, замыкающие клетки сжимаются, и пора устьица закрывается.
В определенном смысле, управляя набуханием замыкающих клеток, калиевые каналы растения регулируют процесс фотосинтеза. Можно утверждать, что они самые важные ионные каналы на Земле. Я даже в каком-то смысле горжусь, что эти калиевые каналы относятся к тому же семейству каналов, к которому принадлежат и мои любимые каналы. У них, наверное, был общий предок, появившийся очень давно, еще до того, как царства животных и растений разделились.
