Стратегические игры. Доступный учебник по теории игр Диксит Авинаш
В = 60 + Py и С = 2.
Следовательно, цена, которую выберет ресторан Xavier’s для максимального увеличения прибыли, будет удовлетворять формуле В/2С и составит
Pх = 15 + 0,25 Py.
Это уравнение определяет значение Pх, при котором прибыль ресторана Xavier’s будет максимальной при соответствующем значении цены ресторана Yvonne’s Py. Иными словами, это и есть то, что нам нужно: правило наилучшего ответа ресторана Xavier’s.
Правило наилучшего ответа ресторана Yvonne’s можно найти аналогичным способом. Поскольку затраты на обслуживание клиентов и объемы продаж двух ресторанов полностью симметричны, очевидно, что это уравнение будет иметь такой вид:
Pу = 15 + 0,25 Pх.
Оба правила используются одним и тем же способом для построения графиков наилучших ответов. Например, если Xavier’s назначит цену 16, то Yvonne’s введет это значение в свое правило наилучшего ответа, чтобы найти Pу = 15 + 0,25 (16) = 19; точно так же наилучший ответ ресторана Xavier’s на значение цены ресторана Yvonne’s Pу = 16 составляет Pх = 19, наилучший ответ каждого ресторана на цену другого 4 равен 16, на цену 8 — 17 и т. д.
На рис. 5.1 приведены графики этих двух правил наилучшего ответа. В силу особенностей нашего примера (линейная зависимость между объемом продаж и назначенными ценами, а также постоянные издержки на приготовление каждого блюда) оба графика наилучших ответов представляют собой прямые линии. При других характеристиках спроса и затрат они могут не быть прямыми линиями, но метод их построения тот же, а именно: сначала зафиксировать цену одного ресторана (скажем, Pу), а затем найти значение цены другого ресторана (например, Pх), которая максимизирует прибыль второго ресторана, и наоборот.
Рис. 5.1. Графики наилучших ответов и равновесия в игре «ценообразование в ресторанах»
Точка пересечения двух графиков наилучшего ответа — это равновесие Нэша в игре в ценообразование между двумя ресторанами. Она представляет пару цен (по одной на каждую компанию), которые являются наилучшими ответами друг на друга. Конкретные значения для равновесной стратегии ценообразования каждого ресторана можно вычислить алгебраически, решив два правила наилучших ответов относительно Px и Py. Мы намеренно выбрли такой пример, чтобы уравнения были линейными и легко решаемыми. В данном случае мы просто подставим формулу для Px в формулу для Py и получим следующее уравнение:
Py = 15 + 0,25Pх = 15 + 0,25(15 + 0,25Py) = 18,75 + 0,0625Py.
Последнее уравнение можно упростить до Py = 20. Ввиду симметричности задачи не составит труда найти, что Px = 20[60]. Таким образом, в равновесном состоянии каждый ресторан назначит цену 20 долларов на блюда в своем меню и получит 12 долларов прибыли на каждых 2400 клиентов (2400 = (44 — 2 20 + 20) 100), которых обслуживает за месяц, что обеспечит общий объем прибыли 28 800 долларов в месяц.
Мы привели пример с ценообразованием в ресторанах, чтобы показать, как найти равновесие Нэша в игре, где стратегии представляют собой непрерывные переменные, такие как цены. Однако эту ситуацию целесообразно проанализировать более детально и объяснить кое-какие экономические аспекты стратегий ценообразования и прибыли при конкуренции между небольшим количеством компаний (в данном случае двух). На языке экономики такую конкуренцию называют «олигополия», от греческих слов, означающих «малое количество продавцов».
Для начала обратите внимание, что график наилучшего ответа каждой компании наклонен вверх. В частности, если один ресторан поднимает цену на 1 доллар, наилучший ответ другого ресторана — поднять цену на 0,25 доллара, или 25 центов. Когда один ресторан повышает цену, некоторые его клиенты переходят в другой ресторан, а это означает, что его конкурент может получить прибыль за счет новых клиентов посредством частичного повышения цены. Таким образом, ресторан, поднимающий цену, помогает конкуренту увеличить прибыль. В случае равновесия Нэша, при котором каждый ресторан назначает цену независимо от другого и исходя исключительно из собственной прибыли, он не учитывает дополнительное преимущество, которое создает для другого ресторана. Могут ли они объединить усилия и договориться о повышении цен, тем самым увеличив свою прибыль? Да. Предположим, два ресторана установили цены по 24 доллара каждый; стало быть, каждый из них получит 16 долларов прибыли на каждого из 2000 клиентов (2000 = (44 — 2 24 + 24) 100), которых ресторан обслуживает за месяц, следовательно, общий объем прибыли составит 32 000 долларов в месяц.
Эта игра в ценообразование в точности такая же, как и дилемма заключенных, рассмотренная в главе 4, но теперь стратегии носят непрерывный характер. В истории из главы 4 у мужа и жены было искушение предать друг друга и признаться в совершении преступления в полиции, однако, сделав это, оба бы получили более длинные тюремные сроки (худшие исходы игры). Аналогично более прибыльная цена 24 доллара не является равновесием Нэша. Каждый из ресторанов, произведя расчеты, попытается предложить клиентам более низкую цену. Предположим, Yvonne’s начнет с цены 24 доллара. Воспользовавшись формулой наилучших ответов, можно определить, что Xavier’s при этом установит цену 15 + 0,25 24 = 21. Далее Yvonne’s отреагирует своим наилучшим ответом: 15 + 0,25 21 = 20,25. В случае продолжения этого процесса цены обоих ресторанов сведутся к равновесию Нэша, то есть к 20 долларам.
Но какая цена выгоднее для обоих ресторанов? При наличии симметрии допустим, что оба заведения назначат одну и ту же цену Р. Тогда прибыль каждого ресторана равна:
x = y = (P — 8) (44 — 2P + P) = (P — 8) (44 — P) = — 352 + 52P — P2.
Оба могут выбрать Р для максимизации формулы. Воспользовавшись уравнением, представленным в разделе 1.А, мы видим, что решение: Р = 52/2 = 26. Полученная в результате прибыль каждого ресторана составит 32 400 долларов в месяц.
На языке экономики соглашение о повышении цен до уровня, оптимального для обеих сторон, называется картелем. Высокие цены наносят ущерб потребителям, поэтому органы государственного регулирования США обычно пытаются предотвратить образование картелей и заставить компании конкурировать друг с другом. Явный сговор по поводу цен находится вне закона, но негласный сговор все же может иметь место в повторяющейся дилемме заключенных (мы проанализируем повторяющиеся игры такого рода в главе 10)[61].
Сговор необязательно приводит к повышению цен. В нашем примере, если один ресторан снизит цену, его объем продаж увеличится отчасти потому, что он переманит некоторых клиентов от конкурента, поскольку продукты (блюда) двух ресторанов взаимозаменяемы. В других контекстах две компании могут продавать взаимодополняющие продукты, скажем программное и аппаратное обеспечение. В этом случае, если одна из них снижает цену, объем продаж в обеих компаниях возрастает. При равновесии Нэша, когда две фирмы действуют независимо друг от друга, они не учитывают выгоду, которую принесло бы обеим снижение цен. Следовательно, они поддерживают цены на более высоком уровне, чем если бы координировали свои действия. Сотрудничество между такими компаниями привело бы к снижению цен, что было бы выгодно и клиентам.
Конкуренция не всегда подразумевает использование цен в качестве стратегических переменных. Например, рыболовные флотилии могут конкурировать за более крупный улов. В таком случае имеет место конкуренция по количеству, а не по цене, рассмотренная в данном разделе. Мы опишем конкуренцию по количеству чуть ниже, а также в нескольких упражнениях, размещенных в конце главы.
Наш второй пример взят из политики. Он требует немного больше математических выкладок, чем мы обычно используем, но мы объясним интуитивные идеи, лежащие в их основе, с помощью слов и графиков.
Рассмотрим выборы с участием двух партий или двух кандидатов. Каждая сторона пытается отнять голоса избирателей у другой стороны посредством рекламы — либо позитивных рекламных объявлений, подчеркивающих достоинства самой партии или кандидата, либо негативной рекламы, сфокусированной на недостатках соперника. Для простоты будем исходить из предположения, что изначально избиратели не владеют никакой информацией и не отдают предпочтения ни одной из партий, поэтому формируют свое мнение исключительно под влиянием рекламы. (Многие сказали бы, что это точное описание американской политики, но более продвинутые исследования в области политологии подтверждают тот факт, что информированные, стратегически мыслящие избиратели все же существуют. Мы проанализируем их поведение более подробно в главе 15.) Для того чтобы упростить ситуацию еще больше, допустим, что доля избирателей, голосующих за партию, равна доле партии в общей сумме расходов на рекламу избирательной кампании. Назовем партии или кандидатов Л и П; если Л тратит на рекламу x миллионов долларов, а П — y миллионов долларов, то Л получит долю x / (x + y) голосов, а П — у / (x + y) голосов. Читатели, заинтересовавшиеся этой областью практического применения теории игр, найдут более общее описание соответствующих методов в специальной литературе по политологии.
Сбор средств на оплату такой рекламы требует определенных затрат; к их числу относятся деньги на рассылку писем и телефонные звонки; время и труд кандидатов, партийных лидеров и активистов; будущее политическое вознаграждение для лиц, сделавших крупные пожертвования, а также возможные политические издержки в случае, если такое вознаграждение станет достоянием гласности и повлечт за собой скандал. Для простоты анализа предположим, что все эти затраты пропорциональны прямым затратам на проведение кампании х и у. В частности, допустим, что выигрыш партии Л оценивается как процент голосов за вычетом расходов на рекламу: 100x (x + y) — x. Аналогичным образом выигрыш партии П составляет: 100у / (x + y) — у.
Теперь можем определить наилучшие ответы. Поскольку это нельзя сделать без вычислений, выведем математическую формулу, а затем объясним ее общий смысл на интуитивном уровне. Для заданной стратегии х партии Л партия П выбирает стратегию у, чтобы максимизировать свой выигрыш. Условие первого порядка можно найти, зафиксировав значение х и приравняв производную от 100у / (x + y) — у по у к нулю. В итоге получим уравнение 100x / (x + y)2 — 1 = 0, или . На рис. 5.2 показан график этой функции, а также аналогичный график функции наилучшего ответа партии Л, а именно .
Рис. 5.2. Наилучшие ответы и равновесие Нэша в игре «политическая реклама»
Посмотрите на кривую наилучших ответов партии П. По мере роста значения переменной x партии Л значение переменной у партии П сначала немного повышается, а затем снижается. Если другая партия размещает мало рекламных материалов, то реклама первой партии обеспечит высокую отдачу в виде голосов избирателей, поэтому на незначительное увеличение расходов другой партии на рекламу целесообразно ответить еще более существенным увеличением собственных расходов на рекламу в целях усиления конкуренции. Однако если другая партия уже вкладывает в рекламу солидные средства, то реклама первой партии обеспечит мизерную отдачу по отношению к затратам на нее, поэтому лучше ответить на повышение рекламных расходов другой партии сокращением собственных расходов.
Оказывается, кривые наилучших ответов двух партий пересекаются в точках максимума. Опять же, некоторые алгебраические манипуляции с уравнениями этих двух кривых позволяют получить точные величины равновесных значений x и y. Вы можете убедиться, что в данном случае значение каждой из переменных x и y равно 25, или 25 миллионов долларов. (Предполагается, что речь идет о выборах в Конгресс; выборы в Сенат и президентские выборы обходятся в наши дни гораздо дороже.)
Как и в игре в ценообразование, здесь мы имеем дело с дилеммой заключенных. Если обе партии сократят расходы на рекламу в равной пропорции, это никак не повлияет на долю голосов избирателей, но при этом обе партии сэкономят на расходах, а значит, получат более крупный выигрыш. В отличие от картеля производителей взаимозаменяемых продуктов (который поддерживает высокие цены и наносит ущерб потребителям), соглашение между политиками о сокращении объема рекламы, по всей вероятности, принесло бы пользу избирателям и обществу в целом, подобно тому как картель производителей взаимодополняющих продуктов привел бы к снижению цен и выгоде потребителей. Из решения данной дилеммы заключенных извлекли бы пользу все. В действительности Конгресс уже несколько лет пытается это сделать и даже ввел частичные ограничения, однако политическая конкуренция слишком ожесточенная для того, чтобы обеспечить полное или длительное разрешение этой дилеммы.
Но что если партии находятся в несимметричных ситуациях? Тогда может возникнуть асимметрия двух типов. Одна партия (скажем, П) может иметь возможность размещать рекламу по более низкой цене, поскольку у нее есть доступ к средствам массовой информации. Или рекламные расходы партии П могут быть эффективнее, чем у партии Л, — например, доля голосов Л может составлять x / (x + 2y), тогда как доля голосов П — 2y / (x + 2y).
В первом случае партия П использует свой более дешевый доступ к рекламе, выбирая более высокий уровень расходов y для любого заданного значения x партии Л; иными словами, кривая наилучших ответов на рис. 5.2 смещается вверх. Равновесие Нэша смещается вверх и направо вдоль неизменной кривой наилучших ответов партии Л. Таким образом, в итоге партия П потратит на рекламу больше, а партия Л меньше, чем раньше. Это сродни ситуации, когда побеждающая сторона как будто «играет мускулами», а проигрывающая как будто сдается перед таким натиском.
Во втором случае кривые наилучших ответов обеих партий смещаются в соответствии с более сложной схемой. В итоге обе несут равные расходы на рекламу, но меньше 25, как в симметричной ситуации. В нашем примере, где эффективность рекламных расходов партии П в два раза превышает эффективность расходов партии Л, это приводит к тому, что объем расходов каждой партии составляет 200 / 9 = 22,2 < 25. (Следовательно, именно в симметричной ситуации наблюдается самая острая конкуренция.) Если рекламные расходы партии П более эффективны, верно также и то, что в связи с характером асимметричности кривых наилучших ответов новое равновесие Нэша вместо точек максимума этих двух кривых расположено на нисходящей части кривой наилучших ответов партии Л и восходящей части кривой наилучших ответов партии П. Иными словами, хотя обе партии тратят на рекламу одинаковую сумму, объем рекламных расходов партии П, находящейся в более благоприятных условиях, превышает сумму, вызывающую максимальный ответ партии Л, а объем рекламных расходов более слабой партии Л меньше суммы, способной вызвать максимальный ответ партии П. В конце данной главы приведено дополнительное упражнение (U12), которое позволит студентам с более высоким уровнем математических знаний вывести эти результаты.
Хотя стратегии (цены или расходы на политическую рекламу) и выигрыши (прибыль и доля голосов избирателей) в предыдущих двух примерах связаны с конкуренцией между компаниями или политическими партиями, данный метод поиска равновесия Нэша в игре с непрерывными стратегиями абсолютно универсален и вы можете использовать его для решения других подобных игр.
Предположим, игроки следуют под номерами 1, 2, 3, …. Обозначим их стратегии как х, у, z, … в этом порядке, а выигрыши — соответствующими заглавными буквами X, Y, Z, …. В общем случае выигрыш каждого игрока является функцией выбора всех игроков; отметим соответствующие функции как F, G, H, … На основании этой информации об игре составим выигрыши и запишем их так:
X = F (x, y, z, …), Y = G (x, y, z, …), Z = H (x, y, z, …).
Если использовать этот общий формат для описания нашего примера с ценовой конкуренцией между двумя игроками (компаниями), то стратегии x и y становятся ценами Px и Py. Выигрыши X и Y — это прибыль x и y. Функции F и G — квадратичные функции вида
x = –8(44 + Py) + (16 + 44 + Py) Px — 2(Px)2.
Аналогичная формула есть для y.
Согласно общему подходу, игрок 1 рассматривает стратегии игроков 2, 3, … как не поддающиеся его контролю и выбирает свою стратегию так, чтобы максимально увеличить собственный выигрыш. Следовательно, для каждого заданного множества значений y, z, … выбор игроком 1 значения х максимизирует X = F (x, y, z, …). При использовании дифференциального исчисления условие такой максимизации состоит в том, что производная от X по х при постоянном значении y, z, … (это частная поизводная) равна нулю. Для особых функций существуют простые формулы, подобные приведенной выше и использованной для квадратичной функции. И даже если алгебраические формулировки или исчисление слишком сложны, есть немало компьютерных программ, которые составят для вас таблицы или построят графики наилучших ответов. Какой бы метод вы ни применили, вы можете найти уравнение оптимального выбора игроком 1 значения x при заданных значениях y, z, …, описывающее функцию наилучшего ответа игрока 1. Аналогичным способом можно найти функции наилучших ответов всех остальных игроков.
Функции наилучших ответов соответствуют числу стратегий в игре и могут быть решены одновременно при условии, что стратегические переменные рассматриваются как неизвестные величины. Это решение и есть равновесие Нэша, которое мы ищем. В одних играх может быть множество решений, обеспечивающих множество равновесий Нэша, в других решение может отсутствовать, что требует дальнейшего анализа, например включения смешанных стратегий.
2. Критический анализ концепции равновесия Нэша
Хотя равновесие Нэша — важнейшая концепция решения игр с одновременными ходами, оно стало объектом ряда теоретических критических замечаний. В данном разделе мы кратко рассмотрим некоторые из них, а также приведем контраргументы, подкрепляя каждый примером[62]. Отдельные критические замечания противоречат друг другу; есть и подлежащие опровержению при более тщательном анализе игр. Некоторые утверждают, что сама концепция равновесия Нэша неполная, и предлагают дополненные или расширенные концепции с более эффективными свойствами. Мы сформулируем в данном разделе одну из таких альтернатив и укажем еще на несколько в последующих главах. Мы убеждены, что наши объяснения помогут вам заново обрести, хотя и с оговорками, уверенность в целесообразности применения концепции равновесия Нэша. Однако определенные серьезные сомнения остаются неразрешенными, и это говорит о том, что теорию игр пока еще нельзя назвать окончательно сформировавшейся наукой. Но даже этот факт должен воодушевить начинающих специалистов по теории игр, поскольку открывает перед ними широкое поле для новых идей и исследований. Неразвивающаяся наука — мертвая наука.
Давайте начнем с анализа основного фактора привлекательности концепции равновесия Нэша. Большинство игр в этой книге относятся к категории некооперативных, то есть тех, в которых игроки действуют независимо друг от друга. Следовательно, было бы естественно предположить, что если действие игрока нельзя назвать лучшим согласно его системе ценностей (шкале выигрышей) в контексте действий других игроков, то он изменит его. Иными словами, весьма заманчиво предположить, что действие каждого игрока будет представлять собой наилучший ответ на действия остальных игроков. Равновесие Нэша обладает именно таким свойством «одновременных наилучших ответов»; собственно говоря, это и есть его определение. При любом предполагаемом исходе, не являющемся равновесием Нэша, минимум один игрок мог бы добиться более выгодных для себя результатов, переключившись на другое действие.
Такие соображения заставили нобелевского лауреата Роджера Майерсона возразить против критических замечаний в адрес равновесия Нэша, основанных на интуитивной привлекательности использования другой стратегии. В качестве контрдовода Майерсон просто переложил бремя доказывания на критика. «Когда меня спрашивают, почему участники игры должны вести себя так, как предписывает равновесие Нэша, — сказал он, — мой любимый ответ — спросить “Почему бы нет?” и предоставить сомневающемуся возможность предложить свой вариант того, что, по его мнению, должны делать игроки. Если этот вариант не является равновесием Нэша, тогда… мы можем продемонстрировать, что он бы свел к нулю собственную обоснованность, если бы игроки считали его точным описанием поведения друг друга»[63].