0,05. Доказательная медицина от магии до поисков бессмертия Талантов Петр
Человек никогда не станет беспристрастной диагностической машиной: ожидания врача всегда влияют на его выводы. В 1934 году в Нью-Йорке была отобрана тысяча одиннадцатилетних школьников, которых последовательно показали двум группам врачей. Каждая группа считала, что они единственные, кто осматривает детей. Врачи первой порекомендовали удалить миндалины у 45% из тех, у кого они не были удалены. Вторая – у 46% из тех, кого первая группа сочла здоровыми. Таким образом, из 389 человек с не удаленными миндалинами либо одна, либо обе группы педиатров отправили на операцию 273 ребенка. 116 школьников, чьи миндалины не были удалены до начала эксперимента и которых обе группы врачей признали здоровыми, показали еще одной группе специалистов. Уже догадываетесь, каким был результат? Третья группа направила 44% на операцию. Ожидания педиатров, привыкших, что они находят показания к операции у определенной, привычной доли обследуемых, повлияли на интерпретацию увиденного больше, чем реальное состояние миндалин. Кстати, позднее столь частое удаление миндалин перестали считать оправданным, и сейчас в США через эту операцию проходит не более 1% детей.
Приборные исследования тоже не гарантируют объективности. Представление, что их результаты можно всегда однозначно интерпретировать и разница в выводах вызвана только тем, что один врач опытнее другого, глубоко ошибочно. Везде, где в оценке результатов участвует человек, субъективность неизбежна. В первую очередь это касается таких методов исследования, как рентгеновские снимки, УЗИ, КТ, МРТ, гистологические исследования. Разные врачи будут делать разные выводы из одного и того же снимка, и это не значит, что один хуже другого. Более того, один и тот же врач может по-разному интерпретировать тот же снимок, если оценивает его более одного раза.
В 2005 году были опубликованы результаты проведенного в Самаре исследования. 101 врач, в том числе рентгенологи и специалисты по заболеваниям дыхательных путей, просматривал 50 высококачественных рентгеновских снимков легких: 37 снимков пациентов с подтвержденными другими методами легочными заболеваниями, включая туберкулез, и 13 снимков здоровых людей. Снимки показывали по очереди, не сопровождая какими-либо комментариями. Иногда через несколько дней врачу без предупреждения показывали снимок, который он уже оценивал раньше. Уровень согласия между специалистами оказался невысок: во многих случаях они давали прямо противоположные заключения. Это расхождение мало зависело от опыта врача и касалось снимков как больных, так и здоровых людей. Более того, одни и те же врачи в разные дни делали противоположные выводы по одним и тем же снимкам.
Таким образом, ослепление того, кто оценивает состояние пациента, исключает осознанное или неосознанное завышение результатов в экспериментальной и занижение в контрольной группе. Помимо этого не ослепленный врач может:
• дать пациенту понять, в какой группе тот находится (последствия мы обсудили в предыдущей главе);
• влиять на результаты, назначая разное дополнительное лечение пациентам в разных группах;
• избирательно удалять из исследования самых тяжелых или, наоборот, самых здоровых пациентов, завышая средний результат экспериментальной группы или занижая результат контрольной.
Субъективные искажения проявляются ярче там, где для описания симптомов используются слова. В силу многозначности и неопределенности человеческого языка они могут быть интерпретированы по-разному. Хотя ослепление не устраняет этих искажений, оно помогает равномерно распределить их между сравниваемыми группами. Однако широкий круг медицинских проблем в принципе не может быть решен, если у нас нет способа избавиться от многозначности. Пусть и не сразу, но медицина осознала это и начала учиться говорить на новом, более точном языке – языке чисел.
Глава 6
Числа
Измерения
Одной из причин прорыва в понимании окружающего мира в XVI–XVIII веке, когда были заложены основы современных химии, физики и астрономии, стал переход от теоретических спекуляций к практическим экспериментам и измерениям. Место словесных баталий схоластов постепенно занимал точный язык математики. Яркий пример того, как союз с ней менял науку, – судьба флогистона. Корни этой идеи можно обнаружить в теориях алхимика Иоганна Бехера. В конце XVII века он описал свое видение устройства мира, взяв за основу древнегреческую концепцию элементов, но предложив вместо четырех греческих субстанций три своих. Одна из них, по мысли Бехера, отвечала за процесс горения. Его последователь Георг Шталь назвал ее флогистоном.
Шталь утверждал, что флогистон содержится во всех горючих субстанциях, а процесс горения – не что иное, как выход флогистона из горящего предмета в окружающий воздух. Например, дерево, по его мнению, состояло из флогистона и угля и распадалось на них, когда горело. Быстрое прекращение горения в замкнутом пространстве Шталь объяснял тем, что воздух может поглотить лишь ограниченное количество флогистона, быстро насыщается в замкнутом пространстве и дальнейшее выделение флогистона становится невозможным. Эта теория оставалась основной концепцией горения более ста лет. Почти никого не смущало, что ее сторонники не предъявляют никаких доказательств. Внутренней непротиворечивости идеи было достаточно, чтобы ее преподавали в университетах как нечто само собой разумеющееся.
Флогистон утратил свои позиции только благодаря сопровождавшимся измерениями экспериментам. Взвешивание горючих металлов, таких как натрий, калий и магний, показало, что их вес после горения увеличивается, а не уменьшается. Поэтому разумнее было предположить, что, горя, они поглощают, а не выделяют некоторое вещество. Однако флогистон был готов сражаться до последнего живого сторонника, и в качестве встречного аргумента прозвучала идея, что у флогистона отрицательный вес. Тех, кто отстаивал теорию, не смущал даже тот факт, что ни одного объекта с отрицательным весом никто еще не видел. Последний гвоздь в крышку гроба забил Антуан Лавуазье, тот самый химик, в чьем доме комиссия под руководством Бенджамина Франклина проводила экспериментальную проверку месмеризма. Путем опытов в закрытых сосудах Лавуазье показал, что для горения требуется имеющий определенную массу газ.
Переход на язык чисел позволил добиться значимых успехов в физике, астрономии и механике, но медицина оставалась от этой числовой революции в стороне. Врачи не спешили использовать математику. Конечно, всегда были отдельные исключения. Например, Эрасистрату, помимо создания приборов для измерения пульса и объема дыхания, приписывают и любопытные эксперименты с птицами. Он переставал их кормить, а затем измерял и фиксировал их вес, а также вес выделяемых ими экскрементов. Поскольку суммарная потеря веса была больше, чем вес птичьего помета, Эрасистрат абсолютно верно предположил существование неких “невидимых эманаций”. Он бы не смог прийти к этой опережающей время гипотезе без помощи математики, полагаясь лишь на чувства и размышления.
Увы, интерес александрийцев к измерениям постигла та же судьба, что и анатомические вскрытия. Причины были те же: невозможность извлечь из измерений практическую пользу и отсутствие в интеллектуальной культуре того времени идеи, что числа имеют большую ценность, чем философские рассуждения. Только к XVII веку начали звучать голоса считавших, что для прогресса медицине необходимо перенять опыт других областей знания. Итальянский врач Джоржо Бальиви в 1696 году призывал врачей следовать примеру астрономов.
Астрономы разработали множество систем, описывающих небеса: птолемееву, коперникову, геогелиоцентрическую, полугеогелиоцентрическую – и все они противоречат друг другу. Но в том, что касается предсказания положения небесных тел, их мнения нисколько не расходятся… ведь какую бы особенную Теорию Звезд ни придумал очередной астроном, она будет опираться на те же наблюдения и измерения, что у остальных.
Благодаря измерениям и экспериментам были опровергнуты старые представления о кровеносной системе. Гален утверждал, что кровь образуется из пищи в печени, откуда разносится по всему телу и поглощается им, то есть каждая пульсация сердца гонит по телу новую кровь. Ошибка была исправлена в XVII веке британским врачом Уильямом Гарвеем. Несложные расчеты показали, что Гален никак не может быть прав. Гарвей определил, что сердце за один раз может пропустить через себя не более восьмидесяти миллилитров крови. За полчаса оно сокращается более двух тысяч раз. Если считать, что вся выталкиваемая сердцем кровь создается заново, то за полчаса организм должен произвести из пищи не менее 100 литров жидкости. Очевидно, что такому количеству крови неоткуда взяться. Более того, в теле содержится примерно 4 литра крови, куда же тогда девается остальная? Единственное возможное объяснение заключалось в том, что ограниченный, относительно небольшой объем крови циркулирует по замкнутой системе. Благодаря расчетам Гарвей пришел к правильным выводам задолго до того, как замкнутость кровеносной системы была подтверждена анатомически.
Гарвей провел сотни экспериментов на животных и исправил множество старых ошибок. Так, Гален считал, что активная фаза сердца – фаза расширения, когда кровь всасывается в правый желудочек. Гарвей же, сделав на бьющемся сердце надрез, наблюдал, как одновременно с сокращениями кровь толчками выбрасывается и из сердца, и из надрезов на артериях – значит, сердце работает как насос, который, сокращаясь, выталкивает кровь в сосуды. Ранее считалось, что между левым и правым желудочками сердца существует отверстие. Но Гарвей закачал воду в идущие к сердцу вены и наблюдал за ее движением, определив таким образом, что правый и левый желудочек соединены только через легочной круг кровообращения.
Некоторые давние заблуждения были исправлены при помощи совсем простых экспериментов. Гален утверждал, что вены несут кровь от сердца. Накладывая на конечности давящие повязки, Гарвей показал, что артерии перестают пульсировать ниже повязки и сохраняют пульсацию выше ее. Когда он немного ослаблял повязку, кровь поступала в конечность через артерии, которые расположены глубже, но не могла покинуть ее через поверхностно расположенные вены, по-прежнему сжатые повязкой. Было видно, как рука опухает и наполняется кровью, а значит, кровь движется по артериям от сердца к периферии, а по венам к сердцу. Ничто не мешало Галену провести этот опыт. Вероятно, ему даже не приходило в голову, что он должен как-то подтвердить свою теорию. Понадобилось полторы тысячи лет, чтобы числовой метод и эксперименты стали принимать всерьез, а вес авторитетов ослабел.
Инокуляция
Чтобы ломать традиции, нужна серьезная угроза. На эту роль годится война: проблемы армии, флота и тыла не раз в истории медицины становились причиной важной трансформации. Еще одна такая угроза – эпидемические заболевания. Именно их масштаб и драматичность последствий дали медицине стимул наконец заговорить на языке математики.
Первую попытку применить статистику – то есть сбор и анализ больших объемов числовых данных – для нужд медицины предпринял в XVII веке живший в Лондоне галантерейщик Джон Граунт. Этот незаурядный человек пытался создать систему раннего оповещения о вспышках бубонной чумы, для чего еженедельно собирал данные об умерших от этой болезни. Хотя система так и не была создана, Граунт сделал много других замечательных вещей: благодаря многолетнему сбору и анализу информации о рождениях, болезнях и смертях в Лондоне он впервые смог точно рассчитать население города. Он же первым обнаружил, что девочек рождается больше, чем мальчиков, и что среди пациентов врачей женщин в два раза больше, чем мужчин, хотя мужчины умирают намного раньше. Граунт описал, как возникают и распространяются вспышки инфекций, а также опроверг поверье, что эпидемии чумы связаны с воцарением на престоле новых королей. Работу Граунта оценили по достоинству: он был принят в члены Королевского общества при поддержке самого короля. Британская монархия хорошо осознавала, что осведомленность о жизни подданных не только мощный инструмент управления страной, но и способ поднять престиж власти.
Однако болезнью, по-настоящему сделавшей статистику частью медицины, стала не чума, а оспа. Это заболевание убивало людей еще за много тысяч лет до нашей эры. Вероятно, вызывающие его вирусы Variola major и Variola minor – результат мутации изначально безвредного для человека вируса грызунов. Возбудитель оспы передается от больных здоровым воздушно-капельным путем[86] или через прикосновение. Спустя 10–14 дней у больного начинается лихорадка, затем на коже лица, конечностей, груди и на слизистых появляется сыпь. Еще через несколько дней сыпь превращается в характерные пустулы[87], на месте которых у выживших навсегда остаются шрамы – оспины. Смерть наступает на второй неделе заболевания. Относительно безопасный вирус Variola minor убивал лишь каждого сотого заболевшего, Variola major вызывал более тяжелую форму болезни, которая в XX веке заканчивалась гибелью каждого третьего больного. В XVIII веке от нее умирало до 60% взрослых и до 90% детей.
Эпидемии оспы случались в Европе с античных времен. Прошедшая по Римской империи во II веке антонинова чума унесла жизни почти 7 миллионов человек и, судя по оставленным Галеном описаниям, была оспой. В XVIII веке только в Европе от оспы гибло 400 тысяч человек ежегодно. Треть выживших на всю жизнь оставались слепыми.
Оспу нельзя вылечить, но можно предотвратить. Издавна было известно, что перенесшие оспу не заболевают повторно: в Древней Греции ухаживать за больными приглашали тех, кто уже переболел. Не позднее X века в Китае стали проводить профилактическую процедуру, позже названную инокуляцией. Содержимым оспенных пустул пропитывали кусочек ткани и втирали в ноздри здорового человека, в других культурах – наносили на небольшие надрезы на коже больного. Прошедший эту процедуру неизбежно заболевал оспой, но болезнь обычно проходила в более легкой форме и реже заканчивалась гибелью: из ста инокулированных погибали один-два человека.
Независимо от Китая эта практика появилась и в других местах, например в Африке и в Индии, а к XVIII веку пришла и в Европу. Разница в выживаемости заболевших при инокуляции и при естественном заражении была столь разительной, что процедура очень быстро распространилась. Среди прошедших ее были российская императрица Екатерина II с сыном – будущим императором Павлом I, король Франции Людовик XVI с детьми, императрица Мария-Тереза Австрийская с детьми и внуками и король Пруссии Фридрих II, который за неимением детей подверг инокуляции всех солдат своей армии.
Двадцать второго апреля 1721 года в порту Бостона причалило британское военное судно “Сихорс”. На следующий день у одного из членов команды обнаружили признаки оспы. Все прибывшие были тут же отправлены под карантин, а над расположенным рядом с портом карантинным зданием взвился красный флаг с надписью “Господи, смилуйся над этим домом!”. Но было поздно. Через некоторое время симптомы оспы появились еще у девятерых членов команды, а затем смертельная болезнь начала стремительно распространяться по городу.
Как только по Бостону прокатился слух о начале эпидемии, влиятельный местный проповедник Коттон Мэзер, интересовавшийся медициной, разослал бостонским врачам письма с призывом начать немедленную инокуляцию всех желающих. Помимо европейского опыта он ссылался на рассказы своих темнокожих рабов о том, что в Западной Африке, откуда они родом, эта процедура широко применяется и считается очень эффективной. Мэзер писал, что уже сделал инокуляцию самому себе и своим близким, а именно “сыну, которому около шести, рабу тридцати шести и Джеки, которой два с половиной”.
Его призыв услышал только один человек – врач Забдиэль Бойлстон, который начал делать инокуляцию всем желающим и активно пропагандировать ее как способ увеличить свои шансы пережить эпидемию. Бойлстон был незаурядным человеком: впоследствии он вошел в историю не только благодаря этому эпизоду, но и потому, что первым провел в США серьезную хирургическую операцию и первым в мире удалил опухоль молочной железы.
Попытки Мэзера и Бойлстона остановить инфекцию столкнулись не просто с равнодушием горожан – неожиданно они встретили серьезное организованное сопротивление. Некоторые бостонские врачи организовали Общество врачей-антиинокуляторов. Они регулярно собирались в кофейнях, чтобы шумно обсуждать, насколько опасна инокуляция и безответственны действия тех, кто ее проводит. Аргументы были разнообразны: от несоответствия религиозным нормам до отсутствия научных доказательств эффективности.
С подачи Общества бостонские газеты публиковали направленные против инокуляции статьи, раздувая истерию и вовлекая в нее обывателей. К травле инокуляторов присоединился и юный Бенджамин Франклин, будущий президент США и член той самой королевской комиссии, которая проведет экспериментальную проверку месмеризма. Бенджамин и его старший брат Джеймс опубликовали в принадлежавшей последнему газете New England Courant антиинокуляторскую статью, настолько, по мнению суда, “переполненную вздором, невежеством, аморальностью, ложью и противоречиями”, что Джеймс был приговорен к четырем неделям тюрьмы. На пике антиинокуляционной кампании в окно преподобного Мэзера влетела бомба. Она попала в комнату его племянника, и лишь по счастливому стечению обстоятельств никто не пострадал: фитиль оказался бракованным, и взрыв не последовал. Прикрепленная к бомбе записка гласила: “Проклятый пес Коттон Мэзер! Инокулирую тебя вот этим! Получи свою оспу!”
Впрочем, некоторые аргументы противников инокуляции были справедливы. Мэзер и Бойлстон начали применять новый метод, действительно не имея убедительных подтверждений его полезности. Рассказы рабов и истории о применении в Европе вряд ли можно считать надежными доказательствами. Но в отличие от всех, кто применял инокуляцию ранее, Мэзер и Бойлстон вели подробнейшие записи. Они скрупулезно считали количество тех, кто прошел процедуру, и отслеживали их дальнейшую судьбу. К началу 1722 года у них было достаточно данных, чтобы утверждать: польза от инокуляции перевешивает вред.
Из тех, кто прошел инокуляцию, каждый пятидесятый заболел оспой и погиб. Мы можем сказать, что смертность в этой группе составила 2%. Смертностью называют отношение умерших в какой-либо группе к общему количеству людей в ней. Смертность среди тех, кто не прошел процедуру и заболел естественным путем, была 14,6%. Во время следующих вспышек Мэзер и Бойлстон продолжили свою работу и получили похожие результаты. Публикация конкретных цифр вместо эмоциональной ругани постепенно остудила негативно настроенных врачей и жителей города.
Но происходило это медленно: во время вспышки 1752 года в Бостоне инокулировали уже более двух тысяч жителей, но это по-прежнему был лишь каждый четвертый не имевший иммунитета и не покинувший Бостон. Во время эпидемии 1764 года инокуляцию прошли примерно 40%, а число заболевших естественным образом составило лишь 5%, что намного меньше 55%, зарегистрированных в 1721 году. Количество смертей от оспы по сравнению с эпидемией 1721 года снизилось почти в восемь раз.
Выжил бы сын Бенджамина Франклина, если бы прошел инокуляцию?
Со временем Бенджамин Франклин стал ярым сторонником инокуляции, но изменившие его отношение обстоятельства были трагичны. В своей автобиографии он написал:
В 1736 я потерял одного из моих сыновей, замечательному мальчику было четыре года, и его убила оспа, полученная естественным путем. Я долго горько сожалел и по-прежнему сожалею, что не заразил его оспой через инокуляцию. Я пишу об этом для родителей, которые отказываются от этой процедуры, понимая, что никогда не простят себе, если инокуляция убьет их дитя. Но мой пример показывает, что те же горе и сожаление возможны и в случае отказа, поэтому выбирать нужно то, что безопаснее.
Инокуляция не стала бы гарантией того, что сын Франклина обязательно останется жив. Он мог погибнуть и от нее, это происходило в 1–2% случаев. Тогда Франклин так же горько сожалел бы о решении инокулировать сына. Никто не мог знать наверняка, что случилось бы именно с этим мальчиком при том или ином выборе отца. Но, используя числовые данные, собранные Мэзером и Бойлстоном, можно было посчитать и сравнить шансы на выживание в каждом случае.
Идея, которая сейчас может казаться простой, для того времени была абсолютно контринтуитивна. Она состоит в том, что на основе данных о поведении некой группы людей в прошлом мы можем сделать статистические выводы о том, что случится с этой или другой похожей группой в будущем.
Вот как выглядит расчет выбора правильного решения во время эпидемии оспы в Бостоне начала XVIII века.
В 1721 году население Бостона составляло 10700 человек.
Инокуляцию сделали 286 бостонцев. Из них остались в живых 280, а 6 человек погибло.
5759 жителей не сделали инокуляцию и заболели естественным путем. 4915 из них выжили, 844 погибли.
4655 человека не заболели оспой, и, соответственно, все они остались живы. Если бы все они согласились на процедуру, кто-то из них бы погиб.
Проще всего представить последствия инокуляции в виде такого дерева.
Мы исходим из того, что смертность от оспы, вызванной инокуляцией, и от оспы, полученной естественным путем, остается примерно неизменной от одной вспышки к другой. Поэтому смертность во время первой вспышки соответствует нашим шансам остаться в живых или погибнуть во время следующей.
Конечно, во время первой вспышки оспы этих данных еще не было, и опереться, делая сложный выбор, было не на что. Но благодаря тому, что Мэзер и Бойлстон тщательно собирали сведения о погибших и выживших, уже во время следующей волны инфекции можно было принять правильное решение.
Смертность тех, кто сделал инокуляцию, составила 0,021, выживаемость – 0,979. В сумме шансы этих взаимоисключающих сценариев должны быть равны единице.
Среди тех, кто не делал инокуляцию и заболел оспой естественным путем, смертность была 0,147, а выживаемость 0,853. Доля оставшихся в живых среди тех, кто отказался от инокуляции, складывается из тех, кто не заболел оспой, и тех, кто заболел и выжил. Поэтому вероятность выжить при отказе будет равна 0,919[88].
Шансы выжить при разных решениях тоже нагляднее представить в виде дерева.
В случае инокуляции шансы выжить несколько выше и равны 0,979. Поэтому процедура была верным выбором, но разница в шансах остаться в живых была не так велика, как может показаться, если сравнивать смертность прошедших инокуляцию и тех, кто заболел оспой естественным путем. Это вызвано тем, что среди прошедших инокуляцию заболевают все, а среди непрошедших доля заболевших лишь 0,553.
Однако мы должны учесть несколько моментов. Во-первых, смертность от оспы в Бостоне была относительно невысока. Это могло быть связано как с высоким уровнем жизни, так и с относительно неагрессивным вариантом вируса-возбудителя. Чем выше смертность от оспы, тем более правильным решением становится инокуляция. Во-вторых, значение 0,553 для заболеваемости в случае отказа от инокуляции занижено, поскольку не учитывает, что эта эпидемия оспы была в Бостоне не первой и многие не заболели, потому что болели раньше и имели иммунитет. Поскольку решение об инокуляции нужно принимать только тем, у кого иммунитета нет, то бостонцев с иммунитетом надлежит исключить при подсчете доли не заболевших. У нас нет данных о том, сколько из 4655 не заболевших имели иммунитет. Но если мы предположим, что хотя бы половина, то шансы выжить, не имея иммунитета и не сделав инокуляцию, были еще меньше и составляли уже 0,896[89].
Получается, что инокуляция в любом случае была более безопасным выбором[90].
Ничего страшного, если вы не следили за расчетами. Гораздо важнее понять стоящую за ними идею, оказавшую колоссальное влияние на то, как проводятся медицинские исследования.
Идея заключается в том, что мы можем делать выводы обо всей популяции, то есть о группе объединенных общим признаком людей на основе наблюдения за относительно небольшой ее частью. Например, на основании наблюдений за прошедшими инокуляцию в Бостоне в 1721 году сделать прогноз относительно судьбы тех, кто пройдет инокуляцию во время следующих вспышек оспы как в Бостоне, так и в других городах. Мы считаем всех прошедших инокуляцию одной большой популяцией, у которой достаточно общего, чтобы распространять результаты наблюдения за одной ее частью на остальные. Тех, кто не имел иммунитета и отказался от инокуляции, мы рассматриваем как другую популяцию. Сравнивая смертность в этих двух популяциях, мы можем решить, к какой из них безопаснее принадлежать.
Популяционный подход позволяет сделать прогноз относительно группы людей, но не предсказывает судьбу отдельного человека. Мы знаем, что на тысячу прошедших инокуляцию выживало больше, чем на тысячу отказавшихся. Но ни у Бенджамина Франклина тогда, ни у нас сейчас нет и не может быть способа сказать, что случилось бы именно с его четырехлетним сыном. Как бы ни хотелось нам уметь точно предсказывать судьбу отдельного человека, невероятная сложность биологических систем, к которым относятся и наши тела, не позволяет строить модели, гарантированно предсказывающие будущее. Нам остается оперировать шансами, или вероятностями. Мы еще поговорим об этом в следующих главах.
Бурная дискуссия вокруг инокуляции постепенно приучила врачей к тому, что свою позицию можно и нужно доказывать с помощью чисел. Используя математические аргументы, инокуляцию защищали такие известные врачи, как Филип Пинель, Уильям Блэк, Томас Персиваль и уже знакомый нам по проверке вытягивателей Джон Хайгарт. Хотя большинство продолжало считать числовой метод абсолютно неуместным в медицине, некоторые стали понемногу применять простую арифметику. С ее помощью были оценены эффективность кровопускания при лихорадке, методы лечения психических болезней, связь между болезнями и погодой, а также проведен сравнительный анализ выживаемости при разных способах хирургического удаления почечных камней и при разных наборах показаний для ампутации конечности. Предсказуемо, эти методы нашли больше поддержки в армии и на флоте, чем в гражданской медицине.
Инокуляцию применяли до тех пор, пока британский врач Эдвард Дженнер не предложил намного более безопасный метод. Дженнер с 13 лет практиковался у местного хирурга. Легенда гласит, что именно там он услышал от пациентки-молочницы: “Я никогда не заболею оспой, потому что уже переболела коровьей; теперь мне не грозит страшное лицо в оспинах”. Работавшие со скотом деревенские жители всегда знали, что переболевшие коровьей оспой уже не болеют человеческой. Коровью оспу вызывает вирус, очень похожий на возбудителя оспы. При этом коровья оспа очень легко переносится, практически никогда не вызывает серьезных последствий и не передается другим людям воздушно-капельным путем. Возникающий затем иммунитет к коровьей оспе эффективно защищает и от человеческой.
Четырнадцатого мая 1796 года Дженнер взял материал из пустулы на руке болевшей коровьей оспой молочницы и ввел его в кожу не переболевшего оспой мальчика. Через полтора месяца он инокулировал мальчика человеческой оспой, и тот не заболел. В 1797 году Дженнер отправил в Королевское общество статью, в которой описал свой эксперимент. Новую методику Дженнер назвал вакцинацией (от лат. vaccinia – “коровья оспа”). Королевское общество отвергло статью и рекомендовало автору прекратить изыскания в этой области. Годом позже, проведя еще несколько экспериментов, Дженнер за свой счет опубликовал их результаты в небольшой брошюре. По сравнению с небезобидной инокуляцией вакцинация обладала огромными преимуществами: вакцинированный не заболевал оспой, не заражал ею других и не подвергался значительному риску смертельного исхода. Но новинка опять была принята в штыки: многие известные врачи выступили против, и когда Дженнер отправился в Лондон за добровольцами для продолжения экспериментов, он не смог найти ни одного человека.
Лишь на следующий год Дженнеру удалось заручиться поддержкой нескольких влиятельных врачей, которые стали активно продвигать новый метод. Это позволило провести масштабное исследование, подтвердившее предварительные выводы. Вакцинация стала распространяться по Англии и уже на следующий год достигла других европейских стран. К 1821 году, через сто лет после бостонской эпидемии, вакцинация от оспы стала обязательной в Норвегии, Швеции, Дании и Баварии, а в 1853 году – и в Соединенном Королевстве. Постепенно она полностью вытеснила опасную инокуляцию. Последняя была запрещена сначала в Великобритании, а затем и в других развитых странах.
К 50-м годам XX века был разработан метод массового производства противооспенной вакцины. К этому времени оспа уже была почти полностью истреблена в Европе и Северной Америке, но в развивающихся странах ситуация оставалась катастрофической – ежегодно от оспы погибало до двух миллионов людей.
В 1966 году Всемирная организация здравоохранения (ВОЗ) начала кампанию по полному искоренению оспы. Возможной ее сделал выдающийся советский вирусолог Виктор Жданов. Еще в 1958 году он предложил и обосновал эту программу и с тех пор без устали убеждал скептически настроенную ВОЗ в ее целесообразности и реалистичности. Благодаря объединенным усилиям многих стран, сотням тысяч доз вакцины, произведенных в США и СССР, а также скоординированным усилиям множества организаций и правительств команде под руководством эпидемиолога Дональда Хендерсона удалось сделать то, что еще недавно казалось невозможным. В 1977 году в Судане был зарегистрирован последний случай натуральной оспы. А 9 декабря 1979 года ВОЗ объявила, что болезнь окончательно уничтожена. Так оспа стала первым и пока единственным заболеванием человека, которое удалось полностью искоренить.
Если вы родились после 1982 года, то на вашем плече нет характерного шрама[91] от противооспенной прививки. Скорее всего, его не будет и у ваших детей и внуков. Хотелось бы верить, что эти шрамы – последнее напоминание о долгой и драматичной истории, развязка которой началась в тот день, когда преподобный Мэзер и доктор Бойлстон решили использовать числа для решения медицинской проблемы.
Глава 7
Статистика и рандомизация
Часовщик играет в кости
К началу XIX века физики и астрономы стали уделять внимание факту, которому раньше не придавали большого значения: одни и те же измерения, например замеры координат небесных тел, никогда не давали в точности тот же результат. Сначала эти расхождения игнорировали, используя одно произвольно выбранное значение. Но постепенно стало понятно, что хотя приборы становятся точнее и разброс полученных значений уменьшается, он никогда не исчезает полностью. Примерно одновременно математики Карл Фридрих Гаусс в Германии и Пьер-Симон Лаплас во Франции попытались сформулировать, как, опираясь на результаты серии измерений, вычислить то одно истинное значение, которое скрывается за ними.
Гаусс и Лаплас обнаружили, что при достаточно большом количестве измерений их результаты распределяются в соответствии с тем, что сейчас мы называем нормальным (или Гауссовым) распределением. Если построить график, разместив по оси x значения измерений, а количество измерений, при которых получено такое значение[92], – по оси y, мы получим кривую, похожую на колокол: близкие к среднему значения будут встречаться чаще всего, а чем дальше значение от среднего, тем реже оно будет встречаться.
Нормальное распределение характерно для случайных процессов с результатом, складывающимся под влиянием многих независимых воздействий, каждое из которых вносит свой небольшой вклад. Нормальное распределение часто встречается в природе. Так распределены в популяции размеры живых организмов, отдельных органов, тканей, конечностей, некоторые психические и физиологические параметры, такие как коэффициент интеллекта.
Если у вас есть немного свободного времени и пять игральных кубиков, вы можете провести небольшой эксперимент – он поможет понять, почему и как это происходит. Возьмите листок бумаги и начертите оси координат. Ось х разметьте от пяти до тридцати. После каждого броска суммируйте значения выпавших сторон и добавляйте по одному делению по оси y над тем значением суммы, которое выпало. Поскольку средние значения сумм образуются бльшим количеством комбинаций, а значит чаще, чем очень маленькие или очень большие, то средняя часть графика начнет заполняться намного быстрее.
Вам может понадобиться немало бросков перед тем, как вы увидите характерную кривую нормального распределения. Если у вас не так много времени, воспользуйтесь автоматическим сервисом, который делает то же самое – вы найдете его на сайте Academo.org[93]. Отметьте галочкой опцию Roll automatically и наблюдайте, как по мере стремительного увеличения количества бросков ваш график все больше становится похож на колокол.
Гаусс первым использовал при расчете орбиты небесного тела представление о нормальном распределении результатов наблюдений. Рассчитав таким образом вероятности реального положения орбиты астероида Цереры, он смог достаточно точно предсказать движение небесного тела, исходя из очень небольшого количества данных. Так статистика и теория вероятностей[94] стали постепенно вытеснять царивший в экспериментальной науке детерминизм.
Детерминизм исходит из того, что все события полностью предопределены вызвавшими их причинами. Возможно, так оно и есть, но на практике мы не можем предсказать исход многих процессов в силу их высокой сложности, то есть большого количества факторов, каждый из которых вносит свой вклад.
Теоретически мы можем заранее просчитать результат броска игральных кубиков, если построим точную модель траектории их движения с учетом скоростей, угловых скоростей, отклонения осей вращения, высоты броска, сопротивления воздуха и свойств поверхности, на которую они упадут[95]. Но зачастую у нас нет возможности получить всю информацию, необходимую для построения детерминистической модели. Более того, минимальные изменения начальных данных (угла, силы, высоты) приведут к принципиальному изменению результата броска. Поэтому на практике такой подход неприменим. Зато мы можем оперировать вероятностями, которые определяем, исходя из того, как кубики вели себя в прошлом, и с их помощью предсказывать шансы на те или иные результаты в будущем.
Еще в большей степени это справедливо для биологических процессов, к которым относится и все происходящее в человеческом теле в норме и в болезни. Тело взрослого человека намного сложнее, чем бросок игральных кубиков. Оно состоит из сорока триллионов клетк, созданных наследственной программой, состоящей, в свою очередь, из трех миллиардов пар нуклеотидов. Ежесекундно в каждой клетке происходит более десяти миллионов химических реакций. Только работу синапсов, соединений между ста миллиардами нейронов, обеспечивает более ста разных нейромедиаторов, а количество всех химических соединений, участвующих в работе тела, исчисляется тысячами. Представление о теле как о несложном механизме, работу которого можно точно описать, а значит, легко исправить (как мы починили бы сломавшиеся часы), далеко от реальности. Такая сложность делает создание точной модели конкретного человеческого тела невыполнимой задачей.
Все достижения иммунологии и микробиологии не помогут предсказать с абсолютной точностью, заболеет ли человек после контакта с возбудителем инфекции. Несмотря на глубокое понимание физиологии и фармакологии, мы не сможем предугадать значение артериального давления конкретного пациента через час после введения лекарства с точностью хотя бы до десяти миллиметров ртутного столба. Лучшие генетики и биологи не дадут ответа на, казалось бы, относительно простой вопрос о точном будущем росте ребенка.
Но там, где детали сложного механизма от нас скрыты и точные предсказания невозможны, мы можем наблюдать за бросками кубиков. И, глядя на них, не только предсказывать вероятность того или иного результата, но и разглядеть связи между контактом с инфекцией и риском заболеть, лечением и шансами выздороветь, ростом родителей и вероятностью того или иного роста их детей.
Впервые статистическая связь двух параметров была продемонстрирована во второй половине XIX века английским ученым Фрэнсисом Гальтоном при попытке создать идеального человека.
На пути к сверхчеловеку
Не удивительно, что из всех известных миру научных проблем больше всего Фрэнсиса Гальтона интересовал вопрос наследственности. Он родился в 1822 году в семье, давшей Британии нескольких ученых и изобретателей, сам Чарльз Дарвин приходился ему двоюродным братом. С раннего детства Фрэнсис демонстрировал незаурядные способности: читал в два года, начал говорить на греческом и латыни к пяти, в шесть декламировал по памяти большие отрывки из Шекспира. В шестнадцать он ушел из школы, сочтя ее программу слишком узкой и неинтересной. По желанию родителей он поступил сначала в Лондонскую медицинскую школу, а затем учился в Кембридже математике, которую нашел более интересной, чем медицина.
Гальтон был полиматом – человеком, чей талант проявился сразу в нескольких областях. Он занимался метеорологией – ему принадлежит открытие антициклонов, психологией – Гальтон описал феномен синестезии[96], и криминалистикой – именно он продемонстрировал уникальность отпечатков пальцев, благодаря чему их начали использовать для идентификации личности. Кроме того, будучи неутомимым путешественником и членом Королевского географического общества, он дважды получал медали за картографические исследования Южной Африки.
Но главное увлечение Гальтона, идея, которой он был одержим в течение всей своей жизни, – улучшение людей. Гальтон хотел достичь этого тем же путем, каким в течение тысячелетий выводили новые породы домашних животных, – скрещивая людей, несущих нужные признаки. Конечно, речь не шла о принудительном скрещивании. Гальтон пропагандировал финансовую поддержку ранних браков между отпрысками семей с хорошей наследственностью и другие способы увеличить потомство у “правильных” семей.
Этим он положил начало евгенике – учению о применении селекции к человеку. На некоторое время она стала академической дисциплиной, преподавалась во многих университетах и получала солидное частное и государственное финансирование. Увы, относительно безобидные идеи Гальтона несли в себе разрушительное начало: через несколько десятков лет мир содрогнулся, узнав о евгенической программе нацистской Германии, стоившей жизни миллионам людей с “неправильной” наследственностью. Но во второй половине XIX века, задолго до Бухенвальда и Дахау, мысль об улучшении человечества путем отбора еще не казалась пугающей. Вызванный теорией эволюции и открытием законов наследования переворот в биологии воодушевлял и стимулировал использовать новое знание на благо человечества – или хотя бы отдельно взятой нации.
Для того чтобы лучше понимать принципы передачи признаков по наследству, Гальтон изучал связь между ростом взрослых детей и их родителей. Довольно быстро стало очевидно, что точно предсказать рост отдельного человека, опираясь на рост его родителей, невозможно. Никакие формулы не работали. Да и жизненный опыт подсказывал, что дети одних родителей, даже одного пола, растут очень по-разному. Значило ли это, что рост не относится к факторам, которые передаются по наследству?
Гальтон составил таблицу соотношения роста родителей и их детей. Вот как она выглядела. Цифры в таблице указывают, сколько людей в исследуемой Гальтоном группе из 928 человек имели указанный в верхней строке рост при указанном в левой колонке усредненном росте родителей.
Распределение роста участников исследования Гальтона, как и вообще всех взрослых людей, населяющих Землю, было близко к нормальному. Как уже говорилось выше, нормальное распределение характерно для параметров, являющихся суммой большого числа независимых воздействий. Рост – типичный пример, поскольку формируется под разнонаправленным влиянием многих генов, эпигенетических факторов[97], факторов среды, перенесенных травм и болезней.
Интересно, что, если мы построим графики, используя цифры внутри каждой строки, мы тоже увидим колоколообразные кривые: рост детей, родившихся у родителей определенного роста, тоже распределен нормально. Но вершины этих колоколов находятся в разных местах: наиболее вероятный рост ребенка тем выше, чем выше средний рост его родителей. Если связать эти вершины, мы получим близкую к прямой линию.
Получается, что хотя точное вычисление роста человека по росту его родителей невозможно, связь между этими значениями существует. И ее можно описать достаточно простым уравнением, применяемым для линейных графиков. А затем использовать это уравнение для того, чтобы на основе одного из параметров предсказать наиболее вероятное значение второго. Гальтон назвал такую статистическую взаимосвязь корреляцией (от англ. co-relation, “взаимосвязь”).
Сейчас статистическую связь вычисляют, например, в эпидемиологии. Если заболевание и определенные факторы риска[98] коррелируют, то мы можем предположить, что этот фактор и является причиной болезни.
Но важно помнить, что статистическая связь не обязательно равна причинно-следственной. Оба коррелирующих параметра могут меняться под воздействием третьего фактора, называемого спутывающей переменной. Если мы исследуем два параметра – заболеваемость раком легких и наличие зажигалки в кармане – то наверняка обнаружим, что они взаимосвязаны: окажется, что люди с зажигалкой чаще болеют раком легких. Но это не значит, что рак легких вызывают зажигалки в кармане. Оба параметра будут зависеть от третьего – курения, который и является в этом примере спутывающей переменной[99].
А что насчет контролируемых клинических экспериментов? В них мы тоже имеем дело со сложными биологическими системами, а значит, исходы в каждой из групп не детерминированы и носят вероятностный характер. Значит, состояние пациентов в сравниваемых группах может меняться по-разному исключительно в силу случая. Как же тогда определить, случайна разница или вызвана действием лекарства?
Леди, пьющая чай
Прекрасным летним вечером 1919 года сотрудники Ротамстедской экспериментальной станции[100] собрались в комнате отдыха. Было время традиционного для Англии вечернего чая – время отдохнуть и поговорить с коллегами о не связанных с работой пустяках. Новичок в компании, недавно принятый на работу молодой математик, вежливо наполнил чашку чаем, добавил в него молоко и протянул сидевшей рядом леди.
– Спасибо, Рональд, но я предпочитаю сначала наливать молоко и лишь потом добавлять чай, – сказала та.
– Вот ерунда, – удивился математик, которого звали Рональд Фишер, – уверен, что разницу почувствовать невозможно, что бы я ни налил первым, чай или молоко.
Но дама настаивала на своем. Конечно же, Рональд говорит глупости и она без труда определяет разницу на вкус. Спор быстро собрал вокруг пререкавшейся пары скучающих коллег, кто-то предложил поставить эксперимент, кто-то уже заключал пари.
Фишер задумался. Очевидно, что предстоит провести слепую дегустацию. Но перед началом эксперимента нужно решить несколько важных вопросов.
Во-первых, важно избежать ложноположительного результата – ситуации, когда правильные ответы дамы, вызванные простой случайностью, будут приняты за подтверждение ее способностей. Если мы совершим одну попытку и получим правильный ответ, это, конечно, не может служить доказательством: даже если она не различает последовательность приготовления чая на вкус, шансы на случайное угадывание достаточно велики, они равны . Пожалуй, мало будет и двух удачных попыток: хотя шансы уменьшатся вдвое и составят , они по-прежнему значительны. Какое же минимальное количество попыток нужно для того, чтобы правильные ответы подтверждали способность леди? Три? Четыре? Пять? Еще больше?
Во-вторых, не менее важно избежать ложноотрицательного результата, то есть ситуации, когда вывод об отсутствии способности будет ошибочным. Угадывание не обязательно должно быть стопроцентным: одна ошибка не исключает того, что леди все равно справляется с задачей лучше, чем если бы давала случайные ответы. Какие же выводы делать, если неверным будет лишь один ответ из восьми? А если один из двенадцати?
И в-третьих, как и в любом контролируемом эксперименте, чашки должны отличаться только изучаемым параметром, и больше ничем. Значит, разной может быть только последовательность, в которой чай и молоко наливают в чашку. Любые различия в температуре, количестве молока, сахара, крепости чая, способные повлиять на результат, нужно исключить. Но ведь приготовить две абсолютно идентичные чашки чая все равно невозможно, и небольшие отличия неизбежны.
После некоторого размышления Фишер велел приготовить восемь чашек. В четыре из них налили сначала чай, а затем молоко. В остальные – наоборот. Это делалось в стороне, чтобы испытуемая не знала, что пробует. Чашки подносили одну за другой, в случайном порядке, и, после того как дама давала ответ, Фишер молча записывал результат. По свидетельствам очевидцев, дама дала правильный ответ в каждой из восьми попыток.
В 1935 году Рональд Фишер издал книгу “Дизайн эксперимента”[101], где привел в качестве примера эту давнюю историю. Фишера абсолютно не интересовала природа удивительной способности дамы. Он не назвал ни имен, ни места, где проводился эксперимент, – об этом мы знаем только со слов других участников. Все, что имело для него значение, – ответы на вопросы, которые он задавал себе перед чайным экспериментом.
Книга оказала огромное влияние на подход к проведению контролируемых экспериментов и оценке их результатов. Именно благодаря ей и другим работам Фишера статистика и теория вероятностей стали неотъемлемой частью исследований, в том числе и медицинских.
Объясняя чайный эксперимент, Фишер ввел представление о нулевой гипотезе. Нулевая гипотеза – это предположение, что между изучаемыми явлениями, в данном случае это порядок приготовления чая и ответы дамы, не существует связи, а в контролируемых экспериментах – что отличия между группами носят случайный характер. Она является гипотезой по умолчанию, и только если эксперимент опровергает ее, у нас появляются основания предполагать, что связь все-таки есть.
Для проверки нулевой гипотезы Фишер предложил использовать тест на статистическую значимость[102]. Он определяет, какова вероятность получить наблюдаемые в ходе эксперимента значения при условии, что нулевая гипотеза верна[103]. Эту вероятность называют p-значение (пи-значение) или просто p (пи). Фишер предложил считать, что нулевая теория может считаться опровергнутой, если p-значение меньше 0,05.
Фишер рассчитал, что если бы в эксперименте использовалось по три, а не по четыре чашки чая каждого типа, то случайное угадывание всех шести чашек происходило бы в одном случае из двадцати[104], то есть p как раз было бы равно 0,05, и выбранный критерий не выполнялся бы. Поэтому он предложил использовать минимум восемь чашек, по четыре каждого типа. Тогда при всех правильных ответах значение p равно одному к семидесяти, или 0,014 в десятичных дробях[105], что меньше выбранного порога. В таком случае результат признается статистически значимым.
Этот подход прочно закрепился в исследовательской практике, в том числе и в медицинских экспериментах. В контролируемых клинических испытаниях нулевая гипотеза гласит, что эффект у изучаемого метода отсутствует, а наблюдаемые различия исходов в сравниваемых группах случайны. В подавляющем большинстве работ вы увидите расчет значения p, и очень часто результат будет считаться статистически значимым, если значение p меньше 0,05.
Важно помнить, что упомянутый Фишером порог p = = 0,05 – условен и был предложен как условие джентльменского соглашения между учеными. Разница между убедительностью результатов с p = 0,04 и с p = 0,06, конечно, гораздо меньше, чем для результатов с p = 0,04 и p = 0,001, хотя первые находятся по разные стороны условной границы, а вторые – по одну. И Фишер, и другие математики подчеркивали, что критерий p < 0,05 недостаточно строг, не годится для медицинских исследований[106], и рекомендовали другие пороговые значения, 0,01 и 0,001, но исследователи ухватились за наименее строгое, а значит, проще всего достижимое.
Что касается исключения ложноотрицательного результата, Фишер отметил, что чем меньше размер эффекта, то есть чем слабее способность леди угадывать, в какой последовательности были налиты молоко и чай, тем больше чашек чая потребуется для того, чтобы ее выявить.
Для описания вероятности ложноотрицательного результата рассчитывают статистическую мощность эксперимента. Чем выше статистическая мощность, тем меньше вероятность того, что мы ошибочно подтвердили нулевую гипотезу. Статистическая мощность медицинского исследования возрастает с увеличением количества участвующих в нем пациентов. Хотя столь же распространенных, как p < 0,05, стандартов допустимой вероятности ложноотрицательного результата не существует, часто ориентируются на статистическую мощность не менее 0,80.
Таким образом, исследователи находятся между двумя возможными ошибками:
• ложноположительным результатом, когда мы ошибочно отвергаем нулевую гипотезу и думаем, что нашли эффект, хотя на самом деле его нет, – такие ошибки называют ошибками I типа, и они могут приводить к тому, что пациентов лечат бесполезными лекарствами и делают им бессмысленные операции;
• ложноотрицательным результатом, когда мы ошибочно подтверждаем нулевую гипотезу и не замечаем реально существующий эффект, – такие ошибки называют ошибками II типа, и они чреваты незамеченными полезными или вредными эффектами лекарства.
Рандомизация – неслучайная случайность
Ответ на третий вопрос чайного эксперимента тоже имел далеко идущие последствия. апомню, что Фишер задумался о том, как исключить влияние небольших отличий, которые неизбежно возникнут в процессе подготовки к тесту. В медицинских исследованиях эта проблема еще значимее: найти две группы людей, одинаковых во всех отношениях, куда сложнее, чем приготовить две одинаковые чашки чая.
Сравнимость групп – основа и необходимое условие контролируемого исследования. Пациенты разные, и болезнь у них протекает по-разному. Если в одной группе средний возраст пациентов ниже или болезнь изначально протекает легче, чем в другой, то после лечения состояние пациентов может различаться, даже если лекарство не работает. Возникает риск приписать препарату несуществующий эффект.
Сравнение изначально разных групп может привести к достаточно контринтуитивным последствиям. Так, в 1986 году были опубликованы результаты сравнения эффективности разных методов лечения почечных камней. Авторы пришли к выводу, что чрескожная нефролитотомия[107] эффективнее, чем открытая: в первом случае успешны были 83% (289 из 350) операций, а во втором – лишь 78% (273 из 350). Однако сравнение результатов удаления небольших (< 2 см) и больших (> 2 см) камней дало неожиданный результат. В обоих случаях открытая оказалась эффективнее. Для маленьких камней открытая была эффективна в 93% случаев против 87%. А для больших – в 73% случаев против 69%.
Этот эффект называется парадоксом Симпсона, хотя никакого парадокса тут на самом деле нет. Причина в том, что удаление маленьких камней (суммарно 88% успешных операций) эффективнее, чем удаление больших (суммарно 72% успеха) при любом из методов. Пациентов распределяли между двумя видами лечения неравномерно: тем, у кого были маленькие камни, чаще назначали операцию с маленьким разрезом, а при больших – открытую. Поэтому среди тех, кого лечили чрескожной нефролитотомией, преобладали пациенты с маленькими камнями, а среди тех, кого лечили открытым методом, – с большими. Это и привело к иллюзии более высокой эффективности чрескожной нефролитотомии.
Устранить эту проблему можно, изначально создавая максимально похожие группы. Например, переместив часть пациентов из одной группы в другую или сразу набирая их так, чтобы все параметры, которые мы считаем важными, были распределены поровну. Можно исключить влияние пола, отбирая в обе группы только женщин. Или следить за тем, чтобы процент женщин в сравниваемых группах был примерно одинаков. Но предложенное Фишером решение намного изящнее и эффективнее. Его преимущество в том, что оно уравновешивает между группами даже факторы, о существовании которых мы не догадываемся.
Фишер впервые применил его, работая на той самой Ротамстедской экспериментальной станции, где проходило знаменитое чаепитие. Его пригласили в Ротамстед, чтобы разобраться с данными, накопленными за девяносто лет сельскохозяйственных экспериментов. Станция занималась сравнительным анализом урожайности сортов и эффективности органических удобрений. Эксперименты заключались в том, что каждый год сотрудники станции засевали поля разными сортами овощей и злаков и применяли разные смеси азотных и фосфатных солей, а когда приходило время урожая, взвешивали и записывали полученный результат. Результаты на разных полях сравнивали и между собой, и с тем, что было собрано на контрольном поле, которое не удобрялось.
Сотрудники станции понимали, что сравниваемые поля изначально отличаются. На одном почва могла быть питательнее, на другом – мог сказываться накопленный эффект примененных в предыдущие годы удобрений, третье могло получать больше влаги во время дождя, четвертое было лучше освещено, а на пятом было меньше насекомых-вредителей. Возникал неизбежный вопрос: если на втором поле собрали на 10% больше картофеля, чем на четвертом, можно ли считать, что дело в сорте картофеля или в удобрении, а не в особенностях поля? И не была бы разница такой же, если бы оба поля засеяли одним сортом и вообще не удобрили?
Для решения этой проблемы были придуманы индексы плодородности, которые высчитывали при помощи сложных формул, делая поправки на разные факторы. Однако каждая из сельскохозяйственных станций Великобритании выработала свои методы расчета и считала их единственно верными. К тому же сделать практические выводы из сложных вычислений было крайне непросто.
Изучив накопленные данные, Фишер предложил полностью изменить дизайн экспериментов. Он рассуждал так. Каждый квадратный фут земли отличается от остальных множеством параметров, которые невозможно точно измерить и учесть, как невозможно найти и два одинаковых поля. А значит, различия между сравниваемыми полями нужно каким-то образом уравновесить. Фишер предложил разбить все поля на множество маленьких участков и относить их к одной из групп эксперимента случайным образом. Например, решать, каким сортом картофеля будет засеян каждый из участков для сравнительного теста урожайности двух сортов картофеля, подбрасывая монетку. Результат будет выглядеть примерно так.
Плодородность разных частей поля может заметно отличаться. Но, поскольку мы сравниваем не две половины поля, а общий урожай на всех случайно разбросанных по полю участках, их плюсы и минусы достанутся каждому из двух сортов картофеля примерно поровну.
Чем больше количество участков, на которые мы делим поле, тем меньше различаются стартовые условия. При малом их количестве различия могут быть заметны, но даже в этом случае, объяснял Фишер, случайное распределение даст лучший результат, чем попытка сделать ручную поправку на множество факторов, в том числе неизвестных. Кроме того, случайное распределение создает математическую основу для дальнейших расчетов и позволяет определить размер возможной ошибки.
Метод случайного распределения по группам, названный рандомизацией (от англ. random – “случайный”), быстро прижился в сельском хозяйстве. Экспериментальные станции оценили его преимущества и охотно приняли на вооружение. Вскоре идеи Фишера пришли и в медицину.
Рандомизация в медицинских экспериментах
Сравнимость групп в медицинском эксперименте очень сильно зависит от способа, которым их создают. Худший из подходов – оставить распределение на усмотрение экспериментатора: это дает слишком много возможностей манипулировать результатами. Что мешает, например, отправить молодых пациентов в экспериментальную группу, а пожилых в контрольную? Это обеспечит и более быстрое выздоровление, и меньшую смертность в первой даже при абсолютно бесполезном лечении.
Когда группы создают таким образом, они часто отличаются по возрасту, полу, серьезности болезни и общему состоянию пациентов. Оценка эффективности лечения в подобных экспериментах завышена в среднем на 30–40%. Хотя исследователи могут быть напрямую заинтересованы в положительном результате и манипулировать составом групп осознанно, возможно и невольное влияние – скажем, если из сострадания к пациентам исследователь включает в экспериментальную группу тех, кому лечение нужнее, или тех, кому оно скорее поможет.
Сделать распределение пациентов не зависящим от экспериментатора пытались еще в XIX веке. Так, в 1809 году военный хирург Александр Гамильтон, проверяя эффективность кровопускания, поочередно принимал солдат сам или направлял к другим врачам, которые, в отличие от него, активно применяли этот метод. Примечательно, что смертность пациентов Гамильтона оказалась почти на порядок меньше, чем у его коллег.
Впоследствии экспериментаторы распределяли пациентов поочередно по списку, делили по первой букве имени, по месяцу или дате рождения. К началу XX века такой способ получил довольно широкое распространение и стал называться методом чередования. Хотя у него есть определенные преимущества – при достаточном количестве пациентов группы наверняка сравнимы[108], – по-настоящему надежен он лишь при условии, что врач строжайше придерживается процедуры.
p>Если же исследователь не является образцом кристальной честности или слишком сердоболен, метод чередования оставляет много возможностей влиять на состав групп. В первую очередь потому, что не все откликнувшиеся на предложение участвовать в эксперименте пациенты становятся в результате его участниками. Пациента сначала обследуют, чтобы подтвердить, что он соответствует критериям включения. Затем он беседует с врачом, который рассказывает об исследовании и возможных последствиях для здоровья, положительных и отрицательных. И лишь после этого, при условии согласия и самого пациента, и врача, пациент становится частью эксперимента. Если использовать метод чередования, врач всегда знает, в какой из групп окажется следующий участник. Ничто не мешает влиять на их состав, отказывая пациентам с более тяжелым течением болезни, чтобы включить в группу следующего, с более легким. Или повлиять в ходе беседы на готовность пациента принять участие. Единственный способ исключить подобные манипуляции – сделать распределение случайным и скрыть от исследователя его последовательность.Первым рандомизированным клиническим испытанием (РКИ) с целенаправленным сокрытием последовательности распределения от врачей принято считать клиническое испытание стрептомицина в 1947 году. Оно было спланировано и проведено выдающимся эпидемиологом и статистиком Остином Брэдфордом Хиллом, входившим в состав созданной Советом по медицинским исследованиям Великобритании научной группы.
Открытие и начало массового производства пенициллина в 1941 году вызвало огромный интерес к изучению других природных антибиотиков. Полученный в 1944 году в США из актиномицетов[109] стрептомицин оказался эффективен против устойчивого к пенициллину возбудителя туберкулеза Mycobacterium tuberculosis[110], называемого также палочкой Коха.
Туберкулез – опаснейшее инфекционное заболевание. Еще в XIX веке в России, Европе и Америке на каждые 100 тысяч жителей от него ежегодно погибало 400 человек. Хотя болезнь убивала медленно и не вызывала явных эпидемических вспышек, из-за количества погибших и неотвратимости гибели ее называли белой чумой. Среди погибших от туберкулеза были Антон Чехов, Роберт Льюис Стивенсон, Вольтер, Фредерик Шопен, Эдвард Григ, Джордж Оруэлл и многие-многие другие.
Несмотря на отсутствие методов лечения и профилактики, с середины XIX века смертность от туберкулеза начала постепенно снижаться. Некоторые исследователи объясняют это постепенным улучшением качества жизни, другие – тем, что человечество начало приспосабливаться к болезни и развивать сопротивляемость палочке Коха. Но хотя к середине XX века заболеваемость и смертность снизились на порядок, туберкулез оставался смертельной и неизлечимой болезнью.
Результаты первых испытаний стрептомицина на больных туберкулезом морских свинках были положительными, первые проведенные в США эксперименты на людях тоже обнадеживали. Поэтому Великобритания закупила некоторое количество стрептомицина и запланировала собственную проверку. В созданный для этого комитет вошли Остин Брэдфорд Хилл и уже известный нам по исследованию патулина Филип д’Арси Харт.
Хилл спланировал эксперимент, опираясь на идеи Рональда Фишера. Главным новшеством была замена поочередного распределения пациентов на случайное. В теории метод чередования решил бы задачу создания сравнимых групп. Но за время работы Хилл уже неоднократно наблюдал, как исследователи слегка корректировали распределение пациентов по группам, пытаясь увеличить шансы эксперимента на успех. Клиническое испытание проходило одновременно в нескольких клиниках. Для распределения по группам использовали таблицы случайных чисел, при этом “информация о последовательности распределения не была известна ни кому-либо из исследователей, ни координатору и хранилась в запечатанных конвертах, на которых были указаны лишь название больницы и номер”. Поскольку Хилл не планировал оценивать субъективные симптомы, он счел ослепление пациентов излишним. Но рентгенологи, смотревшие снимки легких, и микробиологи, высевавшие возбудителя болезни из мокроты пациентов, были должным образом ослеплены.
Результаты первых месяцев давали надежду, что лекарство от туберкулеза найдено. Через два месяца после начала приема стрептомицина в группе было отмечено значительное улучшение по сравнению с контрольной. Однако в последующие месяцы ситуация изменилась: смертность в группах сравнялась, и микробиологи по-прежнему высеивали возбудителя туберкулеза из мокроты получавших стрептомицин пациентов. Так, всего через несколько лет после открытия антибиотиков медицина столкнулась с феноменом резистентности[111]. Увы, стрептомицин не подходил для монотерапии[112]: резистентность к нему возникала слишком быстро. Зато позже он показал хорошие результаты при приеме с пара-аминосалициловой кислотой (ПАСК): резистентность в этом случае возникала намного реже.
Главное, что продемонстрировало это исследование: рандомизацию с сокрытием распределения от исследователей можно и нужно применять в медицинских экспериментах. Постепенно она стала частью так называемого золотого стандарта, идеального дизайна клинического эксперимента – двойных слепых рандомизированных клинических испытаний.
Впрочем, происходящее на практике часто далеко от идеала. Еще в 90-х годах XX века проверка качества рандомизации показывала, что только в трети опубликованных исследований использован надежный метод создания случайной последовательности распределения. И только в четверти сообщалось, что были предприняты хоть какие-то меры по ее сокрытию.
При этом не любой метод сокрытия достаточно надежен. До недавнего времени самым распространенным способом было использование кодов в непрозрачных запечатанных конвертах. Код указывает, в какую группу должен попасть пациент. Порядок, в котором конверты складывают в стопку, заранее генерируют в компьютерных программах или берут из готовых таблиц случайных чисел. Предполагается, что конверты будут вскрывать строго по очереди. Только после того, как пациент дал согласие на участие в клиническом эксперименте и его данные зафиксировали, очередной конверт можно вскрыть. Однако этот метод уязвим. Экспериментаторы прилагают немалые усилия, чтобы узнать содержание конвертов до того, как пациентов включат в исследование. Вот несколько простых рецептов.
В конце 90-х годов прошлого века был исследован гипотензивный[113] препарат “Каптоприл”. В испытании участвовали 10985 пациентов в более чем пятистах больницах Финляндии и Швеции. “Каптоприл” был первым из нового класса препаратов, ингибиторов ангиотензинпревращающего фермента (ингибиторы АПФ), и на него возлагали очень большие надежды. В этом клиническом исследовании, названном Captopril Prevention Project (CAPPP)[114], ингибитор АПФ впервые сравнивали с бета-адреноблокаторами, более старым классом гипотензивных препаратов.
Когда результаты опубликовали, некоторым специалистам бросилось в глаза, что группы отличались по росту, весу и исходным значениям систолического и диастолического давления[115]. Конечно, отличия не были большими. Например, исходное артериальное давление отличалось на 2–3 мм рт. ст. Но шансы, что такая разница могла возникнуть случайным образом, были равны 1 к миллиону. Очевидно, процедура рандомизации с использованием запечатанных конвертов была нарушена. Расследование показало, что в некоторых клиниках исследователи вскрывали конверты еще до того, как очередной пациент был включен в испытание, а затем выбирали для каждого участника более, на их взгляд, подходящий код.
Если строгий контроль не позволяет вскрывать конверты заранее, приходится прибегать к помощи технологий: например, просвечивать конверты мощной лампой или обращаться за помощью к коллегам из радиологической лаборатории. Иногда конверты содержат не только код распределения, но и порядковый номер. В таких случаях незаметно изменить последовательность использования конвертов не получится. Однако если удалось выяснить последовательность, можно манипулировать очередностью приема пациентов, подгоняя ее под нужные группы. От этого не застрахуют ни порядковые номера, ни мешающая просвечиванию фольга. Самый отчаянный из зафиксированных способов узнать последовательность – ночное проникновение в кабинет ответственного сотрудника, чтобы порыться в его бумагах. Не самый высокоинтеллектуальный, но эффективный метод. К сожалению, все перечисленное выше – совсем не гипотетические способы манипулировать составом групп, а реально применявшиеся трюки.
Учитывая, как часто экспериментаторы применяют свои способности не для поиска научной истины, стоит подумать о еще одном уровне защиты. Например, зашифровать код распределения. Использование простых одинаковых кодов недостаточно надежно. Если вы использовали “А” для экспериментальной группы, а “В” – для контрольной, то чтобы вскрыть все распределение, достаточно знать, в какую группу попал один пациент. Этому препятствуют сложные уникальные коды. Лист, соотносящий каждый из кодов с конкретной группой, должен храниться в труднодоступном месте.
Лучшее из существующих сейчас решений – сервисы дистанционной рандомизации. Исследователь получает код для очередного пациента, связываясь с независимым сервисом по телефону или через интернет. Списки, соотносящие коды и группы, хранятся в рандомизационном центре и доступны только по окончании исследования либо в ситуациях, когда необходимо срочно выяснить, в какую группу попал пациент, – такая необходимость может возникнуть в случае опасного состояния, которое может оказаться побочным эффектом лечения.
Теоретически использование удаленных рандомизационных центров полностью лишает экспериментаторов возможности манипулировать составом групп. И пока практика подтверждает теорию. В ходе большого клинического испытания хирургической процедуры, которое проводили несколько не связанных между собой клиник, группы, получавшие лечение, оказались в среднем заметно моложе, чем плацебо-группы. Но разница наблюдалась только в тех клиниках, где использовали запечатанные конверты. У тех команд, которые применяли удаленную рандомизацию, возраст в группах не отличался. Впрочем, при большом желании подкуп рандомизационного центра решает и эту проблему.
При соблюдении должных мер предосторожности рандомизация предотвращает предвзятость отбора. Однако всегда ли рандомизация справляется со второй задачей – созданием групп, схожих во всем, кроме лечения? Увы, даже после корректно проведенной рандомизации группы могут отличаться по важным показателям. Чем меньше пациентов мы рандомизируем, тем выше вероятность несхожести групп. В небольших исследованиях со 150–200 участниками это случается довольно часто. Чтобы избежать влияния этих различий на результат, после рандомизации группы сравнивают и при необходимости делают в ходе статистического анализа поправки. Отчет о клиническом исследовании обязательно должен включать информацию о том, насколько сравнимыми по важным параметрам получились группы в результате рандомизации.
Другой метод решения проблемы – стратифицированная рандомизация. Ее суть в том, что сначала участников клинического испытания делят на страты – подгруппы, отличающиеся по важному признаку, например тяжести течения болезни. А затем внутри каждой страты проводят обычную процедуру рандомизации. В результате в экспериментальной и контрольной группах гарантированно оказывается одинаковое количество больных с определенной тяжестью заболевания.
Итак, рандомизация помогает создать сравнимые группы и препятствует осознанной манипуляции их составом. Но у нее есть и третья, не менее важная роль: она обеспечивает справедливость клинического испытания. Благодаря рандомизации каждый из участников имеет равный шанс получить возможные преимущества лечения или избежать возможных побочных эффектов. Поскольку клинические испытания проводятя на людях, вопросы этики имеют первоочередную важность. И не всегда на них можно получить простой и очевидный ответ.
Часть третья
Герои и мерзавцы
Один из самых непростых вопросов медицинского эксперимента: на ком его проводить? С одной стороны, проблема в том, что результаты должны быть применимы для лечения пациентов, а значит, субъекты эксперимента – максимально на них похожи. С другой – исход эксперимента непредсказуем: он может привести как к улучшению здоровья, так и к ухудшению и даже к смерти. Особенно велики риски, если мы изучаем новый метод лечения.
Как же поступить, когда без экспериментальной проверки оценить эффективность и безопасность терапии невозможно и в то же время нельзя подвергать и без того больных людей новой опасности? В поисках ответа совершались как благородные подвиги, так и отвратительные злодеяния. И этот поиск продолжается по сей день. Любой ответ будет компромиссом между вредом, который может причинить участие в эксперименте и, возможно, еще большим вредом, который повлечет за собой отказ от медицинских исследований.
Глава 8
Лучшие друзья человека
Идея использовать в экспериментах животных всегда лежала на поверхности. Ведь, с одной стороны, при всех отличиях сходство между ними и нами очевидно. С другой – что бы ни случилось в ходе эксперимента, последствия для экспериментатора будут не такими серьезными, как в случае ущерба человеку. Животных мы всегда считали просто своей собственностью. Большинство культур ставит человека на вершину иерархии живого мира, наделяя только его бессмертной душой, способностью мыслить, чувствовать и страдать. Животные же были созданы, чтобы подчиняться нам и удовлетворять наши потребности.
Во времена античности, когда вскрытие человеческих тел не практиковалось, исследование анатомии животных дало первые знания о внутреннем строении живых существ. Оно же привело и к первым ошибкам, вызванным попытками использовать анатомию животных для описания человека. Еще больше информации давала вивисекция. Благодаря этой жестокой практике были получены первые знания о физиологии, которые невозможно было получить другим способом. Так, определить функции блуждающего нерва за сотни лет до открытия электричества можно было, только перерезав его у живого существа. Но даже на Галена, если верить его записям, выражение страдания на лице вскрываемой заживо обезьяны произвело впечатление столь тяжкое, что он прекратил вивисекции приматов и переключился на свиней.
После долгого перерыва использование животных стало вновь популярным в эпоху научной революции. Уильям Гарвей настолько убедительно и эффектно показал, какие возможности оно открывает, что за публикацией его работ по кровообращению последовала целая серия вдохновленных ими экспериментов.
Гарвей не только правильно описал систему кровообращения, но и предположил, что попадающие в желудок вещества всасываются и поступают в кровь, которая затем разносит их по всему телу, исполняя роль универсальной транспортной системы организма. В 1656 году эту теорию решил проверить член Королевского общества и один из основателей современной химии Роберт Бойл. Для эксперимента Бойл раздобыл крупного пса. Судя по оставленным записям, Бойл не тратил денег на покупку животных и считал вполне нормальным присваивать увязавшихся за ним на улице или зашедших в дом чужих собак. Собрав “несколько известных врачей и других ученых людей” и поручив им держать пса, Бойл ввел ему в вену спиртовой раствор опиума. Результат не заставил себя ждать: едва встав на ноги, пес принялся трясти головой, шататься и крутиться на месте, пытаясь сохранить равновесие. Введение в кровь явно было самым эффективным способом заставить вещество действовать. Пес выжил, остался у Бойла, стал знаменит и растолстел. Правда, впоследствии был похищен – возможно, другим экспериментатором.
Гораздо меьше повезло псам, на которых ставил опыты британец Ричард Лоуэр. Он предположил, что если Гарвей прав и пища попадает из желудка прямо в кровь, то можно кормить собак, вводя пищу непосредственно в их кровеносную систему. Лоуэр понял, что пищеварительная система не является лишним звеном, лишь после того как введение в вену животным молока и супа закончилось гибелью нескольких подопытных.
Лоуэр не знал, что в отличие от использованного Бойлом спиртового раствора, который беспрепятственно проходит через сосуды, жировые капли непереваренных супа и молока блокируют кровеносное русло и неизбежно вызывают смерть. В процессе пищеварения съеденное расщепляется на мельчайшие компоненты, и только потом, всасываясь, питательные вещества могут свободно перемещаться по сосудам. Сейчас мы применяем внутривенное питание для кормления людей, которые по каким-то причинам не могут есть. Но пациентам вводятся жидкости, не создающие риска закупорки сосудов, например раствор глюкозы.
Именно Лоуэр первым сделал успешное переливание крови. Сначала от двух собак-доноров, которые истекли кровью до смерти, собаке-реципиенту[116], которая выжила. Затем от животного человеку. В этом эксперименте на роль донора достаточно быстро, благо ее мнения никто не спрашивал, была найдена овца. А вот найти реципиента оказалось непросто. Лишь после очень долгих поисков Лоуэру повезло: поучаствовать согласился страдавший легким помешательством студент богословия Артур Кога. Кога считал, что процедура благотворно скажется на его буйном характере, ибо “кровь овцы имеет символическое значение, как кровь Христа, поскольку Христос – агнец Божий”[117].
Лоуэр не стал его разубеждать. Неизвестно, как эксперимент повлиял на характер Коги, но он выжил и даже просил о повторном переливании. На этот раз Лоуэр благоразумно отказался. Эпизод произвел на современников столь сильное впечатление, что в театрах еще некоторое время играли пьесу The Virtuoso, где один из персонажей, сэр Николас Гримкрак, переливал людям кровь овец, чтобы вывести породу овцелюдей и использовать их как источник высококачественной шерсти.
Какими бы странными ни казались эти эксперименты сейчас, без них у нас не было бы внутривенного наркоза, парентерального питания[118] и переливания крови, спасших миллионы жизней. Но современникам они пользы не принесли. При жизни Гарвея его открытия не вылечили ни одного человека. До того момента, когда новое знание начинало приносить практическую пользу, проходили сотни, иногда даже тысячи лет. Увы, в ходе экспериментального поиска не всегда можно прогнозировать, что через много поколений приведет к важному открытию или новой технологии, а что заведет в тупик и будет казаться потомкам сюжетом из фильмов о безумных ученых.
Прусский врач Карл Август Вейнхольд слишком буквально понимал поговорку про девять кошачьих жизней[119]. Во время всеобщего увлечения электромагнетизмом он издал книгу, в которой описал свои эксперименты по возвращению кошек с того света. Как и другие современники, он возлагал на гальваническое электричество большие надежды. Отрубив голову трехнедельному котенку, Вейнхольд залил в его позвоночник создающую гальваническую пару амальгаму[120] серебра и цинка. Вейнхольд утверждал, что сердце обезглавленного котенка забилось, он встал на четыре лапы и некоторое время прыгал по столу. Когда труп первого котенка перестал двигаться, Вейнхольд раздобыл еще одного. На этот раз он не стал отрубать бедному животному голову, а просто вскрыл черепную коробку и извлек из нее мозг. Затем заполнил полость черепа той же амальгамой и якобы наблюдал, как котенок встал, открыл глаза, потянулся и двадцать минут бродил по комнате. Безусловно, Вейнхольд обладал богатой фантазией. И если он кажется безумцем, то это, вероятно, тот самый случай, когда экспериментатор действительно им был.
На этом обезглавливание животных во имя науки не закончилось. В 1930-е годы в Советском Союзе в Институте экспериментальной физиологии и терапии был создан один из первых аппаратов искусственного кровообращения, названный автожектором. Его сконструировал руководитель института Сергей Брюхоненко. В снятом им двадцатиминутном фильме “Эксперименты по оживлению организма” среди прочего показана отделенная от тела собачья голова. Она присоединена к аппарату и остается живой – реагирует на щекотку перышком, моргает и облизывается. Закадровый голос рассказывает, что подключенная к автожектору голова остается в таком состоянии в течение многих часов. Однако позже свидетели экспериментов Брюхоненко рассказали, что поддерживать собачьи головы в таком состоянии удавалось лишь несколько минут. А знаменитую сцену из фильма сейчас считают фальсификацией.
Опыты Брюхоненко вдохновили советского хирурга Владимира Демихова на еще более неожиданные эксперименты. Демихов пересаживал верхнюю часть туловища – голову и передние ноги – щенков на тело более крупных собак. Животные выживали до двадцати девяти дней, при этом двигались, реагировали на стимулы и пили воду. Гибли двухголовые собаки от иммунного процесса, называемого реакцией отторжения трансплантата. В отсутствие эффективных технологий подавления иммунитета такой исход был неизбежен. Именно поэтому все операции по пересаживанию органов тогда делали только на животных.
Демихов остался в истории не столько из-за этого странного эксперимента, сколько потому, что первым в мире пересадил от одного животного другому сердце, легкие и печень. Благодаря его работам в 1967 году стала возможна первая успешная пересадка сердца от человека к человеку. Сделавший ее хирург Кристиан Барнард неоднократно приезжал в лабораторию Демихова и впоследствии называл его своим учителем.
Опыты Демихова продолжил американский нейрохирург Роберт Уайт. Он взялся за еще более сложную задачу: изолировал мозг одной собаки и пересаживал его в черепную коробку другой. Шесть операций прошли относительно успешно: хотя нервные системы донорского мозга и тела-реципиента не были связаны, после операции животные жили до двух дней. Впоследствии Уайт успешно пересаживал обезьяньи головы: через несколько часов после операции они могли жевать, глотать еду, кусаться и следить глазами за движущимися объектами. Впрочем, жили они недолго.
Хотя некоторые эксперименты на животных напоминают сюжеты из второсортных фантастических фильмов, с их помощью делались важные открытия, особенно в тех областях, где эксперименты на человеке невозможны в силу особой опасности. Еще в XVII веке швейцарский фармаколог Иоганн Вепфер начал использовать животных, чтобы определять токсичность не изученных ранее веществ. И по сей день токсичность оценивают в основном на животных.
В XIX веке, когда стало ясно, что многие болезни вызваны микроорганизмами, на животных стали проверять гипотезы о связи микроскопических возбудителей и инфекционных заболеваний. Так, французский микробиолог Луи Пастер инфицировал животных самых разных видов – собак, свиней, кур, кроликов, овец, коров и обезьян, благодаря чему создал спасшие сотни тысяч жизней вакцины против сибирской язвы и бешенства. А двадцатью годами позже в Германии без экспериментов на тысячах мышей не появилось бы антисифилитическое лекарство сальварсан.
В 1921 году канадский врач Фредерик Бантинг перевязал у лабораторных собак протоки поджелудочной железы. Вызванное этим частичное разрушение органа позволило выделить инсулин – вещество, регулирующее содержание сахара в крови. Введя инсулин болевшим диабетом собакам, Бантинг предотвратил их гибель. А вскоре он впервые ввел новый препарат человеку – им стал 14-летний Леонард Томсон, который был на грани диабетической комы и без нового лекарства неизбежно бы погиб. До выделения инсулина сахарный диабет I типа был смертельным приговором. Гибель нескольких собак спасла миллионы жизней, в первую очередь детей.
Открытие в XX веке витаминов, противомикробных и гормональных препаратов, безопасной технологии переливания крови, новых и эффективных вакцин, лучевых и химиотерапевтических методов лечения рака – все это было бы невозможно без лабораторных животных. Из ста трех Нобелевских премий по медицине, присужденных с 1901 года, восемьдесят три были получены за исследования на животных, еще четверо лауреатов опирались на такие исследования.
Сейчас в научных целях ежегодно используют более ста миллионов лабораторных животных. Большая их часть – одноразовый расходный материал: после эксперимента животное умерщвляют. Их выращивание – индустрия с многомиллиардными оборотами.
Популярнее всего грызуны – мыши и крысы. В 1909 году в Вистаровском институте была выведена первая стандартная порода лабораторных животных – белые вистаровские крысы. Стандартные породы нужны для того, чтобы ученые по всему миру могли проводить эксперименты на похожих животных и получать сравнимые результаты. Больше половины всех живущих сейчас лабораторных крыс – потомки того первого выводка.
Для изучения определенных заболеваний и поиска их лечения используют так называемые животные модели болезней. Иногда это животные с таким же заболеванием. Но чаще – с другим, имеющим лишь какие-то общие черты с человеческой патологией. Иногда эти нарушения врожденные. Так, например, путем селекции страдавших артериальной гипертензией вистаровских крыс была получена порода спонтанно гипертензивных крыс, у которых признаки повышенного артериального давления появляются уже в возрасте 5–6 недель, а в возрасте 40–50 недель неизбежно возникают сердечно-сосудистые заболевания. Дальнейшая селекция привела к выведению новой линии, которая страдает еще более высоким артериальным давлением и с высокой вероятностью погибает от инсульта.
Существуют крысы BBDP, у которых спонтанно развивается диабет I типа, склонные к ожирению крысы Цукера и крысы-альбиносы линии Спрег Доули у которых чаще возникают опухоли. В последнее время все чаще используют грызунов, у которых с помощью инструментов генной инженерии выключена работа какого-либо гена. Таких животных используют в качестве моделей болезней Альцгеймера и Паркинсона, диабета, артериальной гипертензии.
Помимо крыс и мышей в лабораториях востребованы рыбы, амфибии и рептилии. Лекарства для лечения болезней сердца часто исследуют на свиньях: строение их сердца близко к человеческому. А лекарства от гриппа – на хорьках, так как течение этой инфекции у них похожее. Эксперименты, связанные с работой иммунной и нервной систем, требуют более близкого родства. Так, для изучения СПИДа, гепатита, заболеваний мозга и пересадки органов часто используют обезьян. До недавнего времени среди них были и высокоразвитые человекообразные орангутанги и шимпанзе. Более миллиона приматов понадобилось при разработке и производстве вакцины от полиомиелита. В настоящий момент с помощью генной инженерии выведена линия обезьян, страдающих болезнью Хантингтона[121], – с их помощью ищут средство против этого неизлечимого наследственного недуга.
Как ни велика роль экспериментальных животных, важно помнить, что полученные с их помощью результаты часто не воспроизводятся на людях. Мы поговорим об этом в главе 14.
Вплоть до XIX века экспериментаторы нечасто задумывались о том, что лабораторные животные могут страдать. И античная, и христианская культуры воспринимали богоподобного человека как безусловный венец творения, верх иерархии живого мира. Населяющие землю, воду и небо твари были созданы богами ради человека и призваны ему служить. Человек не может иметь никаких обязательств перед существами, лишенными бессмертной души, и волен пользоваться ими себе во благо, по своему разумению. Жестокость не приветствовалась, но не из сочувствия, а лишь из опасения, как бы мучающий животных не переключился со временем на людей.
Первое противостояние неограниченному использованию животных для экспериментов спровоцировала жестокая практика вивисекций. К XVIII веку вивисекции были частым и обыденным явлением. Как и в античном мире, их проводили не только в исследовательских целях, но и на потеху публике. Особой популярностью пользовалось повторение одного из экспериментов Роберта Бойла. Тот поместил птицу под герметичный стеклянный колпак, из-под которого постепенно откачивал воздух. Птица гибла, наглядно демонстрируя важность воздуха для живого существа.
Когда этот эксперимент, под предлогом просвещения публики, а на самом деле как развлекательное мероприятие, стали повторять публично, раздались первые голоса протеста. Критики отмечали бессмысленную жестокость убийств – ведь бесконечные повторения эксперимента не давали никакого нового знания. Так впервые наметилась линия, разделяющая допустимое и недопустимое.
В начале XIX века набирающее силу движение против опытов на живых существах выбрало в качестве главного злодея французского физиолога Франсуа Мажанди. Надо признать, что Мажанди дал для этого повод. Его пренебрежение к страданиям подопытных животных вызывало гнев и отвращение. В ходе одной из публичных вивисекций он рассекал лицевые нервы пса, обездвиженного за счет того, что его лапы и уши были прибиты к столу. Мажанди оставил несчастное животное в таком состоянии на ночь, чтобы продолжить процедуру на следующий день. Один из учеников так описал его семинары:
Господин М. не только не испытывает никаких чувств к жертвам своих пыток, но и явно получает удовольствие от того, что делает. Когда животное слегка пищит, он улыбается. Когда издает громкий крик – смеется. При этом профессор сохраняет совершенно спокойные, приятные и доброжелательные манеры. Давая предваряющие вивисекцию комментарии, он имеет привычку гладить и ласкать животных. Кролик при этом смотрит ему в лицо или лижет руку, которая через мгновение прольет его кровь…
Вскрытие заживо – действенный способ и обучить, и вызвать отторжение. Зачастую эксперименты были бессмысленно жестоки и повторялись слишком часто. Но пока они продолжаются, я не упускаю возможности учиться на них, хотя и не желал бы когда-нибудь увидеть подобное снова.
Даже после появления анестетиков Мажанди пренебрегал их использованием. Впрочем, несмотря на явные садистские наклонности, нельзя не признать его вклада в понимание устройства нервной системы: он обнаружил, что передние корешки спинного мозга содержат только двигательные волокна, а задние – только чувствительные; этот принцип теперь носит название закона Белла – Мажанди.
После смерти Мажанди антививисекторы переключили свое внимание на его ученика, великого физиолога Клода Бернара. Среди экспериментов последнего – вскрытия животных, находящихся в сознании, но парализованных ядом кураре. А также медленное запекание их в духовке заживо – так Бернар изучал терморегуляцию. Его жена не выдержала этого и ушла, забрав с собой двух дочерей, которые впоследствии присоединились к антививисекторскому движению и открыли несколько убежищ для бродячих собак.
Несмотря на постоянные атаки, ни Мажанди, ни Бернар не считали свою работу неэтичной. Наоборот, настаивали, что аморально экспериментировать на людях или лечить их тем, что не испытано предварительно на животных. Бернар писал по этому поводу:
Без сомнений, наука жизни может быть построена только на экспериментах, и мы можем спасти одни живые существа, только пожертвовав другими. Эксперименты могут проводиться как на людях, так и на животных. И я думаю, что врачи проводят слишком много опасных экспериментов на людях, не предваряя их тщательной проверкой на животных. Я не считаю морально допустимым испытывать более или менее опасные или активные субстанции на пациентах без предварительного теста на собаках. Раз ставить потенциально опасные эксперименты на людях, даже если это может принести пользу остальным, аморально, то морально верным выбором будет эксперимент на животных, даже несмотря на то, что он причинит боль или подвергнет их опасности.
Вклад Клода Бернара в медицину огромен. Он первым предположил существование внутренней секреции, описал функцию поджелудочной железы и открыл вазомоторную систему[122]. Бернар написал ставшую очень влиятельной книгу “Введение в изучение экспериментальной медицины”, в которой говорил о важности наблюдений, экспериментов, статистики, об опасности преклонения перед авторитетами и веры в устоявшиеся представления, не подтвержденные опытом. При этом он отлично осознавал, что плоды его труда по большей части бесполезны для современников.