Укрощение бесконечности. История математики от первых чисел до теории хаоса Стюарт Иэн
А потом он понял почему. Это было невозможно.
Среди общепринятых законов алгебры имеется коммутативный закон умножения, согласно которому ab = ba. Гамильтон потратил годы на то, чтобы создать эффективную алгебру для трех измерений. И он все-таки нашел ее – числовую систему под названием кватернионы. Однако это была алгебра для четырех измерений, а не для трех, и здесь умножение не было коммутативно.
Кватернионы похожи на комплексные числа, но вместо одного нового числа i здесь их три: i, j, k. Кватернион является комбинацией этих чисел, например 7 + 8i – 2j + 4k. Точно так же, как комплексные числа двумерны, поскольку составлены из двух независимых величин 1 и i, кватернионы четырехмерны, так как составлены из независимых величин 1, i, j и k. Они могут быть формально определены алгебраически как четверки действительных чисел со своими правилами сложения и умножения.
Многомерное пространство
Когда Гамильтон совершил прорыв, математики уже принимали многомерные пространства как нечто вполне естественное и даже открыли ряд физических толкований того, почему основными элементами пространства может быть что-то кроме точек. В 1846 г. Юлиус Плюккер указывал, что для описания линии в пространстве необходимы четыре числа. Два определяют, где линия пересекает некую фиксированную плоскость, а еще два – направление относительно этой плоскости. Значит, если наше знакомое пространство считать набором линий, оно имеет не три, а четыре измерения. Но оставалось ощущение, что такое построение чересчур умозрительно и что пространство, образованное четырьмя измерениями, неестественно. Кватернионы Гамильтона можно естественным образом проинтерпретировать как вращения, и их алгебра безупречна. Они так же естественны, как комплексные числа, – а значит, и четырехмерное пространство так же естественно, как плоскость.
Идея быстро вышла за рамки четырех измерений. Гамильтон продвигал свои возлюбленные кватернионы, а преподаватель математики Герман Гюнтер Грассман в это время занимался открытием расширения числовой системы для пространства с любым количеством измерений. Он опубликовал свою идею в 1844 г. в своем «Учении о линейной протяженности». Его выкладки оказались слишком загадочными и абстрактными, поэтому не привлекли особого внимания. В 1862 г., не желая с этим мириться, ученый выпустил переработанную версию своего труда, «Учение о протяженности», уверенный, что на этот раз материал изложен более доступно. Увы, это было не так.
Несмотря на холодный прием, работа Грассмана была фундаментально важной. Он открыл, что можно заменить четыре единицы 1, i, j и k кватернионов любым количеством единиц. Комбинации последних он назвал гиперчислами. Он отдавал себе отчет в том, что его подход имеет ограничения, ему стоит быть осторожным и не возлагать лишних надежд на арифметику гиперчисел: рабское подчинение законам традиционной алгебры никуда его не приведет.
Тем временем физики развивали свое видение многомерных пространств, опираясь не на геометрию, а на уравнения Максвелла для электромагнетизма. Здесь и магнитное, и электрическое поля были векторами – обладали направлением в трехмерном пространстве наряду со скалярной величиной (численным значением). Векторы при желании изображаются стрелками, выстроенными в линии магнитного или электрического поля. Длина стрелки показывает силу поля, а острие – направление, куда оно обращено.
Со временем уравнений Максвелла набралось всего восемь, причем туда входило две группы по три уравнения: по одному для каждого компонента электрического или магнитного поля с учетом всех трех измерений пространства. Жизнь была бы намного легче, если бы удалось собрать каждую из этих троек в единое векторное уравнение. Максвеллу удалось достичь этого благодаря кватернионам, но его подход оказался грубоватым. Независимо друг от друга физик Джозайя Уиллард Гиббс и инженер Оливер Хевисайд нашли более простой путь для алгебраического представления векторов. Гиббс в 1881 г. тайно напечатал свою статью «Элементы векторного анализа» в помощь своим студентам. Он пояснил, что его идеи необходимы скорее для практического использования, чем для математической изысканности. Над его заметками поработал также Эдвин Уилсон, и в 1901 г. они опубликовали совместный труд «Векторный анализ». Хевисайд высказал те же самые общие идеи в первом томе своей «Электромагнитной теории» в 1893 г. (следующие два тома вышли в 1899 и 1912 гг. соответственно).
Изначально различные системы: кватернионы Гамильтона, гиперкомплексные числа Грассмана и векторы Гиббса – очень быстро сошлись к одному и тому же математическому описанию вектора. Это тройка чисел (x, y, z). Так спустя 250 лет и математики, и физики из разных частей света нашли свой путь обратно к Декарту – только теперь его идея координат оказалась лишь частью истории. Тройки представляли не просто точки, а направленные величины. Здесь заключалась огромная разница – и это не был формализм; это стало новой интерпретацией, физическим толкованием.
Математики гадали, какими свойствами порадуют их системы гиперкомплексных чисел. Для них вопрос звучал не «Есть ли от них польза?», а «Интересны ли они ученым?». Так математики сосредоточились на алгебраических свойствах систем n-х гиперкомплексных чисел для любого n. Фактически здесь уже шла речь о n-мерных пространствах плюс алгебраических действиях, но на первых порах все предпочитали мыслить алгебраически, оставляя геометрические аспекты проблемы под спудом.
Дифференциальная геометрия
Геометры ответили на вторжение на их территорию алгебраистов, подвергнув гиперкомплексные числа геометрической интерпретации. Ключевой фигурой в этом действе стал Риман. Он работал над своей хабилитацией в надежде получить право брать плату с обучавшихся у него студентов. Кандидату на степень хабилитированного доктора полагалось прочесть публичную лекцию на тему его собственного исследования. Следуя привычной процедуре, Гаусс попросил Римана представить ему список тем, из которых он мог бы что-то окончательно выбрать. Одна из тем называлась «О гипотезах, лежащих в основе геометрии», и Гаусс, также интересовавшийся этими вопросами, выбрал именно ее.
Риман был в ужасе: мало того, что он вообще терпеть не мог выступать на публике, так и тема была им почти не проработана. Но сама идея оказалась блестящей: геометрия для n измерений, под которой он подразумевал систему с n координатами (x1, x2, …, xn), в которую введено понятие расстояния между близлежащими точками. Он назвал такое пространство многообразием. Предложение было весьма радикальным, но оно привело к еще более радикальному выводу: многообразия могут искривляться. Гаусс занимался изучением кривизны поверхностей и вывел изящную формулу, естественно описывающую кривизну по существу – исключительно в терминах поверхности, а не пространства, где та помещается.
Риман намеревался вывести похожую формулу для кривизны многообразия, обобщив формулу Гаусса для n измерений. Она тоже должна была стать неотъемлемой для многообразия – для нее не надо будет использовать какое-либо пространство. Попытки Римана развить понятие кривизны в пространстве с n измерениями привели его на грань нервного срыва. Положение усугубилось еще и тем, что он активно помогал коллеге Гаусса Веберу, занимавшемуся исследованием электричества. Риман не сдавался, и наблюдения за взаимодействием электрических и магнитных сил привели его к новой концепции силы, основанной на геометрии. На него снизошло такое же озарение, благодаря какому десятилетия спустя Эйнштейн открыл общую теорию относительности: силу может заменить искривление пространства.
В традиционной механике тела движутся по прямой, пока не подвергнутся воздействию силы. В криволинейных геометриях существование прямых вовсе не обязательно, а пути изогнуты. Если пространство искривлено, то, вынужденно отклоняясь от прямой линии, тело испытает не что иное, как силу. Теперь благодаря этому озарению Риман почувствовал себя вполне готовым к публичной лекции. Он прочел ее в 1854 г. Это был великий триумф. Идеи Римана быстро распространились, и восхищение его открытием только возрастало. Вскоре ученые принялись читать популярные лекции о новой геометрии. Среди них был и Герман фон Гельмгольц, первым заговоривший о существах, обитающих на сфере или иной криволинейной поверхности.
Технические аспекты римановой геометрии многообразий, в настоящее время известной как дифференциальная геометрия, получили дальнейшее развитие в трудах Эудженио Бельтрами, Эльвина Бруно Кристоффеля и ученых итальянской школы под руководством Грегорио Риччи и Туллио Леви-Чивита. Позже оказалось, что именно их разработок не хватало Эйнштейну для открытия его теории.
Матричная алгебра
Алгебраисты тоже не сидели сложа руки, а развивали всё новые приемы вычисления для n-вариабельной алгебры – формальный символизм n-мерного пространства. Одним из таких методов стала матричная алгебра – прямоугольные массивы чисел, предложенные в 1855 г. Артуром Кейли. Такая абстракция естественным образом родилась из идеи об изменении координат. Это стало рутинным приемом – упрощать алгебраическое выражение, заменив переменные, например x и y, линейными комбинациями, например:
u = ax + by,
v = cx + dy
для констант a, b, c и d. Кейли представил пару (x, y) как вектор-столбец, а коэффициенты – таблицей размера 2 2, или матрицей. С соответствующим определением для умножения мы можем переписать изменение координат так:
Метод легко распространяется на таблицы с любым числом строк и столбцов, представляющие линейные изменения для любого числа координат.
ЧТО ГЕОМЕТРИЯ МНОГОМЕРНЫХ ПРОСТРАНСТВ ДАЛА ИМПримерно в 1907 г. немецкий математик Герман Минковский сформулировал теорию относительности Эйнштейна для четырехмерного пространства-времени, скомбинировав одномерное время и трехмерное пространство в единый математический объект. Он известен нам как пространство-время Минковского.
Требования теории относительности говорят, что естественная метрика пространства-времени Минковского не определяется теоремой Пифагора, в которой квадрат расстояния от точки (x, t) до начала координат равен x2 + t2. Это выражение следует заменить интервалом x2 – c2t2, где с – скорость света. Принципиальным изменением здесь является знак минус, который говорит о том, что события в пространстве-времени связаны с двумя конусами. Один (на нашей схеме это треугольник, поскольку пространство сократили на одно измерение) представляет будущее от нашего события, а другой – прошлое. Это геометрическое представление стало практически универсальным для современной физики.
Матричная алгебра позволяет делать расчеты для n-мерного пространства. По мере распространения новых идей складывался и новый геометрический язык для этого пространства, основанный на абстрактной алгебраической системе вычислений. Кейли считал свою идею не более чем удобным обозначением и предсказывал, что она никогда не получит иного применения. Сегодня эта методика распространилась во всех областях науки, особенно в такой, как статистика. Медики – одни из самых активных потребителей матриц, занимающиеся поисками статистически значимых связей между причиной и следствием.
Геометрические образы упрощают доказательство теорем. Критики утверждают, что эти новомодные геометрии относятся к пространствам, которые никогда не существовали. Алгебраисты возражают, что алгебра для n переменных существует практически наверняка, и в любом случае всякий прием, позволяющий сделать новые открытия в столь многих областях математики, заслуживает серьезного и пристального интереса. Джордж Сальмон писал: «Я уже полностью обсудил эту проблему (решения некоторой системы уравнений), когда даны три уравнения с тремя переменными. Теперь перед нами стоит вопрос о схожей задаче в пространстве с p измерениями, и мы склонны считать это чисто алгебраическим вопросом, независимым от каких-либо геометрических соображений. Но нам придется местами прибегнуть к геометрическому языку… потому что так легче понять, как применить к системе p уравнений процесс, аналогичный тому, который применили к системе из трех уравнений».
Реальное пространство
Существуют ли многомерные пространства? Конечно, ответ зависит от того, что мы подразумеваем под словом «существуют», но большинство людей не склонны вникать в такие тонкости, особенно если им что-то не нравится. Проблема стала очевидной в 1869 г. В знаменитом обращении к Британской ассоциации содействия развитию наук, позже напечатанном под заголовком «Мольба к математикам», Джеймс Джозеф Сильвестр указал, что важнейшим условием развития математики является обобщение. Ученый утверждал, что здесь главное – допустимость, а не прямое подтверждение физического опыта. Он говорил далее, что при наличии определенного навыка можно легко представить себе четыре измерения, а значит, пространство с четырьмя измерениями допустимо.
Это так разъярило ученого-шекспироведа Клемента Инглби, что он вдохновил великого философа Иммануила Канта доказать, будто трехмерность – неотъемлемая и бесспорная характеристика пространства, абсолютно отвергая доводы Сильвестра. Природа реального пространства не является предметом математического спора. В то время подавляющее большинство английских математиков соглашалось с Инглби. Но ряд ученых с континента не были с ним согласны. Грассман уверждал: «Теоремы “Учения о протяженности” не просто служат переводом геометрических результатов на язык абстракции; они обладают гораздо более важным обобщающим значением, ибо в то время, когда обычная геометрия остается узницей трех [физических] измерений, абстрактная наука не имеет никаких пределов».
Сильвестр обозначил свою позицию: «Немало ученых предпочли бы считать обобщенное понятие пространства всего лишь замаскированной формой алгебраической абстракции, но то же можно сказать о нашем представлении бесконечности, или о невозможных линиях, или о линиях, образующих угол, равный 0, в геометрии – понятиях, в пользе и необходимости которых уже никто не сомневается. Доктор Сальмон в своем расширенном изложении теории Мишеля Шаля о характеристиках поверхностей, мистер Клиффорд в вопросах о вероятности и я сам в теории о разбиении числа, а также в моей статье о барицентрической проекции ощущали и получали доказательства практической пользы четырехмерного пространства, как если бы оно было допустимо».
Многомерное пространство
В итоге в споре победил Сильвестр. Современные математики допускают существование явления, если оно логически непротиворечиво. Это может противоречить физическому опыту, что не имеет отношения к математической сущности. Тогда многомерные пространства ничуть не менее реальны, чем привычное нам пространство с тремя измерениями, поскольку мы можем без труда дать ему формальное определение.
Теперь математика многомерных пространств стала чисто алгебраической дисциплиной и основана на явных обобщениях, начинающихся с маломерных пространств. Например, любая точка на плоскости (в двумерном пространстве) может быть описана двумя координатами, а любая точка в трехмерном пространстве – тремя координатами. Отсюда остается сделать короткий шаг к описанию точки в четырехмерном пространстве как набору четырех координат и в более общем плане к определению точки в n-мерном пространстве как списку из n координат. Тогда само по себе n-мерное пространство (n-пространство) будет всего лишь набором таких точек.
Аналогичные алгебраические операции позволят вычислить расстояние между двумя любыми точками в n-пространстве, угол между двумя любыми линиями и т. д. Отныне и впредь главную роль играет воображение: самые обычные геометрические формы в двух или трех измерениях имеют прямые аналоги в n измерениях, и чтобы их найти, нужно описать знакомые формы с использованием алгебры координат, а затем расширить это описание до n координат.
Например, окружность на плоскости или сфера в трехмерном пространстве состоят из всех точек, что лежат на фиксированном расстоянии (радиус) от выбранной точки (центр). Явным аналогом для n-пространства будет всё множество точек, расположенных на фиксированном удалении от выбранной. Используя формулу для расстояний, мы превращаем это в чисто алгебраическое условие, и полученный в результате объект известен как (n 1) – мерная гиперсфера, или (n 1) – сфера. Число измерений уменьшается с n до n 1, потому что, например, окружность в двумерном пространстве становится кривой, т. е. одномерным объектом. А сфера в пространстве является двумерной поверхностью. Сплошная гиперсфера в n измерениях называется n-шар. Таким образом, Земля – это 3-шар, а ее поверхность – 2-сфера.
В наше время такая точка зрения называется линейной алгеброй. Она используется не только в математике, но и в других областях науки, особенно в инженерии и статистике. Также она является стандартной техникой вычислений в экономике. Кейли утверждал, что его матрицы вряд ли получат какое-то практическое применение. Конечно, он ошибался.
К 1900-м гг. предсказание Сильвестра воплотилось в жизнь, особенно с освоением тех областей математики и физики, где концепция многомерного пространства стала серьезным подспорьем. Одной из таких областей стала теория относительности Эйнштейна – своего рода гениальный прорыв в четырехмерной геометрии пространства-времени. В 1908 г. Герман Минковский осознал, что три координаты обычного пространства, объединенные с еще одной, временной, как раз и образуют четырехмерное пространство-время. Всякая точка в нем называется событием: это некая частица, которая появилась на мгновенье, а потом исчезла. Теория относительности действительно имеет дело с физическими свойствами событий. В традиционной механике точечная частица, движущаяся в пространстве, имеет координаты (x(t), y(t), z(t)) в любой момент времени t, и это положение меняется со временем. С точки зрения пространства-времени Минковского собрание таких точек является кривой в пространстве-времени, мировой линией этой частицы, и это самостоятельный объект со своими свойствами, существующий всё время. В теории относительности четвертое измерение имеет единственную и неизменную интерпретацию – время.
Четырехмерный гиперкуб, проекция на плоскость
Последующее включение силы притяжения в теории относительности потребовало широкого применения революционных римановских геометрий, хотя и модифицированных так, чтобы удовлетворять описанию Минковского для геометрии плоского пространства-времени. То, что происходит с пространством и временем в отсутствие массы, которая вызывает гравитационные искажения, Эйнштейн смоделировал как кривизну.
Математики предпочитали более гибкое понятие размерности и пространства, причем на рубеже XIX–XX вв. сама математика, судя по всему, всё больше требовала принятия многомерной геометрии. Теория функций двух комплексных переменных как естественное продолжение комплексного анализа нуждалась в представлении о пространстве с двумя комплексными измерениями. Но каждое такое измерение сводится к двум действительным измерениям, а значит, нравится вам это или нет, вы рассматриваете четырехмерное пространство. Римановское многообразие и алгебра многих переменных обеспечили дальнейшую мотивацию для исследований в этом направлении.
Обобщенные координаты
Однако еще одним мощным стимулом к принятию многомерной геометрии стало толкование механики в терминах обобщенных координат, сделанное Гамильтоном в 1835 г. Это исследование было инициировано Лагранжем в его «Аналитической механике» в 1788 г. Механическая система имеет столько же координат, сколько у нее степеней свободы – иными словами, возможностей изменять свое состояние. По сути, число степеней свободы – не что иное, как замаскированное измерение.
Например, необходимо шесть обобщенных координат, чтобы описать конфигурацию элементарного велосипеда: одна для угла, под которым руль крепится к раме, две для угловой позиции каждого из колес, еще одна для педальной оси и еще две для точек вращения педалей. Конечно, велосипед – трехмерный объект, но пространство для его возможных конфигураций получается шестимерным; и это одна из причин того, почему порой так трудно научиться ездить на велосипеде, пока вы не обретете сноровку. Вашему мозгу необходимо сконструировать внутреннее представление о взаимодействии этих шести переменных – научиться прокладывать курс в шестимерной геометрии велосипед-пространства. Когда велосипед на ходу, приходится следить, соответственно, за шестью скоростями: динамика, по существу, получится 12-мерной.
К 1920 г. это соперничество физиков, математиков и механиков благополучно разрешилось, и использование геометрического языка для задач со многими переменными – многомерной геометрии – уже не вызывало такого возмущения, разве что у некоторых философов. А к 1950 г. наука продвинулась вперед настолько, что для математиков стало совершенно естественным формулировать всё подряд в n измерениях с самого начала. Ограниченные теории о двух или трех измерениях оказались в списке устаревших и даже нелепых.
Язык многомерных пространств стремительно распространился во все области науки, захваив даже такие отрасли, как экономика и генетика. Сегодняшние вирусологи, например, воспринимают вирусы как точки в пространстве последовательности ДНК, у которых запросто может оказаться несколько сотен измерений. Под этим они подразумевают, что геном этих вирусов состоит из нескольких сотен оснований ДНК, и тогда геометрический образ вируса оказывается не просто отвлеченной метафорой: он становится эффективным способом решения проблемы.
Ничто из этого, однако, не означает, что существует мир духов, что наконец-то у привидений есть свой дом или что в один прекрасный день нас может (как описал в своей «Флатландии» Эдвин Эбботт) навестить Гиперсфера – существо из Четвертого измерения, принявшее для нас облик сферы с загадочно переменчивыми размерами, способное сжиматься до точки и исчезать из нашей Вселенной. Однако физики, ведущие исследования в теории суперструн, в последнее время склоняются к тому, что на самом деле наша Вселенная может иметь десять измерений, а не четыре. По их мнению, мы никогда не замечали еще шесть дополнительных измерений, поскольку те скручены так плотно, что их невозможно обнаружить.
Многомерная геометрия стала одной из самых впечатляющих областей, где, похоже, математики утрачивают всякую связь с реальностью. Коль скоро физическое пространство трехмерно, как может существовать пространство с четырьмя и более измерениями? И даже если их можно описать математически, какой от этого прок?
Главной ошибкой здесь является восприятие математики как очевидного, буквального толкования реальности, наблюдаемой непосредственно. Но фактически мы окружены объектами, которые лучше всего будут описаны с помощью большого количества переменных, «степеней свободы» этих объектов. Например, для описания положения скелета человека требуется 100 переменных. Математически естественное описание таких объектов происходит в терминах многомерных пространств, с одним измерением для каждой переменной.
Математикам потребовалось много времени, чтобы формализовать такие описания, и еще больше на то, чтобы убедить остальных, что от этого есть польза. Сегодня всё это так глубоко вошло во все области науки, что используется практически на рефлекторном уровне. Подходы стандартны для экономики, биологии, физики, инженерии, астрономии… список можно продолжать бесконечно.
Главное преимущество многомерной геометрии в том, что человечество получило возможность визуализировать такие сверхсложные задачи, которые в принципе увидеть нельзя. А поскольку эволюционно наш мозг приспосабливался именно к визуальному мышлению, такой прием чаще приводит к неожиданным прозрениям, гораздо труднее достигаемым другими методами. Математические концепции, изначально не имеющие прямого отношения к реальному миру, часто обладают гораздо более глубокими, хотя и незримыми, связями. И эти скрытые связи делают математику такой полезной.
ЧТО МНОГОМЕРНАЯ ГЕОМЕТРИЯ ДАЕТ НАМПрекрасный пример использования многомерных пространств – ваш мобильный телефон. То же относится к выходу в интернет, кабельному или спутниковому телевидению и практически к любой современной технологии, обеспечивающей обмен информацией. Все современные коммуникации – цифровые. Информация – даже разговоры по телефону – переводится в сочетания нулей и единиц – двоичные числа.
От коммуникаций не будет большого толку, если они ненадежны: отправленное послание должно точно соответствовать полученному. Электрические послания по проводам не могут обеспечить такую надежность из-за помех, возникающих вследствие интерференции или даже космического луча, который может вызвать ошибки. И инженерам-электронщикам пришлось прибегнуть к математическим методам для такой кодировки сигналов, где ошибки будут не только распознаваться, но и исправляться. А основой таких кодов стала математика многомерных пространств.
Такие пространства были открыты, потому что строку, скажем, из десяти двоичных чисел, или бит, такую как 1001011100, выгоднее рассмотреть как точку в десятимерном пространстве с координатами, упрощенными до 0 или 1. Многие важные вопросы о кодах, обнаруживающих и исправляющих ошибки, лучше всего решать в рамках геометрии такого пространства.
Геометрия для пары двоичных чисел
Например, мы можем обнаружить (но не исправить) одну ошибку, если закодируем каждое послание, заменяя каждый 0 на 00 и каждую 1 на 11. Тогда такое послание, как 110100, превратится в 111100110000. Если его получат в виде 111000110000, с ошибкой в четвертом бите, мы поймем: что-то не так, ведь выделенная жирным пара 10 не должна там присутствовать. Но нам неизвестно, должно ли это быть 00 или 11. Это можно точно проиллюстрировать на двумерной фигуре (где 2 – длина, которая соответствует кодовым словам 00 и 11). Рассматривая биты в кодовых словах как координаты, относящиеся к двум осям (соответственно для первой и второй цифр в кодовом слове), мы можем начертить схему, где настоящие кодовые слова 00 и 11 окажутся в диагонально противоположных углах квадрата.
Код, исправляющий ошибки, использует строки длиной 3
Любая ошибка переведет их в кодовые слова на двух других углах – не являющиеся действительными (их мы изначально не включили в код) кодовыми словами. Но поскольку эти углы смежны с обоими настоящими кодовыми словами, разные ошибки могут привести к одному результату. Чтобы получить код, исправляющий ошибки, мы можем использовать кодовые слова длиной 3 и закодировать 0 как 000, а 1 как 111. Теперь кодовые слова находятся по углам куба в трехмерном пространстве. Любая единичная ошибка приведет в результате к соседнему кодовому слову; более того, каждое недействительное кодовое слово соседствует только с одним действительным: 000 или 111.
Такой подход к кодированию цифровых посланий первым предложил Ричард Хэмминг в 1947 г. Геометрическая интерпретация идеи появилась очень скоро, и это стало решающим толчком к развитию еще более эффективных кодов.
Глава 17. Форма логики
Наблюдая за непрерывным ростом науки, некоторые из математиков начали удивляться: где же надежный фундамент, поддерживающий вес этих знаний? Ряд серьезных научных кризисов – особенно дискуссия об основных понятиях исчисления и треволнения вокруг рядов Фурье – показали, что во избежание логических ловушек всякая математическая концепция должна иметь аккуратное и четкое определение. Иначе возведенная над нею башня выводов и заключений может легко рухнуть под ударом логических противоречий из-за неопределенности или двусмысленности.
Сперва такие тревоги касались лишь самых сложных и изощренных идей, таких как ряды Фурье. Но математический мир постепенно понял, что под подозрением может оказаться любая основная идея. И главной среди них была идея числа. Ужасная правда заключалась в том, что математики, положившие столько усилий на глубочайшие исследования свойств чисел, не потрудились ни разу задаться вопросом, что же такое число. И когда дело дошло до логичного определения, они не смогли его сформулировать.
Дедекинд
В 1858 г., читая лекции по исчислению, Дедекинд задался вопросом о самой основе своей темы. Его интересовал не вопрос использования пределов, а сама система действительных чисел. Он опубликовал свои идеи в 1872 г. в труде «Непрерывность и иррациональные числа», указав, что вроде бы явные качества действительных чисел никогда не были доказаны сколько-нибудь строгим образом. В пример он привел уравнение 23 = 6. Явно оно вытекает из возведения в квадрат обеих сторон равенства. Вот только умножение для иррациональных чисел никогда не было определено. В 1888 г. в своей книге «Что такое числа и для чего они служат?» ученый отметил ряд серьезных пробелов в логическо обосновании системы действительных чисел. Собственно говоря, никто даже не доказал, что такие числа существуют.
Он также предложил свой способ заполнить пробелы, прибегнув к приему, известному нам как дедекиндовы сечения. Нужно было начать с признанной системы чисел, рациональных, и распространить ее, чтобы получить более широкую систему действительных чисел. Он сперва определил свойства, отличающие действительные числа, нашел способ описать их в ключе рациональных чисел и затем совершил обратную процедуру, интерпретируя эти особенности рациональных чисел как определения для действительных. Этот прием обратного конструирования новых концепций из старых с тех пор применяется часто.
Предположим на миг, что действительные числа существуют. Имеют ли они отношение к рациональным? Некоторые действительные числа – не рациональные, очевидный пример – 2. Теперь, хотя оно и не дробь, его можно приблизить сколь угодно близко к рациональному числу. Оно занимает особое место где-то в плотном ряду всех возможных рациональных чисел. Но как мы определим его положение?
Дедекинд понимал, что 2 четко разделяет последовательность рациональных чисел на две части: те, что меньше его, и те, что больше. Отчасти это разделение – или сечение – определяет 2 в рамках рациональных чисел. Единственная загвоздка в том, что мы прибегаем к 2 с целью определить две части разреза. Но есть способ это преодолеть. Рациональные числа больше 2 определенно положительные, и их квадрат больше 2. Рациональные числе меньше 2 – все остальные. Эти два множества рациональных чисел теперь определены без явного использования 2, но точно указывают его положение на прямой действительных чисел.
Дедекинд показал: если предположить, что действительные числа существуют, то сечение, удовлетворяющее этим двум частям, может быть связано с любым действительным числом в последовательности R из всех рациональных чисел, больших этого числа, и последовательности L из всех рациональных чисел, меньше этого числа или равных ему. (Последнее условие необходимо для связи сечения с любым рациональным числом. Мы ведь не хотим от них отказываться.) Здесь L и R могут восприниматься как левая и правая части на привычном изображении прямой действительных чисел.
Два множества, L и R, подчиняются нескольким довольно строгим условиям. Во-первых, каждое рациональное число принадлежит только одному из них. Во-вторых, каждое число во множестве R больше, чем любое число во множестве L. Наконец, существует техническое ограничение, связанное с рациональными числами как таковыми: L может иметь или не иметь самое большое число, а R никогда не имеет самого малого. Назовем любую пару подмножеств рациональных чисел с такими свойствами сечением.
В обратном конструировании не нужно предполагать существование действительных чисел. Вместо этого мы можем использовать сечения для определения действительных чисел, так что фактически такое число является сечением. Обычно мы не рассматриваем действительные числа именно так, но Дедекинд понял, что при желании это возможно. Главная задача – определить, как складывать и умножать сечения, чтобы действовала арифметика действительных чисел. Оказалось, это просто. Чтобы сложить два сечения (L1, R1) и (L2, R2), положим, что L1 + L2 будет множеством всех чисел, получаемым добавлением чисел из L1 к числам из L2, и так же определим R1 + R2. Тогда суммой двух сечений будет сечение (L1 + L2, R1 + R2). Умножение выполняется так же, хотя здесь есть небольшое различие между положительными и отрицательными числами.
Наконец, нам надо убедиться, что арифметика сечений обладает всеми свойствами, ожидаемыми от действительных чисел. К ним относятся стандартные законы алгебры, которые аналогичны свойствам рациональных чисел. Главное свойство, отличающее действительные числа от рациональных, заключается в том, что предел бесконечной последовательности сечений существует (при применении определенной техники). Также существует сечение, соответствующее любому бесконечному расширению десятичных дробей. Это тоже несложно.
Исходя из того, что всё перечисленное возможно, посмотрим, как Дедекинд смог доказать, что 23 = 6. Мы уже видели, что 2 соотносится с сечением (L1, R1), где R1 состоит из всех положительных рациональных чисел с квадратами больше 2. А 3 соотносится с сечением (L2, R2), где R2 состоит из всех положительных рациональных чисел с квадратами больше 3. Легко доказать, что произведением этих сечений будет (L3, R3), где R3 состоит из всех положительных рациональных чисел, квадраты которых больше 6. Но это и есть сечение, которое соответствует 6. Готово!
Красота подхода Дедекинда в том, что он упрощает все вопросы, относящиеся к действительным числам, до соответствующих вопросов рациональных чисел, точнее, пары множеств рациональных чисел. Так мы получаем определение для действительных чисел только в рамках рациональных чисел и операций, относящихся к ним. К тому же действительные числа существуют (в математическом смысле), если существуют рациональные.
А вот небольшая плата за эту простоту: теперь действительное число определяется как пара множеств рациональных чисел – не совсем привычное для нас описание. Если это звучит слишком странно, вспомните, что обычное представление действительного числа – десятичная дробь, состоящая из бесконечной последовательности цифр от 0 до 9.
Концептуально это как минимум так же сложно, как сечение Дедекинда. И правда, непросто представить сумму или произведение двух бесконечных десятичных дробей, ведь обычные арифметические методы сложения или умножения десятичных дробей начинаются с их правого конца. А когда десятичная дробь бесконечна, она не имеет правого конца.
Аксиомы целых чисел
Книга Дедекинда была очень хороша для тренировки базовых навыков, но общие вопросы определения терминов в ней опущены. Она всего лишь сместила фокус с действительных чисел на рациональные. Но откуда нам знать, что рациональные числа существуют? Если мы предположим, что существуют целые числа, это просто: определим рациональное число p/q как пару целых чисел (p, q) и составим формулы для сумм и произведений. Если целые числа существуют, то существуют и их пары.
Но откуда нам знать, что существуют целые числа? Кроме знаков + и –, целые числа – обычные натуральные числа (включая 0)[7]. А учесть знаки не составит труда. Иными словами, целые числа существуют, если существуют натуральные.
Но мы так и не пришли к концу. Мы так хорошо знакомы с натуральными числами, что нам и не приходит в голову поинтересоваться, существуют ли на самом деле знакомые нам 0, 1, 2, 3 и т. д.? И если да, то что это такое?
В 1889 г. Джузеппе Пеано обошел вопрос существования, воспользовавшись подходом Евклида. В своей книге Евклид вместо спора о существовании точек, линий, треугольников и прочих фигур привел список аксиом – описание свойств, очевидных без сомнений. Ему было не важно, существуют ли точки и прочие элементы. Вот гораздо более интересный вопрос: если они существуют, какие свойства вытекают из этого? Итак, Пеано составил свой список аксиом для натуральных чисел. Вот основные из них.
• Число 0 существует.
• Каждое число n имеет следующее за ним s(n), которое мы принимаем как n + 1.
• Если P(n) – свойство, такое, то P(0) верно, и каждый раз, когда P(n) верно, то и P(s(n)) тоже верно, тогда P(n) верно для любого n (принцип математической индукции).
Затем он определил числа 1, 2 и т. д. с точки зрения этих аксиом, в частности получив:
1 = s(0),
2 = s(s(0))
и т. д. И еще он определил базовые арифметические действия и доказал, что они подчиняются обычным законам. В его системе 2 + 2 = 4 – доказуемая теорема, которая констатирует, что s(s(0)) + s(s(0)) = s(s(s(s(0)))).
Огромное преимущество такого аксиоматичного подхода в том, что он точно определяет то, что мы должны доказать, если хотим как-то показать, что натуральные числа существуют. Нам лишь надо сконструировать некую систему, удовлетворяющую всем аксиомам Пеано.
Здесь более глубоким вопросом становится значение самого существования для математики. В реальном мире существующим считается объект, который мы можем наблюдать или, если это не удается, сделать вывод о его существовании благодаря тому, что мы можем наблюдать. Например, мы знаем о существовании силы притяжения, поскольку можем наблюдать ее эффекты, хотя и не ее саму.
В реальном мире мы можем обоснованно заявлять о существовании двух кошек, двух велосипедов или двух ломтей хлеба. Но с числом два всё не так просто. Это не предмет, а идея. В реальном мире мы никогда не встретим число два. Ближе всего к этому можно считать символ «2», написанный, или напечатанный на бумаге, или высветившийся на экране компьютера. Но никто не думает, что символ – то же, что представляемый им предмет. Слово «кот», написанное черным по белому, не кот. Точно так же символ «2» не число два.
Значение слова «число» оказалось неожиданно трудной концептуальной и философской проблемой. Положение усугубляется тем, что все мы превосходно разбираемся в том, как использовать числа. Мы знаем, как они себя ведут, но не знаем, что они собой представляют.
Множества и классы
В 1880-х гг. Готлоб Фреге попытался решить эту концептуальную проблему, конструируя натуральные числа из еще более простых объектов – множеств, или, как он сам назвал их, классов. Его отправной точкой была стандартная ассоциация чисел со счетом. Согласно Фреге, два является свойством этих множеств, и только их, и его можно взаимно однозначно сопоставить со стандартным множеством {a, b} с несовпадающими элементами a и b. Тогда:
{один кот, другой кот}
{один велосипед, другой велосипед}
{один ломоть, другой ломоть}
могут соответствовать {a, b}, а значит, все они определены – что бы это ни значило – одинаковым числом.
К несчастью, использование списка стандартных множеств в качестве чисел, скорее всего, породит вопросы: слишком легко спутать символ с тем, что он представляет. Но как еще описать свойство этих множеств, которое можно взаимно однозначно сопоставить со стандартным множеством? Что есть это свойство? Фреге посетила превосходная идея. Есть четко определенное множество, связанное с любым свойством, буквально состоящее из всего обладающего этим свойством. Свойство «простой» ассоциируется со множеством всех простых чисел; свойство «равнобедренный» – со множеством всех равнобедренных треугольников и т. д.
Фреге предположил, что число два есть множество, включающее в себя все множества, которые можно взаимно однозначно сопоставить со стандартным множеством {a, b}. В более общем виде число является множеством всех множеств, которые можно сопоставить с любым заданным множеством. Так, например, число три – множество: {… {a, b, c}, {один кот, другой кот, еще один кот}, {X, Y, Z}, …}, хотя, пожалуй, лучше использовать математические объекты вместо котов или букв.
Исходя из этого Фреге открыл, что может подвести под всю арифметику целых чисел логическую основу. Вся она упрощается до явных свойств множеств. Всё это он изложил в своем труде «Основы арифметики: логически-математическое исследование о понятии числа» в 1884 г. Но, к его великому разочарованию, Георг Кантор, ведущий специалист в области математической логики, отмел эту книгу как бесполезную. В 1893 г. Фреге, не утративший решимости, опубликовал первый том другой книги, «Основные законы арифметики», в которой представил интуитивно правдоподобную систему аксиом арифметики. Пеано просмотрел ее, а все остальные проигнорировали. Через десять лет Фреге наконец-то подготовил к печати второй том, но к тому моменту сам успел обнаружить большой недостаток в своих аксиомах. Другие тоже заметили его недочеты. Том еще не вышел из-под пресса, а уже разразился скандал. Фреге получил письмо от известного философа и математика Бертрана Рассела. Говорилось там примерно следующее: «Дорогой Готлоб, представьте себе множество всех множеств, которые не являются элементом самих себя. Искренне Ваш, Бертран».
Как безупречный логик, Фреге тут же понял намек Рассела – тем более что уже был готов к неприятностям. В целом его подход подразумевал, хотя и без доказательств, что любое описываемое свойство определяет значимое множество, состоящее из объектов, что обладают упомянутым свойством. Но здесь подразумевалось именно свойство, а не элемент множества как таковой, который явно не соответствовал множеству.
ПАРАДОКС РАССЕЛАМенее формальный вариант парадокса, предложенного Расселом, – брадобрей, который бреет всякого, кто не бреется сам. Кто же тогда бреет его самого? Если он бреется сам, то определенно его бреет сельский брадобрей – т. е. он сам! Если он не бреется сам, его должен брить брадобрей, т. е. опять-таки он сам.
Если не прибегать ко всяким трюкам – например, брадобрей женского пола, – единственный возможный вывод таков: этого брадобрея не существует. Рассел переформулировал этот парадокс в рамках множеств. Допустим, множество X состоит из всех множеств, которые не являются элементом самих себя. Будет ли тогда X элементом самого себя или нет? Если нет, то по определению оно принадлежит X – самому себе. Если да и оно элемент себя, то, подобно всем элементам X, оно не должно являться элементом самого себя. Но на этот раз выхода нет: женские множества пока не стали частью математических построений.
Мрачный Фреге был вынужден выпустить приложение к своему грандиозному опусу, в котором обсуждал возражения Рассела. Он нашел кратковременное решение: исключить из царства множеств те из них, которые являются элементами самих себя. Но даже ему самому это предложение не показалось достойным.
Рассел же попытался заполнить пробел Фреге в построении натуральных чисел с помощью множеств. Его идея состояла в ограничении того типа свойств, которые могут быть использованы для определения множества. Конечно, ему нужно было найти доказательство, что этот ограниченный тип свойств не приведет к парадоксу. В сотрудничестве с Альфредом Нортом Уайтхедом он пришел к сложной и искусственной теории типов, казавшейся достаточно объективной по крайней мере им самим. Они изложили свой подход в увесистом трехтомнике «Принципы математики», выпущенном в 1910–1913 гг. Определение числа два попало в конец первого тома, а теорема 1 + 1 = 2 доказана на с. 86 второго тома. Но и «Принципам математики» не суждено было положить конец фундаментальным спорам. Теория типов сама по себе была спорной. Математики желали получить что-то более простое и изящное.
Кантор
Эти исследования фундаментальной роли счета как основы для чисел привели к одному из самых нашумевших открытий в математической науке – теории Кантора о трансфинитных числах – разных размерах бесконечности.
Бесконечность, в самых разных ипостасях, неизбежна в математике. Здесь нет самого большого натурального числа – потому что с добавлением единицы мы всегда получаем число еще большее, – а значит, существует бесконечно много натуральных чисел. Геометрия Евклида работает на бесконечной плоскости, и он доказал, что существует бесконечное множество простых чисел. В преддверии исчисления несколько человек, в том числе и Архимед, сочли полезным рассмотреть площадь и объем как сумму бесконечно многих и бесконечно тонких слоев. Когда исчисление изобрели, картина была примерно такой же: применялись эвристические методы для вычисления площадей и объемов, даже если имеющиеся доказательства говорили об ином.
Эти проявления бесконечности можно перефразировать в конечных терминах, чтобы избежать философских споров. Например, вместо того чтобы говорить «натуральных чисел бесконечно много», мы можем сказать «не существует самого большого натурального числа». Второе утверждение логически эквивалентно первому, при этом в нем нет явного упоминания бесконечности. По сути здесь бесконечность рассматривается как процесс, который можно продолжить без всяких конкретных ограничений, но фактически не завершенный. Такую бесконечность философы называют потенциальной. В противовес этому явное использование бесконечности как математического объекта само по себе оказывается актуальной бесконечностью.
Предшественники Кантора обратили внимание на то, что актуальные бесконечности обладают парадоксальными чертами. В 1632 г. Галилей написал свой «Диалог о двух системах мира», в котором два персонажа, проницательный Сальвиати и смышленый мирянин Сагредо, обсуждают причину приливов с геоцентрической и гелиоцентрической точек зрения. По требованию церкви все упоминания о приливах были вычеркнуты, и книга превратилась в гипотетическое словесное упражнение, содержащее мощные доводы в пользу гелиоцентрической теории Коперника. Персонажи между делом обсуждали и некоторые парадоксы, связанные с бесконечностью. Сагредо вопрошал: «Может ли быть чисел больше, чем квадратов?» – и указывал, что, коль большинство целых чисел не являются полными квадратами, ответ должен быть «да». Сальвиати отвечал, что всякое число можно однозначно сопоставить с его квадратом:
Таким образом число целых чисел должно быть таким же, как и число квадратов, и, значит, ответ «нет».
Кантор преодолел эти препятствия, указав, что в диалоге персонажей слово «больше» используется с двумя разными смыслами. Сагредо указывает, что множество всех квадратов является собственным подмножеством множества всех целых чисел. Позиция Сальвиати не столь однозначна: он возражает, что существует однозначное соответствие между множеством квадратов и множеством всех целых чисел. Это два разных утверждения, и оба могут быть верны – без каких-либо выводов.
Так Кантор пришел к изобретению арифметики бесконечности, которая объясняла предыдущие парадоксы и в то же время предлагала новые. Эта работа стала частью более обширной программы, теории множеств, Mengenlehre (от нем. Menge – множество или скопление). Кантор стал размышлять о множествах из-за некоторых сложных вопросов Фурье-анализа, так что его идеи уходят корнями в широко признанные математические теории. Однако полученные им ответы оказались столь странными, что многие из математиков того времени предпочти их проигнорировать. В то же время другие ученые сразу оценили их важность, особенно Давид Гильберт, утверждавший, что «никто не сможет изгнать нас из рая, созданного Кантором».
Размер множества
Отправной точкой для Кантора стала наивная концепция множества как совокупности объектов, или его элементов. Один из способов описать множество – перечисление его членов с использованием фигурных скобок. Например, множество всех натуральных чисел от 1 до 6 будет описано так:
{1, 2, 3, 4, 5, 6}.
В другом варианте множество может быть описано с помощью правила для его элементов:
{n: 1 n 6, где n – натуральное число}.
Множества, определенные выше, идентичны. Первое обозначение ограничено конечным множеством, второе не имеет такого ограничения. Таким образом, множества
{n: n – натуральное число}
и
{n: n – полный квадрат}
точно указаны и оба бесконечны.
Самое простое, что вы можете сделать со множеством, – пересчитать его элементы. Насколько оно велико? Множество {1, 2, 3, 4, 5, 6} имеет шесть элементов. То же относится к множеству {1, 4, 9, 16, 25, 36}, состоящему из соответствующих квадратов. Мы говорим, что мощность множества равна 6, и называем 6 кардинальным числом. (Есть и другая концепция: ординальное (порядковое) число, связанное с построением чисел по порядку, и поэтому прилагательное «кардинальное» здесь не лишнее.) Множество всех натуральных чисел невозможно пересчитать таким образом, но Кантор отметил, что вы можете установить между множеством всех натуральных чисел и множеством всех квадратов взаимно однозначное соответствие, используя ту же схему, что и Галилей. Тогда каждое натуральное число n окажется в паре со своим квадратом n2.
Кантор определил, что два множества равномощные (не его термин), если между ними есть взаимно однозначное соответствие. Если множества конечны, это свойство эквивалентно одинаковому количеству элементов. Но если они бесконечны, то нет смысла говорить о количестве элементов, а идея равномощности обретает очень важный смысл. Но Кантор пошел дальше. Он предложил систему трансфинитных чисел, или бесконечных кардинальных чисел, которые дали возможность определять, сколько элементов содержится в бесконечном множестве. Более того, два множества равномощны тогда и только тогда, когда они имеют равное количество элементов – равные кардинальные числа.
Начальной точкой стал новый вид чисел, который Кантор обозначил символом 0. Это буква алеф из иврита с нижним индексом 0, или алеф-ноль. Это число по определению является кардинальным для множества всех натуральных чисел. Но, настаивая на том, что равномощные множества также имеют одно и то же кардинальное число, Кантор затем рассудил, что всякое множество, для которого может быть установлено взаимно однозначное соответствие со множеством натуральных чисел, также должно иметь мощность 0. Например, множество всех квадратов имеет мощность 0. То же относится ко множеству всех четных чисел:
и множеству всех нечетных:
Одно из следствий этого определения таково: меньшее множество может иметь мощность, равную мощности большего множества. Но здесь в определении Кантора не было логических противоречий, он решил считать эту особенность естественным следствием своей идеи и не прогадал. Главное – не считать, что бесконечные кардинальные числа могут вести себя точно так же, как и конечные. Да и с какой стати? Ведь они не конечны!
Как вы думаете, количество целых чисел (и положительных, и отрицательных) больше количества натуральных? Будет ли их вдвое больше? Нет, потому что мы можем сопоставить эти два множества вот так:
Арифметика бесконечных кардинальных чисел тоже довольно странная. Например, мы только что увидели, что множества четных и нечетных натуральных чисел имеют кардинальное число 0. Поскольку у них нет одинаковых элементов, кардинальное число их объединения – множества, полученного в результате их совмещения, – должно быть 0 + 0. Номы знаем, что представляет собой такое объединение: это натуральные числа с кардинальным числом 0. Видимо, придется заключить:
0 + 0 = 0.
Так мы и поступим. Но и здесь нет противоречий: мы не можем поделить 0, чтобы получить 1 + 1 = 1, потому что 0 не является натуральным числом. Такое деление невозможно, оскольку не имеет смысла. Действительно, это равенство показывает, что деление на 0 не имеет смысла. И снова мы принимаем это как плату за прогресс.
Всё это очень хорошо, однако кому-то может показаться, что 0 не более чем новый забавный символ для старой доброй бесконечности и по сути ничего нового здесь не сказано. Разве это не тот случай, когда все бесконечные множества имеют кардинальное число 0? Разве все бесконечности не равны?
Один из кандидатов на бесконечное кардинальное число, большее, чем 0, – точнее, на бесконечное множество, для которого невозможно установить взаимно однозначное соответствие с множеством целых чисел, – это множество всех рациональных чисел, обычно обозначаемое Q. В конце концов, есть бесконечно много рациональных чисел в промежутке между двумя любыми последовательными целыми числами, и здесь уже не работает та хитрость, которая помогала нам с целыми числами.
Однако в 1873 г. Кантор доказал, что Q также имеет кардинальное число 0. Взаимно однозначное соответствие основательно перемешивает числа, но никто и не говорил, что они должны располагаться согласно порядковым номерам. Кажется, всё выглядит замечательно: всякое бесконечное множество имеет кардинальное число 0.
В том же году Кантор совершил важный прорыв. Он доказал, что последовательность всех действительных чисел не имеет кардинального числа 0. Неожиданную теорему об этом он опубликовал в 1874 г. Так что даже в неординарном понимании Кантора существует больше действительных чисел, чем целых. Одна бесконечность может быть больше другой.
Насколько велика мощность действительных чисел? Кантор надеялся, что это будет 1, следующее наибольшее кардинальное число после 0. Но он не смог этого доказать и потому обозначил новое кардинальное число С, от первой буквы слова «континуум». Ожидаемое уравнение С = 1 было названо континуум-гипотезой. Математики сумели вывести соотношение между С и 0 только в 1960 г., когда Пол Коэн доказал, что ответ зависит от аксиом, которые вы выбираете для теории множеств. С одним разумным набором аксиом два кардинальных числа равны. Но с набором других, не менее обоснованных, аксиом они будут разными.
Обоснованность равенства С = 1 зависит от выбранных аксиом, но связанное с ним равенство от этого не зависит. Это равенство С = 20. Для любого кардинального числа A мы можем определить 2A как кардинальное число множества (мощностью А) всех его подмножеств. И мы можем очень легко доказать, что 2A всегда больше A. Это значит, что не только некоторые бесконечности больше, чем другие, но и нет бесконечно большого кардинального числа.
Противоречия
Однако величайшей целью фундаментальной математики было все-таки не доказательство существования математических идей. Гораздо важнее было доказать, что математика логически последовательна. Ведь всем сегодня понятно: можно выстроить некоторую четкую последовательность безупречно правильных логических шагов, приводящую к абсурдному выводу. Может, вы соберетесь доказать, что 2 + 2 = 5 или 1 = 0, например. Или что 6 – простое число, или что = 3.
Ведь может показаться, что одно незначительное противоречие будет иметь ограниченные последствия. В быту люди вообще спокойно воспринимают такие противоречия, заявляя в один момент, что глобальное потепление уничтожает планету, а в другой – что авиакомпании-лоукостеры – гениальное изобретение. Но для математики последствия не могут быть ограниченными, и вы не избежите логических противоречий, просто закрыв на них глаза. В математике, как только что-то доказано, вы можете использовать это для других доказательств. Доказательство того, что 0 = 1, повлечет еще больше неприятностей. Например, утверждение, будто все числа равны. Если x – любое число, то сначала умножим обе части равенства 0 = 1 на х. Тогда 0 = x. И если y – любое другое число, то 0 = y. Значит, x = y.
Хуже того, стандартный метод доказательства от противного означает, что может быть доказано что угодно, если доказано, что 0 = 1. Чтобы доказать Великую теорему Ферма, мы рассуждаем так.
Предположим, что Великая теорема Ферма неверна.
Тогда 0 = 1.
Противоречие.
Значит, теорема Ферма верна.
Если бы было верно неудовлетворительное равенство [0 = 1], этот метод доказал бы, что Великая теорема Ферма неверна.
Предположим, что Великая теорема Ферма неверна.
Тогда 0 = 1.
Противоречия нет.
Значит, теорема Ферма неверна.
Коль скоро всё правда – и при этом ложь, о чем вообще может идти речь? Вся математика превращается в пустую и глупую игру.
ДАВИД ГИЛЬБЕРТ 1862–1943
Давид Гильберт окончил в 1885 г. университет в Кенигсберге, защитив сразу свою диссертацию по теории инвариантов. Он работал в университете, пока не стал профессором в Гёттингене в 1895 г. Но он продолжал развивать теорию инвариантов, доказав свою теорему о базисе в 1888 г. Его методы отличались от принятых в то время способов исследования абстрактным подходом, и один из ведущих ученых того времени, Пауль Гордан, вообще счел его труды неудовлетворительными. Перед публикацией в авторитетном математическом журнале Mathematische Annalen Гильберт переработал свою статью, после чего Клейн назвал ее «самой важной работой по общей алгебре из всего, что когда-либо публиковал этот журнал».
В 1893 г. Гильберт начал писать более всеобъемлющую монографию по теории чисел под названием «Отчет о числах». Хотя изначально целью было обобщение уже накопленных сведений, ученый включил в статью много собственных открытий, ставших позже основой для того, что сейчас нам известно как теория полей классов.
К 1899 г. он снова поменял направление исследований и занялся аксиоматическим обоснованием геометрии Евклида. В 1923 г. на Втором международном конгрессе математиков в Париже он представил список из 23 главных нерешенных проблем. Этот список, известный как проблемы Гильберта, оказал решающее влияние на главные направления математики в последующие годы.
Примерно в 1909 г. его работа по интегральным уравнениям привела к открытию гильбертовых пространств, сейчас составляющих основу квантовой механики. Также в статье от 1915 г. он подошел вплотную к открытию уравнений Эйнштейна для общей теории относительности. Он добавил в доказательство примечание о том, что его статья согласуется с уравнениями Эйнштейна. Из-за этого сложилось ошибочное убеждение о том, что Гильберт якобы предвосхитил открытие Эйнштейна.
В 1930 г. Гильберт ушел в отставку и получил титул почетного гражданина Кенигсберга. Его речь на церемонии заканчивалась словами: «Мы должны знать. Мы будем знать» – кратким выражением его веры в математику и решимости справиться с любыми проблемами.
Гильберт
Следующий важный шаг был сделан Давидом Гильбертом, пожалуй, самым великим математиком своего времени. Он имел привычку заниматься одной областью математики примерно десять лет, полируя решения основных задач, а затем переходить в другую. По убеждению Гильберта, рано или поздно удастся доказать, что математика никогда не может привести к логическому противоречию. Также он осознал, что в этом проекте не будет пользы от физического восприятия. Если математика противоречива, то должно быть возможно доказать, что 0 = 1, и тогда физическая интерпретация уравнения будет: 0 коров = 1 корова, т. е. коровы могут растворяться в воздухе, как дым. Это непохоже на правду. Но нет никакой гарантии, что математика натуральных чисел обязана отвечать физике коров, или, по крайней мере, нельзя себе представить, что коровы способны внезапно исчезнуть(это может произойти в квантовой механике, но с крайне малой вероятностью). В конечной Вселенной числу коров есть предел, но нет предела в математике количеству целых чисел. Значит, наша интуиция может оказаться обманчивой, и ее следует игнорировать.
Гильберт пришел к такой точке зрения в своей работе над аксиоматическим обоснованием евклидовой геометрии. Он обнаружил в системе аксиом Евклида логические недостатки и понял, что Евклид был введен в заблуждение своим зрением. Поскольку он воспринимал линию как длинный тонкий предмет, окружность как круг и точку как крапинку, он безоговорочно признавал за этими предметами определенные свойства, не придавая им форму аксиом. После нескольких попыток Гильберт сумел составить список из 21 аксиомы и обсудил их роль в евклидовой геометрии в 1889 г. в своем труде «Основания геометрии».
Гильберт также настаивал, что логический вывод должен быть обоснованным независимо от особенностей его интерпретации. Всё, что удовлетворяет какой-то интерпретации аксиом, но не удовлетворяет другой, чревато логическими ошибками. И именно этот подход к аксиоматике, а не частные исследования геометрии стал в итоге самым весомым вкладом Гильберта в основания математики. Его точка зрения повлияла на саму суть математики, делая ее намного проще – и респектабельнее – при изобретении новых концепций путем составления для них списка аксиом. Большинство абстрактных исследований в математике начала ХХ в. исходит как раз из позиции Гильберта.
Часто говорят, что Гильберт отстаивал утверждение, будто математика – отвлеченная игра в символы, но это преувеличение. Гильберт считал, что если вы хотите подвести под свою идею надежную логическую основу, следует рассуждать о ней так, как если бы она была отвлеченной игрой в символы. Всё остальное не имеет отношения к логической структуре. Но ни один человек, достаточно серьезно относящийся к математическим открытиям Гильберта и имеющий представление о его беззаветной преданности науке, не сказал бы, что этот ученый считал, будто дело его жизни – это отвлеченная игра.
ЧТО ЛОГИКА ДАЛА ИМЧарльз Лютвидж Доджсон, более известный как Льюис Кэрролл, использовал свои формулировки для раздела математической логики, известного нам как логика высказываний, чтобы составлять и решать логические загадки. Типичный пример такой формулировки он приводит в своем труде «Символическая логика» от 1896 г.
• Никто из тех, кто действительно ценит Бетховена, не станет шуметь во время исполнения «Лунной сонаты».
• Морские свинки безнадежно невежественны в музыке.
• Те, кто безнадежно невежествен в музыке, не станут соблюдать тишину во время исполнения «Лунной сонаты».
Вывод таков: ни одна морская свинка не ценит Бетховена. Такая форма логического построения называется силлогизмом и уходит корнями в классические труды древних греков.
Преуспев в геометрии, Гильберт обратил взор на гораздо более амбициозный проект: подвести под всю математику непоколебимый логический фундамент. Для этого он внимательно изучал труды современных ему логиков и составил подробную программу для того, чтобы раз и навсегда привести в порядок основания математики. В дополнение к доказательству того, что математика свободна от противоречий, он полагал, что нерешаемых проблем не существует в принципе и любое математическое утверждение может быть или доказано, или опровергнуто. Успех на первых порах убедил Гильберта в том, что он на верном пути и приблизился к своей основной цели.
Гёдель
Но нашелся всё же логик, которого так и не убедили доводы Гильберта в пользу того, что математика логически последовательна. Его звали Курт Гёдель, и его беспокойство по поводу программы Гильберта навсегда изменило наше отношение к математической истине.
До Гёделя математика просто считалась верной – и это был высший пример истины, потому что истина утверждения 2 + 2 = 4 была чем-то из сферы чистой мысли, независимой от физического мира. Математические истины не могут быть опровергнуты дальнейшими экспериментами. В этом смысле они превосходят физические истины вроде ньютоновского закона о силе гравитационного притяжения, обратно пропорциональной квадрату расстояния, опровергнутого наблюдениями за движением в перигелии Меркурия, которые подтверждают новую теорию гравитации, предложенную Эйнштейном.
Благодаря Гёделю математическая истина стала восприниматься как иллюзия. Существуют лишь математические доказательства. Их внутренняя логика может быть безупречной, но при этом они существуют в более широком контексте фундаментальной математики, где нет гарантий, что игра в целом вообще имеет смысл. Гёдель не просто предположил это, – он это доказал. По сути, два его достижения в совокупности разрушили до основания аккуратную, оптимистичную программу Гильберта.
Гёдель доказал, что если математика логически последовательна, то доказать это невозможно. И не потому, что он сам не смог найти доказательство, а потому, что доказательства не существует. И если вдруг, паче чаяния, вам удастся доказать, что математика последовательна, следом тут же придет доказательство тому, что это не так. Он также доказал, что ряд математических утверждений не могут быть ни доказаны, ни опровергнуты. И вновь не потому, что он лично не смог этого добиться, но потому, что это невозможно. Утверждения такого рода называются неразрешимыми.
Он доказал эти утверждения изначально в рамках признанных логических математических формулировок, принятых Расселом и Уайтхедом в их «Принципах математики». Поначалу Гильберт надеялся, что есть выход: надо просто найти более прочный фундамент. Но когда логики ознакомились с работой Гёделя, то очень быстро поняли, что те же идеи сработают для любой логической формулировки в математике, достаточно строгой, чтобы ясно выразить основные понятия арифметики.
КУРТ ГЁДЕЛЬ 1906–1978
В 1923 г., когда Гёдель поступил в университет в Вене, он еще не мог выбрать, изучать ли ему математику или физику. На его решение повлияли лекции парализованного Филиппа Фуртвенглера (брата известного дирижера и композитора Вильгельма). Сам Гёдель с детства был слаб здоровьем, и воля Фуртвенглера, сумевшего преодолеть физическую немощь, произвела на него большое впечатление. На семинарах под руководством Морица Шлика Гёдель начал изучать «Введение в математическую философию» Рассела, и тогда ему стало окончательно ясно, что его будущее связано с математической логикой.
Его докторская диссертация от 1930 г. доказывала, что одна ограниченная логическая система – исчисление высказываний первого порядка – является полной. Всякая истинная теорема может быть доказана и всякая ложная – опровергнута. Больше всего он известен благодаря доказательству гёделевых теорем о неполноте. В 1931 г. Гёдель опубликовал свою судьбоносную статью «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах». В ней он доказывал, что ни одна система аксиом не будет логически полной для безупречной формализации математики. В 1931 г. он вступил в дискуссию о своей работе с логиком Эрнстом Цермело, но встреча ученых прошла неудачно, возможно потому, что Цермело успел прийти к таким же открытиям, только не смог их опубликовать.
В 1936 г. Шлик погиб от руки студента-нациста, и у Гёделя случился нервный срыв (уже второй). Оправившись от болезни, Гёдель выступил с несколькими лекциями в Принстоне. В 1938 г. он вопреки желанию матери женился на Адели Поркерт и вернулся в Принстон после включения Австрии в состав Германии. После начала Второй мировой войны Гёдель из опасений быть призванным на службу в немецкую армию эмигрировал в США, пробираясь через Россию и Японию. В 1940 г. он получил второй плодотворный результат, доказав, что отрицание континуум-гипотезы Кантора недоказуемо в стандартной аксиоматике теории множеств.
Он получил гражданство США в 1948 г. и провел остаток жизни в Принстоне. С годами он всё больше опасался за свое здоровье, пока не убедил себя в том, что кто-то пытается его отравить. Он отказался от пищи и скончался в больнице. До самого конца он любил вести философские диспуты со своими посетителями.
Любопытным следствием открытий Гёделя стал вывод, что всякая аксиоматическая система в математике должна быть неполна и вы никогда не сможете написать конечный список аксиом, который однозначно определит все истинные и ложные теоремы. Исключения не было: программа Гильберта не работала. Поговаривают, что сам Гильберт пришел в ярость, впервые услышав о работе Гёделя. Однако гневаться скорее стоило на себя, ведь основная идея в работе Гёделя была безупречна. (Техническое воплощение этой идеи оказалось очень сложным, но Гильберт всегда отлично справлялся с такими трудностями.) Скорее всего, Гильберт понял, что он должен был предвидеть появление теорем Гёделя.
Рассел свел на нет значение книги Фреге своим логическим парадоксом о сельском брадобрее, который бреет всякого, кто не бреется сам: множество всех множеств, не являющееся элементом самого себя. Гёдель свел на нет значение программы Гильберта другим логическим парадоксом – человека, который сказал: это утверждение ложно. По сути, это неразрешимое утверждение Гёделя – на котором строится всё остальное – теорема T, которая утверждает: «Эта теорема не может быть доказана».
Если всякая теорема не может быть ни доказана, ни опровергнута, то утверждение Гёделя T противоречиво в обоих случаях. Предположим, Т можно доказать. Тогда Т утверждает, что Т не может быть доказано, – противоречие! А если Т можно опровергнуть, то утверждение Т ложно, и будет ошибкой утверждать, что Т не может быть доказано. Получается, Т можно доказать, – снова противоречие. Следовательно, предположение о том, что всякую теорему можно доказать или опровергнуть, говорит нам, что Т может быть доказано тогда и только тогда, когда оно не может быть доказано.
К чему же мы пришли?
Теоремы Гёделя изменили наш взгляд на логические основания математики. Они заставили предположить, что кажущиеся нам сейчас неразрешимыми проблемы могут вообще не иметь решения: ни подтверждающего их, ни опровергающего, а вечно пребывать в чистилище неразрешимости. И такими предстают перед нами очень многие интересные проблемы. Однако эффект от работ Гёделя на практике так и не вышел далеко за пределы фундаментальной математики, в лоне которой и появился на свет. Математики продолжают искать доказательства для гипотез Пуанкаре и Римана, не жалея времени на открытие новых доводов за и против. Они отдают себе отчет в том, что проблема может оказаться неразрешимой, и даже могут заняться поисками доказательств этой неразрешимости, если найдут исходную точку. Однако большинство из известных нам неразрешимых проблем манят ученых именно неразрешимостью, и вряд ли кому-то удастся ее доказать.
ЧТО ЛОГИКА ДАЕТ НАМВажнейший вариант гёделевых теорем о неполноте был открыт Аланом Тьюрингом. Их анализ очертил путь для создания первых компьютеров. В своей работе On Computable Numbers, with an application to the Entscheidungsproblem («О вычислимых числах, приложение к проблеме разрешения»), опубликованной в 1936 г., Тьюринг предложил формализацию алгоритмических вычислений – следующую заранее написанному алгоритму – в рамках так называемой машины Тьюринга. Это математическая идеализация устройства, которое пишет символы 0 и 1 на движущейся ленте, подчиняясь конкретным правилам. Он доказал, что проблема остановки машины Тьюринга – выполнится ли окончательное вычисление для данного ввода данных – неразрешима. А значит, нет такого алгоритма, который бы предсказал, остановится ли вычисление или нет.
Тьюринг доказал свой результат, предположив, что проблема остановки разрешима, и построив алгоритм, который останавливается тогда и только тогда, когда не останавливается. Вот и противоречие. Его результат показывает, что существуют ограничения для вычислимости. Некоторые философы расширили эти идеи для определения пределов рационального мышления, и было выдвинуто предположение, что сознание не может функционировать алгоритмически. Однако их аргументы пока не так уж и убедительны. Они показали, что наивно полагать, будто мозг работает как современный компьютер, хотя это не значит, что компьютер не может имитировать работу мозга.
По мере того как на основе предшествующих теорий математики постоянно строили всё новые конструкции, одна сложнее другой, сверхструктура математики начала раскалываться из-за нераспознанных предположений, которые на поверку оказались ложными. Для предотвращения коллапса требовалась серьезная работа по укреплению фундамента.
Последующие работы углубились в истинную природу чисел, двигаясь вспять от комплексных чисел к действительным, рациональным и, наконец, натуральным. Но и там процесс не закончился. Сами числовые системы подверглись пересмотру с точки зрения еще более простых составляющих – множеств.
Теория множеств принесла немало преимуществ, включая разумную, хотя и неортодоксальную систему бесконечных чисел. Она также открыла несколько фундаментальных парадоксов, связанных с понятием множества. Их решение не стало, как надеялся Гильберт, полным обоснованием аксиоматической математики и доказательством ее логической последовательности. Но оно доказало, что математика по природе своей имеет ограничения и некоторые задачи вообще не имеют решения. В результате нам пришлось кардинально изменить свое отношение к понятиям математической истины и определенности. И это прекрасно: лучше жить в осознании пределов наших возможностей, чем в обманчивом раю.
Глава 18. Насколько это вероятно?
В XX и начале ХХI в. математика развивалась взрывными темпами. За последние 100 лет в ней было сделано больше открытий, чем за всю предыдущую историю человечества. Даже для краткого их перечисления потребуются тысячи страниц, так что придется выбирать лишь некоторые примеры из обилия доступных сведений.
Одна из самых юных областей математики – теория вероятностей, изучающая возможности появления случайных событий. Это математика неопределенности. Первые робкие шаги делались на протяжении долгих веков: это и попытки вычислить с помощью комбинаторики шансы выигрыша в азартных играх, и методы повышения точности астрономических наблюдений, несмотря на ошибки наблюдателей, но только к началу XX в. теория вероятностей приобрела статус самостоятельной науки.
Вероятность и статистика
В настоящее время теория вероятностей – обширнейшая область математики, и ее прикладная ветвь, статистика, оказывает важное влияние на повседневную жизнь – возможно, более значительное, чем любой из прочих основных разделов математики. Статистика стала одним из главных аналитических методов даже в медицине. Ни одно лекарственное средство не допускается на рынок и ни один метод лечения не разрешается в больнице, пока клинические испытания не докажут их полную безопасность и эффективность. Здесь безопасность относительна: лечение может быть предложено больным, страдающим от смертельно опасного недуга, когда шансы на успех слишком малы, но не в менее тяжелых случаях.
Также теория вероятностей чаще всех прочих областей математики страдает от неверного толкования и искажений. Но ее точное и разумное применение приносит человечеству неоценимую пользу.
Игра случая
Некоторые вопросы из теории вероятностей уходят корнями в Античность. Из Средних веков до нас дошли записи дискуссий о шансе выбросить различные числа на двух игральных костях. Чтобы лучше представить себе, как это работает, начнем с одной кости. Предположим, она не доработана[8] – что очень трудно доказать – и на ней шесть чисел: 1, 2, 3, 4, 5 и 6, которые выпадают одинаково часто в конечном счете при длительной игре. В короткой игре такое равноправие невозможно: первый бросок, например, даст в результате только одно из чисел. Даже после шести бросков вы, скорее всего, не получите по одному разу каждое из чисел. Но в длинных сериях бросков, или попыток, мы вправе ожидать появления каждого числа примерно в каждом шестом броске, т. е. вероятность равна 1/6. Если этого не происходит, то у кости, вероятно, смещен центр тяжести.
Событие с вероятностью 1 достоверно, а с вероятностью 0 – невозможно. Все вероятности лежат между 0 и 1, и вероятность события обозначает долю в числе попыток, с которой происходит данное событие.
Вернемся к вопросу из Средних веков. Предположим, мы одновременно бросаем два кубика (как во многих играх – от костей до «Монополии»). Какова вероятность того, что сумма очков на них равна 5? По результатам вычислений с огромным числом аргументов и даже нескольких экспериментов получено число 1/9. Почему? Предположим, мы взяли две кости, красную и синюю. На каждой из них может независимо выпасть шесть разных чисел, итого получаем 36 возможных пар, и все с одинаковой вероятностью. Сочетания (красная + синяя), дающие 5, – 1 + 4, 2 + 3, 3 + 2, 4 + 1; это отдельные случаи, поскольку синяя кость выдает разные числа при каждом броске, как и красная. Значит, при большом количестве бросков мы ожидаем получить сумму, равную 5, в четырех случаях из 36: вероятность равна 4/36 = 1/9.
Другая давняя практическая проблема – как поделить ставки в азартной игре, если она по какой-то причине прервалась. Алгебраисты Возрождения Пачоли, Кардано и Тарталья оставили записи по этому вопросу. Позже шевалье де Мере задал тот же вопрос Паскалю, и тот обменялся с Ферма несколькими письмами на эту тему.
Из этих ранних работ следовал неявный вывод, какова вероятность и как ее подсчитать. Но всё это выглядело неопределенно и неубедительно.