Укрощение бесконечности. История математики от первых чисел до теории хаоса Стюарт Иэн

a3 = 1 + 1/2 + 1/4 + 1/8 = 15/8

и т. д. Разница между an и 2 равна 1/2n. Чтобы сделать ее меньше , мы берем n > N = log2 (1/).

Ряд, имеющий конечный предел, называют сходящимся. Конечная сумма определяется как предел последовательности конечных сумм, полученных добавлением всё новых ее элементов. Если такой предел существует, ряд сходящийся. И производные, и интегралы – лишь разновидности пределов. Они существуют – иными словами, обретают математический смысл – при условии, что их пределы сходятся. Пределы, как отмечал Ньютон, – некая величина, которая позволяет определить, как некое другое число приближается к бесконечности или 0. Но при этом число не может достичь бесконечности или 0.

Сегодня исчисление в целом опирается на непоколебимый фундамент. Ранее его главным недостатком было то, что, прежде чем прибегнуть к поиску предела, никто не интересовался, есть ли вообще сходимость. Лучшим способом сделать это было бы доказательство еще нескольких более общих теорем о том, какие виды функций непрерывны, или дифференцируемы, или интегрируемы, и какие последовательности и ряды сходятся. Именно этим и занялись математики, и именно поэтому мы можем уже не тревожиться из-за нестыковок, отмеченным епископом Беркли. Поэтому мы больше не противимся использованию рядов Фурье: теперь можно точно определить, когда они сходятся, а когда нет, и уж, во всяком случае, четко понять, в каком смысле они сходятся. Существует достаточно возможностей выбрать тот ряд Фурье, который вам нужен.

Степенные ряды

Вейерштрасс открыл, что одинаковые идеи работают и с комплексными числами, и с действительными. Любое комплексное число z = x + iy имеет модуль , что, согласно теореме Пифагора, равно расстоянию от 0 до z на комплексной плоскости. Если мерить величину комплексного выражения с помощью его модуля, то определения предела, ряда и т. п., сформулированные для действительных чисел еще Больцано, тут же перенесутся в область комплексного анализа.

Вейерштрасс отметил, что один особый вид бесконечного ряда кажется особенно полезным. Он известен как степенной ряд и выглядит как многочлен бесконечной степени:

f(z) = a0 + a1z + a2z2 + a3z3 + …,

где коэффициенты an – конкретные числа. Вейерштрасс углубился в исследование этого вопроса, стремясь полностью провести комплексный анализ степенных рядов. Результаты вышли блестящими.

Например, вы можете описать экспоненциальную функцию выражением:

ez = 1 + z + 1/2 z2 + 1/6 z3 + 1/24 z4 + 1/120 z5 + …,

где 2, 6, 24, 120 и т. д. являются факториалами – произведениями последовательности целых чисел (например, 120 = 1 2 3 4 5). Эвристически Эйлер уже выводил эту формулу, теперь же Вейерштрасс получил ее логическим путем. В очередной раз использовав страницы из книги Эйлера, он сумел преобразовать тригонометрические функции в экспоненциальные, определив:

cos = 1/2 (ei + ei),

sin = 1/2i (ei – ei).

Все стандартные свойства этих функций вытекают из их выражений в виде степенного ряда. Вы даже можете определить и доказать, что ei = –1, как утверждал Эйлер. И из этого, в свою очередь, вытекает, что комплексные логарифмы ведут себя именно так, как описывал Эйлер. Всё это наполнилось смыслом. Комплексный анализ перестал быть загадочным продолжением вещественного анализа: он превратился в самостоятельный серьезный предмет. На поверку вышло, что подчас работать в комплексной области даже проще, чтобы выразить в конце вещественный результат.

По Вейерштрассу, все эти достижения были лишь началом – первым этапом грандиозной программы. Но главное – были получены правильные основания. Теперь математики могли без опасений продолжать строить всё более сложное здание нового раздела науки.

Вейерштрасса отличал поразительно светлый ум, открывавший ему путь в самых сложных хитросплетениях пределов, производных и интегралов. И он не сбивался выбранного курса. Также он заранее видел потенциально трудные места. Одна из его самых удивительных теорем доказывала, что существует функция f(x) от действительной переменной x, непрерывная в любой точке, но не дифференцируемая ни в одной точке. Графиком такой функции является непрерывная кривая, но ее изгибы так прихотливы, что мы не можем провести ни одну касательную к ней. Его предшественники не верили в такую возможность, современники недоумевали, к чему ведет такая теорема. А его последователи развили теорему в самую захватывающую новую теорию ХХ в. – теорию фракталов.

Но об этом мы поговорим позже.

ГИПОТЕЗА РИМАНА

Самой известной нерешенной проблемой для всех математиков является гипотеза Римана: вопрос комплексного анализа, возникший в связи с простыми числами, отразился в итоге на всей математике.

Примерно в 1793 г. Гаусс предположил, что количество простых чисел, меньших х, приблизительно равно x/ln x. На самом деле он сделал более точное приближение, названное интегральным логарифмом. В 1737 г. Эйлер отметил многообещающую связь между теорией чисел и анализом: бесконечный ряд

1 + 2s + 3s + 4s + …

равен произведению, по всем простым р, следующего ряда:

1 + ps + p–2s + p–3s + … = 1/(1 – ps).

Здесь мы должны взять s > 1, чтобы ряд сходился.

В 1848 г. Пафнутий Чебышёв добился некоторого прогресса в доказательстве предположения Гаусса, используя комплексную функцию, родственную рядам Эйлера и позже названную дзета-функцией (z). Роль ее полностью осветил Риман в 1859 г. в своей статье «On the Number of Primes Less Than a Given Magnitude» («О числе простых чисел, не превышающих заданной величины»). Он показал, что статистические свойства простых чисел тесно связаны с нулями дзета-функции, т. е. решениями z уравнения (z) = 0.

В 1896 г. Жак Адамар и Шарль де ла Валле-Пуссен использовали дзета-функцию для доказательства теоремы о распределении простых чисел. Главной трудностью было показать, что (z) не равна 0 для всех z вида 1 + it. Чем лучше мы контролируем расположение нулей дзета-функции, тем больше узнаем о простых числах. Риман предположил, что все нули, за исключением тривиальных (получающихся при z, равной отрицательным четным целым числам), расположены на критической прямой z = 1/2 + it.

В 1914 г. Харди доказал, что на этой прямой располагается бесконечное множество нулей. Мощные компьютерные данные позже подтвердили эту гипотезу. Себастьян Веденивский с помощью компьютерной программы ZetaGrid в 2001–2005 гг. удостоверил, что первые 100 миллиардов нулей лежат именно на критической прямой.

Гипотеза Римана отмечена номером 8 в знаменитом списке нерешенных кардинальных математических задач, составленном Давидом Гильбертом и содержащем 23 пункта. Кроме того, это одна из задач тысячелетия, за решение которой Математический институт Клея предлагает миллион долларов.

Прочные основы

Первопроходцы в области исчисления с кавалерийской отвагой оперировали бесконечностью. Эйлер предположил, что степенные ряды подобны многочленам, и использовал эту гипотезу с сокрушительным эффектом. Но в руках простых смертных такого рода наскоки легко могут привести к откровенной глупости. Даже сам Эйлер иногда высказывал неумные мысли. Например, он начал со степенного ряда 1 + x + x2 + x3 + x4 + …, чья сумма равна 1/(1 – x), положил x = –1 и вывел:

1-1 + 1–1 + 1–1 + … = 1/2,

что является бессмыслицей. Степенные ряды не сходятся, если x не расположен строго между –1 и 1, что прояснила теория Вейерштрасса.

И только беспощадная критика, подобная той, что высказал епископ Беркли, в итоге обогатила математику и поставила ее на прочную основу. Благодаря этому сложился принцип: чем сложнее твое построение, тем важнее заручиться для него безукоризненным основанием.

Модуль дзета-функции Римана

В наши дни большинство пользователей математики снова пренебрегают ее тонкостями, будучи уверенными в том, что знания, которые они применяют и которые им кажутся разумными, вероятно, имеют строгое обоснование. В этой самоуверенности их укрепили открытия Больцано, Коши и Вейерштрасса. Тем временем профессиональные математики продолжали разрабатывать строгие концепции бесконечности. Даже появилось движение, ратовавшее за возвращение концепции бесконечно малой величины (флюксии), известное как нестандартный анализ, который является совершенно строгим и технически полезным для некоторых других малоподатливых проблем. Здесь удалось избежать логических нестыковок, провозгласив бесконечно малые новым видом чисел, а не условным действительным числом. По духу это близко к тому, как думал Коши. Нестандартный анализ – удел узких специалистов, но, возможно, он станет методом будущего.

ЧТО АНАЛИЗ ДАЕТ НАМ

Анализ используется биологами для изучения динамики роста популяций различных организмов. Простым примером может служить логистическое отображение, или модель Ферхюльста – Пирла. Здесь изменение величины популяции x является функцией от времени t, моделируемой дифференциальным уравнением:

где константа М является «пропускной способностью», максимальной величиной популяции, которую может поддерживать окружающая среда.

Стандартный аналитический метод предлагает точное решение

которое называется логистической кривой. Соответственно модели численность популяции начинает расти очень быстро (экспоненциально), но по мере приближения величины популяции к половине пропускной способности кривая постепенно выравнивается, пока не достигает уровня пропускной способности.

Эта кривая не может точно отражать реальность, хотя достаточно четко воспроизводит поведение многих популяций. Более сложные модели такого типа представят данные, сильнее приближенные к реальности. Потребление человеком природных ресурсов также можно смоделировать в виде логистических кривых, обеспечивая возможность оценить потребности в этих ресурсах в будущем, а также сроки, на которые их хватит.

Мировое потребление нефти-сырца с 1900 по 2000 г.: сглаженная кривая – данные анализа, неровная кривая – реальные данные

Глава 12. Невозможные треугольники

Евклидова геометрия – единственно верная или нет?

В основу исчисления легли принципы геометрии, но и сама она была сокращена до символических вычислений, которые затем формализовались в анализ. Однако наглядное мышление по-прежнему важно для развития математики, особенно в одном новом и даже поначалу шокирующем направлении. На протяжении более 2000 лет имя Евклида было синонимом геометрии. Последователи успешно развивали его идеи, особенно в области конических сечений, но никто из них так и не внес радикальных изменений в основания дисциплины. Убеждение в том, что в мире существует лишь одна геометрия, евклидова, и строгое математическое описание пространства возможно лишь на его принципах, только укреплялось. Люди с трудом могли даже помыслить о какой-то альтернативе.

Так не могло продолжаться вечно.

Сферическая и поективная геометрия

Первое значительное отступление от правил евклидовой геометрии зародилось в недрах самого что ни на есть практического ее применения – навигации. На коротких расстояниях Земля может считаться практически плоской, и ее географические особенности можно точно перенести на плоскость. Но по мере того, как корабли совершали всё более длительные путешествия, учитывать истинную форму нашей планеты стало жизненно необходимо. Некоторые древние цивилизации знали, что Земля круглая. Доказательств было немало: начиная с того, как исчезает на горизонте уплывающий корабль, и кончая тенью планеты, падающей на Луну во время затмений. Это наталкивало древних ученых на мысль, что Земля – идеальный шар.

На самом деле этот шар слегка сплюснут: на экваторе его диаметр равен 12 756 км, а между полюсов 12 714 км. Разница относительно невелика – 300-я доля. В те времена, когда для навигаторов не считалась ошибкой промашка в несколько сотен километров, их вполне устраивала Земля как идеальный шар. Но тогда упор делался скорее на сферическую тригонометрию, а не геометрию – на саму суть навигационных расчетов, а не логический анализ сферы как особого вида пространства. Поскольку сфера относилась к трехмерному евклидову пространству, никто и не предполагал, что сферическая геометрия может чем-то отличаться от евклидовой. Все неточности списывали на кривизну Земли. Сама же геометрия пространства оставалась полностью евклидовой.

Значительным шагом за пределы евклидовой геометрии стала проективная геометрия, открытая в начале XVII в. На нее первыми обратили внимание не ученые, а художники: вспомните теоретические и практические исследования перспективы мастеров итальянского Возрождения. Их целью было сделать свои картины более реалистичными, а привело это к новому образу мышления в геометрии. И снова эти исследования могли быть восприняты как инновации в рамках классической евклидовой геометрии. Ведь речь шла не о самом пространстве, а о том, как мы видим его.

Открытие, что Евклид может быть не единственным авторитетом, что могут существовать логически обоснованные типы геометрии, опровергающие многие из его теорем, пришло с возрождением интереса к логическим основаниям геометрии. Споры захватили ученых в середине XVIII в. и продолжались до середины XIX в. Больше всего вопросов вызвал так называемый пятый постулат Евклида, который весьма туманно утверждал существование параллельных линий. Попытки вывести его из остальных аксиом Евклида привели к открытию, что такой вывод невозможен и есть и другие виды геометрии, помимо евклидовой. Эта неевклидова геометрия давно стала незаменимым инструментом для исследований в математике и математической физике.

Геометрия и живопись

В истории Европы геометрия пребывала в подобии спячки примерно с 300 по 1600 г. И только вопрос перспективы в живописи вдохнул в нее жизнь, вернув науке практическую ценность: как реалистично изобразить трехмерный мир на двумерном полотне.

Художники Возрождения не занимались исключительно живописью. Многие были востребованы как талантливые инженеры для военных и мирных проектов. Их отношение к искусству всегда имело и практическую сторону, и геометрия перспективы как раз и стала гранью, важной для архитектуры ничуть не меньше, чем для живописи. Также в то время оживился интерес к оптике и математике света, что привело к изобретению телескопа и микроскопа. Первым мэтром, заинтересовавшимся математикой, был Филиппо Брунеллески. По сути, его искусство стало движущей силой для его математики. Стоит также упомянуть о книге Леона Баттисты Альберти «Живопись», созданной в 1435 г. и напечатанной в 1511 г. Альберти начал с принятия некоторых важных, хотя и относительно безвредных упрощений, проявив рефлекс настоящего математика. Человеческое зрение – очень сложная тема. Например, мы используем два слегка расставленных в пространстве глаза, чтобы генерировать стереоскопические образы, получая ощущение глубины. Альберти упростил реальность, предложив работать с одним глазом с точечным зрачком, действующим как камера с малым отверстием. Он представил, как художник готовится писать картину, устанавливая мольберт и стараясь создать картинку на полотне с помощью единственного глаза. И с полотна, и с реального объекта картинка попадает на сетчатку, расположенную в задней части глаза. Самым простым (умозрительным) способом было бы сделать полотно прозрачным, смотреть через него с неподвижной точки и рисовать на полотне точно то, что видит глаз. Так трехмерная картинка проецируется на полотно. Нацельте глаз на каждую ее деталь так, чтобы он смотрел прямо, и отметьте, где эта линия встречается с плоскостью полотна: здесь и следует рисовать эту деталь.

Эта идея вряд ли принесет пользу, если вы в точности станете следовать ей на практике. Но некоторые художники поступали именно так, используя полупрозрачные материалы или стекло вместо полотна. Они часто применяли этот прием на подготовительном этапе, нанося набросок на полотно перед тем, как писать картину. Более практичным подходом было бы использовать эту концептуальную формулировку для связи геометрии трехмерной сцены с двумерной картинкой на полотне. Привычная нам евклидова геометрия работает со свойствами, остающимися неизменными при их перемещении: длиной и углами. Хотя сам Евклид не формулировал свои принципы именно так, его основной инструмент – конгруэнтные треугольники – производит такой же эффект (имеются в виду треугольники одинаковой формы и размеров, но расположенные в разных местах). Точно так же геометрия перспективы сводится к свойствам, которые остаются неизменными при проекции. Легко заметить, что длины и углы не ведут себя так же. Вы можете прикрыть Луну одним пальцем – получается, длина способна меняться? С углами еще хуже: если вы посмотрите на угол здания и он прямой, то он будет казаться прямым, только если вы посмотрите на него прямо.

Проецирование картинки. Гравюра Альбрехта Дюрера

Какие же свойства геометрических фигур сохраняет проекция? Самые важные кажутся нам такими простыми, что трудно поверить в их значение. Точки остаются точками. Прямые – прямыми. Образ точки, расположенной на прямой, останется на изображении этой линии. Получается, если две линии встречаются в какой-то точке, их изображения тоже встречаются в соответствующей точке. Отношения между точками и прямыми сохраняются в проекции.

Важной чертой, не полностью сохраняемой в проекции, является взаимодействие параллельных прямых. Представьте, что вы стоите посреди бесконечно длинной прямой дороги и смотрите вперед. Две ее стороны, параллельные друг другу в трехмерной реальности (никогда не встречающиеся), уже не выглядят параллельными. Они сходятся в одну точку где-то у горизонта. Они всегда ведут себя так, как будто находятся на идеально бесконечной плоскости, а не слегка скругленной Земле. По сути, они и могут вести себя так только на плоскости. На сфере будет едва заметный разрыв, слишком маленький, чтобы его рассмотреть, там, где линии пересекают горизонт. Получается, все рассуждения о параллельных линиях на шаре весьма запутанны.

Такая особенность параллельных линий очень полезна для изображения перспективы. Это основа привычного рисования прямоугольных объектов в перспективе, когда используются линия горизонта и две исчезающие точки там, где параллельные линии коробки пересекают перпендикулярный им край. «О перспективе в живописи» – труд Пьеро делла Франческа, изданный в 1482–1487 гг., – развил метод Альберти в практические приемы для художников. Сам живописец успешно применял свои идеи в создании драматичных и весьма реалистичных полотен.

Труды художников Возрождения разрешили многие проблемы в геометрии перспективы, но они оставались полуэмпирическими, страдая нехваткой логических обоснований, поддерживавших здание евклидовой геометрии. Эта проблема обоснований была в итоге решена Бруком Тейлором и Иоганном Генрихом Ламбертом в XVIII в. Но к тому времени в геометрии произошли еще более поразительные перемены.

Дезарг

Первую нетривиальную теорему в проективной геометрии открыл инженер-архитектор Жерар Дезарг. Ее опубликовал в своей книге в 1648 г. Абрахам Босс. Дезарг доказал следующую важную теорему: «Предположим, треугольники АВС и АВС находятся в перспективе. Это означает, что три линии, АА, ВВ и СС, проходят через одну точку. Тогда три точки P, Q и R, в которых пересекаются продолжения трех пар сторон треугольника, лежат на одной прямой». Этот результат теперь нам известен как теорема Дезарга. В ней не упоминаются ни длина, ни углы: она целиком посвящена отношениям между прямыми и точками. А значит, это и есть проективная теорема.

Теорема Дезарга

Есть одна хитрость, делающая теорему очевидной: представьте себе, что рисуете изображение трехмерной фигуры, у которой два треугольника лежат в двух плоскостях. Тогда на линии, по которой пересекаются эти плоскости, и будут расположены три точки Дезарга P, Q и R. Без особого труда так даже можно доказать эту теорему, построив соответствующую трехмерную фигуру, чьи проекции выглядят как два треугольника. Значит, мы можем использовать методы Евклида, чтобы доказывать проективные теоремы.

Аксиомы Евклида

Проективная геометрия отличается от евклидовой настолько, насколько близка вам такая точка зрения (каламбур намеренный!), но корнями она по-прежнему уходит в геометрию Евклида. Это исследования новых видов преобразований, т. е. проекций, но изначально модель пространства, подвергающегося преобразованию, принадлежит Евклиду. Тем не менее проективная геометрия в целом заставила математиков стать более восприимчивыми к возможности существования нового образа геометрического мышления. И старый вопрос, пролежавший под спудом целые века, снова стал актуальным.

Практически все аксиомы Евклида настолько очевидны, что ни одному человеку в здравом уме не придет в голову подвергать их сомнению. Например, аксиома о том, что все прямые углы равны. Если она неверна, значит, что-то не так с самим определением прямого угла. Но пятый постулат, касающийся параллельных прямых, имеет совершенно другой оттенок. Он слишком сложен. Вот как его формулировал сам Евклид: «И если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти прямые встретятся с той стороны, где углы меньше двух прямых».

Звучит скорее как теорема, а не как аксиома. Было ли это теоремой? Может ли в таком случае быть у нее доказательство, исходящее из чего-то еще более простого, интуитивного?

Упростил формулировку постулата в 1795 г. Джон Плейфэр. Он выразил ее так: на плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной. Эта аксиома логически эквивалентна пятому постулату Евклида: они являются следствием друг друга, при этом учитывают остальные аксиомы.

Лежандр

В 1794 г. Адриен-Мари Лежандр открыл еще одну эквивалентную формулировку постулата, в которой говорится о подобных треугольниках – фигурах, имеющих равные углы, но разные длины сторон. Однако он, как и большинство математиков того времени, предпочел бы что-то более интуитивное. Им казалось, что пятый постулат избыточен: это следствие из других аксиом, и что только для него упущено доказательство. И Лежандр перепробовал всё, что мог, чтобы доказать его. Используя только другие аксиомы, он доказал – для своего удовольствия, по крайней мере, – что сумма внутренних углов треугольника не превосходит 180°. (Ему наверняка было известно, что в сферической геометрии сумма больше, но ведь это геометрия сферы, а не плоскости.) Если сумма всегда равна 180°, то отсюда сразу логически вытекает пятый постулат. И он предположил, что сумма может быть меньше 180°, и построил свои рассуждения на этом.

Неожиданным следствием оказалась зависимость между площадью треугольника и суммой его углов. Точнее, то, что площадь пропорциональна разнице между реальной суммой углов и 180°. Это казалось многообещающим: если бы он мог построить треугольник, у которого стороны вдвое больше, чем у исходного, то столкнулся бы c противоречием, потому что площадь большего треугольника не может быть равной площади меньшего. Тем не менее он попытался построить больший треугольник и снова уперся в пятый постулат.

Однако ученый всё же извлек из своего опыта кое-что полезное. Безотносительно пятого постулата он доказал, что некоторые треугольники не могут иметь сумму углов больше 180°, а другие имеют сумму углов меньше 180°. Если один треугольник имеет углы, которые в сумме дают больше, чем 180°, то таким же свойством обладали бы и все треугольники; аналогично было бы при сумме меньше 180°. Значит, есть три возможных варианта:

• сумма углов в любом треугольнике равна 180° (по евклидовой геометрии);

• сумма углов в любом треугольнике меньше 180°;

• сумма углов в любом треугольнике больше 180° (случай, который Лежандр вроде бы исключил; позже выяснилось, что для этого он воспользовался очередным недоказанным утверждением).

Саккери

В 1773 г. Джироламо Саккери, иезуитский священник из Павии, опубликовал своей героический труд «Евклид, очищенный от всех пятен» («Euclides ab omni naevo vindicatus»). Он также пришел к трем возможным вариантам, из которых первый соответствовал евклидовой геометрии, но для объяснения различий использовал четырехугольник. Предположим, у нас есть четырехугольник ABCD, где A и B – прямые углы, а AC = BD. Тогда, по утверждению Саккери, в евклидовой геометрии выходит, что C и D – прямые углы. Менее очевидно, если C и D будут прямыми углами в любом подобного вида четырехугольнике и что отсюда будет вытекать пятый постулат.

Не прибегая к пятому постулату, Саккери доказал, что углы C и D равны. Остается два возможных варианта:

• гипотеза для тупых углов: C и D больше прямого угла;

• гипотеза для острых углов: C и D меньше прямого угла.

Идея Саккери состояла в рассмотрении каждой из этих гипотез по отдельности, чтобы возникло логическое противоречие. Тогда евклидова геометрия оставалась единственной логически возможной.

Четырехугольник Саккери: сторона CD нарочно сделана кривой, чтобы избежать евклидовых заключений об углах C и D

Ученый начал с гипотезы для тупых углов и через ряд теорем вывел – как ему казалось, – что углы C и D должны в конце концов оказаться прямыми. Это противоречие, а значит, гипотеза для тупых углов ошибочна. Затем Саккери перешел к острым углам, что потребовало нового ряда теорем, причем все они были верны и любопытны сами по себе. Попутно ученый доказал довольно сложную теорему о семействе линий, проходящих через одну общую точку, в которой говорилось, что две из этих линий будут иметь общий перпендикуляр в бесконечности. На самом деле это не противоречие, хотя Саккери думал именно так и объявил гипотезу для острых углов также опровергнутой.

Оставался единственный вариант – с геометрией Евклида, и Саккери счел свою задачу выполненной. Но другие ученые заметили, что на самом деле никакого противоречия из гипотезы для острого угла не было, появилась лишь очередная удивительная теорема. И к 1759 г. д’Аламбер объявил статус пятого постулата: «скандал с началами геометрии».

ЧТО НЕЕВКЛИДОВА ГЕОМЕТРИЯ ДАЛА ИМ

К 1813 г. Гаусс успел окончательно убедиться, что антиевклидова, затем астральная и, наконец, неевклидова геометрия логически возможны. Он задался вопросом, что тогда можно считать истинной геометрией пространства, и измерил углы треугольника, образованного тремя горами в Нижней Саксонии: Броккен, Хохехаген и Инзельберг. Чтобы результаты неискажались кривизной Земли, в измерениях он использовал местную плоскость горизонта. Сумма измеренных им углов оказалась на 15 угловых секунд больше 180°. По всему выходило, что это тупой угол, но возможность ошибки в наблюдениях сводила на нет всю ценность опыта. Гауссу требовался гораздо больший треугольник и более точные инструменты для измерения углов.

Ламберт

Немецкий математик Георг Клюгель прочел книгу Саккери и выразил новаторское и даже несколько шокирующее мнение, что убежденность в правоте пятого постулата относится скорее к области опыта, чем логики. Он утверждал, что некая особенность нашего образа мышления и представления о пространстве заставляет нас верить в существование параллельных линий со свойствами, которые описал Евклид.

В 1776 г. Иоганн Ламберт, следуя предположению Клюгеля, занялся исследованиями, похожими на работу Саккери, но он начал с четырехугольника с тремя прямыми углами. Четвертый угол у него мог быть или прямым (евклидова геометрия), или тупым, или острым. Как и Саккери, он предположил, что тупой угол приводит к противоречию. Точнее, он решил, что это приводит к сферической геометрии, где давно известно, что сумма углов четырехугольника больше 360°, поскольку сумма углов треугольника больше 180°. Раз сфера – это не плоскость, вариант с тупым углом исключался.

Однако Ламберт ничего подобного не утверждал для острого угла. Зато он доказал ряд любопытных теорем, однако самой блестящей оказалась выведенная им формула вычисления площади многоугольника с n сторонами. Сложите все углы и вычтите их из суммы 2n – 4 прямых углов: результат окажется пропорциональным площади многоугольника. Эта формула напомнила Ламберту похожую из сферической геометрии: сложите все углы и вычтите 2n – 4 прямых угла: результат снова окажется пропорциональным площади многоугольника. Разница несущественна: вычитание выполняется в обратном порядке. Ученый подошел вплотную к неясному, но пророческому утверждению: геометрия острого угла такая же, как у сферы с мнимым радиусом.

Ламберт тут же написал короткую статью о тригонометрических функциях мнимых углов, выведя несколько изящных и идеально согласующихся формул. Теперь мы признаём эти функции: это так называемые гиперболические функции, которые можно вычислить, не прибегая к мнимым числам, и они удовлетворяют всем формулам Ламберта. Было очевидно, что за его неожиданным, загадочным предположением кроется что-то интересное. Но что?

Дилемма Гаусса

К определенному моменту у наиболее информированных геометров сложилось твердое убеждение в том, что пятый постулат Евклида не может быть доказан с помощью остальных аксиом. Случай с острым углом оказался слишком логичным, чтобы привести к противоречию. С другой стороны, сфера с мнимым радиусом тоже не выглядела достаточно солидно, чтобы подкрепить это убеждение.

Одним из таких геометров был Гаусс, с юности веривший в вероятность существования логически последовательной неевклидовой геометрии и позже доказавший в этой области немало теорем. Но, как он откровенно заявил в 1829 г. в письме к Бесселю, у него не было намерения публиковать некоторые из своих работ из опасения стать объектом того, что он называл «криками беотийцев». Люди, лишенные воображения, не смогут его понять и в своем невежестве и приверженности традициям поднимут его на смех. Возможно, в этом опасении ученый укрепился из-за излишнего почтения к философскому авторитету Канта: тот утверждал, что геометрия пространства должна быть евклидовой.

В 1799 г. Гаусс написал венгерскому ученому Фаркашу Бойяи, признавшись, что его исследование «заставит меня сомневаться в истинности геометрии. Да, я добился того, что многие уверенно назвали бы доказательством (пятого постулата с помощью других аксиом), но в моих глазах это всё ничего не стоит».

Прочие математики оказались не столь щепетильными. В 1826 г. Николай Лобачевский уже читал в Казанском университете лекции по неевклидовой геометрии. Он ничего не знал о работах Гаусса, но доказал те же теоремы своими методами. Две статьи на эту тему появились в 1829 и 1835 гг. Никакого шума, как опасался Гаусс, они не подняли, скорее, без следа канули в неизвестность. В 1840 г. Лобачевский опубликовал книгу на ту же тему, где открыто посетовал на отсутствие интереса. В 1855 г. он выпустил новый труд, развивавший достижения первого.

Независимо от них сын Фаркаша Бойяи, Янош, армейский офицер, пришел к тем же идеям в 1825 г. и изложил их в 26-страничном труде, опубликованном в книге его отца по геометрии «Опыт введения учащегося юношества в начала чистой математики» как приложение в 1832 г. Он признавался отцу: «Я сделал открытия столь поразительные, что сам растерялся».

Гаусс прочел эту работу, но объяснил Фаркашу, что не считает себя вправе хвалить молодого ученого, потому что «оценить это – всё равно что оценить себя». Возможно, это было не совсем справедливо, но таков уж был этот человек.

Неевклидова геометрия

История неевклидовой геометрии слишком сложна, чтобы описывать ее во всех подробностях, но мы можем резюмировать результаты, полученные благодаря усилиям ее первопроходцев. Была установлена глубокая связь между тремя случаями, отмеченными Саккери, Ламбертом, Гауссом, Бойяи и Лобачевским. Их всех объединяет идея кривизны. Неевклидова геометрия – на самом деле естественная геометрия криволинейной поверхности. Если поверхность имеет положительную кривизну, как сфера, мы имеем дело с тупым углом. Это долгое время отвергалось из-за слишком очевидных отличий сферической геометрии от евклидовой – например, потому что здесь любые две линии, т. е. большие круги, чьи центры совпадают с центром Земли, встречаются в двух точках, а не в одной, как мы ожидаем от евклидовых прямых.

Теперь нам ясно, что эти возражения необоснованны. Если мы отождествим в одну точку диаметрально противоположные точки на сфере – т. е. примем, что они идентичны, – то линии (большие круги) всё равно будут иметь смысл: если точка лежит на большом круге, на нем же будет лежать и диаметрально противоположная ей. С таким определением практически все геометрические свойства остаются неизменными, но теперь линии встречаются в одной точке. Топологически в результате мы получаем проективную плоскость, хотя задействованный здесь подход – далеко не общепринятая проективная геометрия. Сейчас мы называем ее эллиптической геометрией, и она так же востребована, как геометрия Евклида.

Если поверхность имеет отрицательную кривизну, как седло, мы переходим к случаю с острым углом. Полученная в результате геометрия называется гиперболической. Она имеет множество занимательных особенностей, отличающих ее от евклидовой.

Модель Пуанкаре гиперболической геометрии делает ее более ясной: через точку, не лежащую на данной прямой, проходит бесконечно много параллельных (не пересекающих ее) линий

Если кривизна поверхности нулевая, как у евклидовой плоскости, то мы попадаем в область евклидовой геометрии. Все три геометрии удовлетворяют всем аксиомам Евклида, за исключением пятого постулата. Решение Евклида включить его было оправданным.

Эти различные геометрии могут быть выражены самыми разными способами. И здесь особенно многогранна гиперболическая геометрия. В одной модели соответствующее пространство может оказаться верхней комплексной полуплоскостью, без вещественной оси и всего, что ниже ее. Линия является полуокружностью, встречающейся с вещественной осью под прямыми углами. Топологически данное пространство есть не что иное, как плоскость, а его линии тождествены обычным. Изгиб линий отражает отрицательную кривизну гиперболического пространства.

Во второй модели гиперболической геометрии, исследованной Пуанкаре, пространство заключено внутри круга, не включает его границы, а линии являются дугами окружностей и пересекают границу под прямыми углами. И снова данный вид геометрии отражает кривизну пространства. Художник Мауриц Эшер создал много картин, основанных на этой модели гиперболической геометрии, с которой его познакомил канадский ученый Коксетер.

Обе модели затрагивают глубинные связи между гиперболической геометрией и комплексным анализом. Эти связи относятся к основным группам преобразований комплексной плоскости. Согласно «Эрлангенской программе» Феликса Клейна, гиперболическая геометрия является геометрией инвариантов таких преобразований. Другой класс трансформаций, так называемые преобразования Мёбиуса, в свою очередь, вводят в игру эллиптическую геометрию.

Геометрия пространства

Что значит геометрия пространства? Теперь мы все согласны с Клюгелем и не согласны с Кантом. Это был вопрос опыта, а не отвлеченных материй, решаемых исключительно силой мысли. Теория относительности Эйнштейна утверждает, что пространство (и время) может искривляться: кривизна – это гравитационный эффект материи. Более того: кривизна может меняться от одной зоны к другой в зависимости от распределения материи. Иными словами, дело тут не в геометрии пространства как таковой. Пространство может иметь разные геометрии на разных участках. Евклидова геометрия безупречно работает в человеческих масштабах, в мире человека: ведь гравитационное искривление столь незначительно, что мы не замечаем его в обыденной жизни. Но в масштабах Вселенной ведущая роль принадлежит неевклидовой геометрии.

Начиная с ученых древности и вплоть до XIX в. математики и реальный мир пребывали в безнадежном самообмане. Господствовало твердое убеждение в том, что математика – отражение основных и неизменных свойств реального мира и что математика – истина в последней инстанции. И нигде это убеждение не удерживало столь прочные позиции, как в классической геометрии. Пространство существует по законам Евклида, для всех и каждого, кто вообще об этом задумался. А разве могло быть иначе?

ЧТО НЕЕВКЛИДОВА ГЕОМЕТРИЯ ДАЕТ НАМ

Какова форма Вселенной? Вопрос может показаться простым, но ответить на него нелегко – отчасти из-за огромности Вселенной, но главным образом из-за того, что мы внутри и не имеем возможности кинуть взгляд со стороны. По аналогии, снова восходящей к Гауссу, муравей, живущий на некой поверхности и созерцающий мир только с нее, не сумеет уверенно сказать, является ли она плоскостью, сферой, тором или еще более сложной фигурой.

Теория относительности говорит нам, что вблизи от материального тела, такого как звезда, пространство-время искривляется. Уравнения Эйнштейна, демонстрирующие зависимость кривизны от плотности материи, имеют много разных решений. В самом простом из них Вселенная в целом имеет положительную кривизну и топологию сферы. Но, насколько мы можем судить, общая кривизна реально существующей Вселенной бывает и отрицательной.

Пространства с положительной, отрицательной и нулевой кривизной

Мы даже не уверены, простирается ли Вселенная бесконечно, как евклидово пространство, или имеет конечный размер, как сфера. Некоторые физики настаивают, что Вселенная бесконечна, однако экспериментальная основа этой идеи вызывает много вопросов. И большинство все-таки считает ее размеры конечными.

Удивительно, что конечная Вселенная может существовать, не имея границы. Это справедливо для двумерной поверхности сферы и для тора. Тор может быть описан плоскостной геометрией (планиметрией), ведь он наследник прямоугольника, у которого склеены противоположные стороны. Топологи также открыли, что пространство может быть конечным и в то же время иметь отрицательную кривизну. Один из способов построения такого пространства: берем конечный многогранник в гиперболическом пространстве и отождествляем различные его грани, так что линия, выходящая из одной грани многогранника, тут же входит в другую грань. Эта конструкция напоминает то, как меняются местами верхний и нижний края экрана во многих компьютерных играх.

Чтобы получить додекаэдрическое пространство Пуанкаре, нужно склеить противоположные грани додекаэдра с разворотом, чтобы они совпали

Если пространство конечно, должна быть возможность наблюдать одну и ту же звезду в разных направлениях, хотя в некоторых направлениях она может показаться более далекой, чем в других, и, кроме того, доступный для наблюдений сектор Вселенной может оказаться слишком мал для этого. Если конечное пространство имеет гиперболическую геометрию, это множит местонахождение одних и тех же звезд в разных направлениях, создавая в небесах систему гигантских окружностей, причем геометрия последних будет определять, какое именно гиперболическое пространство мы наблюдаем. Но окружности могут оказаться где угодно среди миллиардов звезд, видимых наблюдателю, т. е. попытки разглядывать их, основанные на статистической корреляции между кажущимися позициями звезд, будут безрезультатными.

В 2003 г. данные, полученные с космического аппарата НАСА Wilkinson Microwave Anisotropy Probe, позволили команде Жана-Пьера Люмине предположить, что пространство конечно, но имеет положительную кривизну. Они обнаружили, что додекаэдрическое пространство Пуанкаре – полученное путем отождествления противоположных граней искривленного додекаэдра – лучше всего согласуется с наблюдениями. Это предположение дошло до широкой публики как утверждение о том, что Вселенная имеет форму футбольного мяча. Однако это предположение не подтверждено, и мы по-прежнему не знаем, какова истинная форма Вселенной. Но по крайней мере у нас уже есть гораздо более полное представление о том, что нужно сделать, чтобы решить эту загадку.

Вопрос перестал быть риторическим с тех пор, как начали появляться логически обоснованные альтернативы геометрии Евклида. Да, потребовалось немалое время, чтобы убедиться в их логической состоятельности – по крайней мере, не менее логической, чем евклидова геометрия, – и еще большее, чтобы осознать, что наше физическое пространство может оказаться вовсе не евклидовым. Как всегда, отрицательную роль сыграла узость взглядов: мы упорно пытаемся распространить ограниченное понимание нашего крошечного уголка на Вселенную в целом. Привычка пользоваться моделью Евклида делает нас предвзятыми, возможно потому, что в жестких рамках нашего опыта эта модель кажется самой простой и превосходно удовлетворяет наши запросы.

Благодаря отдельным ученым, наделенным богатым воображением и неординарным мышлением, часто подвергавшимся гонениям со стороны менее талантливых собратьев, наконец-то мы пришли к пониманию – по крайней мере, математики и физики, – что существует много альтернатив евклидовой геометрии и что природа физического пространства – предмет наблюдений, а не только мышления. Мы уже четко проводим границу между математическими моделями реальности и реальностью как таковой. Если уж на то пошло, многие математические построения вообще не имеют очевидного отношения к реальности – но это нисколько не умаляет их пользы.

Глава 13. Расцвет симметрии

Как не решить уравнение

Около 1850 математиков подготовили самые значительные перемены в истории науки, хотя это не всегда было очевидно их современникам. Вплоть до 1800 г. главными объектами математических исследований были понятия вполне конкретные: числа, треугольники, сферы. Алгебра предложила формулы для описания операций с числами, но сами по себе формулы воспринимались как символические описания неких процессов, а не просто объектов. Но к 1900 г. формулы и их преобразования стали восприниматься как объекты, а не процессы, и предметом алгебры стали более абстрактные и обобщенные понятия. Она стала почти всеобъемлющей. Даже такие основные законы, как коммутативный закон умножения ab = ba, заняли важное место во многих областях математики.

Теория групп

Эти перемены стали возможны во многом благодаря тому, что математики открыли теорию групп – раздел алгебры, который возник из безуспешных попыток решать алгебраические уравнения, особенно четвертой или пятой степени. Но только через 50 лет после своего открытия теория групп была оценена как верный подход для изучения концепции симметрии. По мере того как новый метод занимал место в общественном сознании, становилось ясно, что симметрия – глубокая и важная идея, со множеством приложений как к физическим, так и к биологическим исследованиям. Сегодня теория групп стала незаменимым инструментом в любой области математики и науки в целом, а ее связь с симметрий подчеркивается в большинстве предисловий научных трудов. Но потребовалось не одно десятилетие, чтобы эта точка зрения восторжествовала. Примерно в 1900 г. Анри Пуанкаре сказал, что теория групп представляет собой всю математику, самую ее суть. Несколько преувеличенное, но верное утверждение.

Поворотным пунктом в теории групп стала работа молодого француза Эвариста Галуа. Ей предшествовала долгая и запутанная предыстория: идеи Галуа появились не на пустом месте. Затем последовала не менее запутанная и даже в чем-то не очень чистая постистория, когда математики принялись экспериментировать с новой концепцией, пытаясь выяснить, что в ней важно, а что нет. Однако именно Галуа четче всех представлял необходимость понятия групп в математике, описал ряд самых фундаментальных их характеристик и продемонстрировал их ценность для основ математики. Не особо удивляет то, что его работа осталась незамеченной при жизни ученого. Возможно, она казалась чересчур оригинальной, но в этом, по правде говоря, отчасти может быть повинна репутация Галуа как ярого революционера. Он был трагической фигурой, жившей во времена множества личных трагедий, и его судьба выглядит одной из самых драматичных и, пожалуй, романтичных по сравнению с прочими выдающимися математиками.

Решаем уравнения

История теории групп уходит корнями в древние таблички вавилонян с решениями квадратных уравнений. Методы вавилонян преследуют прежде всего практические цели. Это была вычислительная методика, и, судя по всему, никто из древних особо не задавался глубокими вопросами, когда ею пользовался. Если вы умеете извлекать квадратные корни и владеете основами арифметики, то сумеете решить и квадратные уравнения.

Было найдено несколько свидетельств на глиняных табличках, что вавилоняне также подступались к решению кубических уравнений и даже уравнений четвертой степени. Греки, а вслед за ними и арабы открыли геометрические способы решения кубических уравнений с помощью конических сечений. (Мы сейчас знаем, что традиционные евклидовы линии и окружности не могут точно решить эту проблему. Здесь необходимо нечто более изощренное; так случилось, что эту работу взяли на себя конические сечения.) Одной из самых заметных фигур в этой области был персидский мыслитель Омар Хайям. Он решил все возможные виды кубических уравнений с помощью целой системы геометрических методов. Однако, как мы видели, алгебраическое решение уравнений третьей и четвертой степени появилось в эпоху Возрождения в работах дель Ферро, Тартальи, Фиоре, Кардано и его ученика Феррари.

Формулы, которые появились в их работах, были простыми, но зачастую с беспорядочными деталями. Вы можете решить любое кубическое уравнение, используя арифметические операции плюс квадратные корни плюс корни кубические. Вы можете решить любое уравнение четвертой степени, используя арифметические операции, квадратные и кубические корни, корни четвертой степени, – хотя последние могут быть сведены к двум последовательно взятым квадратным корням. Создавалось впечатление, что эту закономерность можно продолжать, так что вы сможете решить любое уравнение пятой степени, используя арифметические операции, квадратные и кубические корни, корни четвертой и пятой степеней. И так далее – для уравнений любой степени. Да, понятно, что все эти формулы чрезвычайно сложны, и их поиск – еще более трудное дело, но практически ни у кого не возникало сомнений, что они существуют.

Шли века, но почему-то ни одна из этих формул не была открыта. И кое-кто из маститых математиков решил присмотреться повнимательнее к данной области, чтобы понять, что действительно происходит за ее кулисами, унифицировать известные методы и упростить их так, чтобы стало понятно, почему они работают. Тогда, как они полагали, это будет просто вопрос применения одних и тех же общих принципов, и уравнение пятой степени раскроет свои тайны.

Самую успешную и систематичную работу в этом направлении проделал Лагранж. Он переосмыслил классические формулы с точки зрения решений, которые собирался найти. Он утверждал, что важнее всего понять, как ведут себя в этих решениях определенные алгебраические выражения, когда вы ищете корни. Они будут перегруппированы, перестроены, примут другой вид. Он знал, что любое полностью симметричное выражение, зависящее от корней, которое остается неизменным, как бы ни менялся порядок корней при решении, может быть выражено через коэффициенты уравнения, становясь таким образом известной величиной. Более интересны были выражения, получавшие несколько разных значений, когда корни решения переставлялись. Казалось, здесь и зарыт ключ к общему принципу решения уравнений.

СИММЕТРИЯ КВАДРАТНЫХ УРАВНЕНИЙ

Возьмем квадратное уравнение, немного упростив его форму:

x2 + px + q = 0.

Предположим, есть два решения (корня) x = a и x = b:

x2 + px + q = (x – a) (x – b).

Нам известно из школьного курса, что

a + b = –p ab = q.

Значит, хотя мы всё еще не знаем корней, нам известны их сумма и произведение.

Почему так вышло? Сумма a + b равна сумме b + a – она не меняется от перестановки корней. То же верно и для ab = ba. Получается, любая симметричная функция, зависящая от корней, может быть выражена через коэффициенты p и q. Верно и обратное: любое выражение для p и q всегда является симметричной функцией от a и b. Если смотреть шире, связь между корнями уравнения и коэффициентами определяется свойствами симметрии.

Асимметричные функции так себя не ведут. Хороший пример – разница a – b. Если мы меняем местами a и b, получаем b – a, т. е. другое значение. Однако – и это важнейшее наблюдение – оно не совсем другое. Это то, что мы получим из a – b, сменив его знак. Так что квадрат (a – b)2 полностью симметричен. Но любая полностью симметричная функция от корней должна быть неким выражением в коэффициентах. Извлеките квадратный корень, и вы получите выражение для a – b через коэффициенты, где не используется ничего более загадочного, чем квадратный корень. Мы уже знаем: a + b = –p. Также нам известно и a – b; сумма двух этих чисел равна 2а, а разница 2b. Поделив на 2, мы получим формулы для a и b.

Всё это мы проделали, чтобы доказать, что должна существовать формула для корней a и b, не включающая ничего более загадочного, чем квадратный корень, основанная на общих свойствах симметрии алгебраических выражений. Это впечатляет: мы доказали, что у задачи есть решение, не вдаваясь в запутанные детали и объяснения, что есть что. И в каком-то смысле мы отследили, почему древние вавилоняне смогли найти свой метод. Это небольшое исследование наделяет слово «понимать» новым смыслом. Вы можете понять, как метод вавилонян привел к решению, пройдя поочередно все этапы и убедившись в их логике. Но теперь мы знаем, почему здесь непременно должен быть такой метод, – не показав конкретное решение, но рассмотрев общие свойства предполагаемых корней. В данном случае таким ключевым свойством оказалась симметрия.

Не требуя больших усилий для того, чтобы вывести точное выражение для (a – b)2, этот прием дает нам формулу решения. Она эквивалента и той формуле, которую мы учили в школе, и методу, использованному в Вавилоне.

Чувство математической формы и красоты, очень высоко развитое у Лагранжа, подсказало ему, что здесь и кроется главная идея. Если что-то похожее можно получить для кубических уравнений и уравнений четвертой степени, должна быть возможность найти решения и для пятой степени.

Используя ту же основную идею, мы выясняем, что частично симметричные функции от корней позволяют свести кубическое уравнение к квадратному. Для его решения нужен квадратный корень, а благодаря сведению можно избавиться от необходимости использовать кубический корень. Так же и любое уравнение четвертой степени может быть сведено к кубическому, которое называется кубическая разрешающая (резольвента). Вы можете решить уравнение четвертой степени, используя квадратные и кубические корни, имея дело с кубической разрешающей и четырьмя корнями, и получить в ответ искомое решение. В обоих случаях ответы идентичны классическим формулам, открытым в эпоху Возрождения. Да иначе и быть не могло: это те же самые ответы. Но теперь Лагранж знал, почему это так, и был в курсе, почему эти ответы могут быть найдены. Наверное, на этом этапе исследований он испытал немалый подъем. Переходя к уравнениям пятой степени и используя те же техники, вы ожидаете, что получите разрешающую уравнения четвертой степени, – дело сделано! Но, забегая вперед в истории его разочарования, он так и не нашел разрешающее уравнение четвертой степени. Он получил разрешающее уравнение шестой степени. И вместо того, чтобы упростить решение, его метод превратил уравнение в еще более сложное.

В чем же крылся недостаток его метода? Мог ли какой-то более талантливый математик решить уравнение пятой степени? Судя по всему, Лагранж в это верил. Он выражал надежду, что его новый подход будет полезен любому, кто отважится на поиски решения уравнения пятой степени. Кажется, ему даже не приходило в голову, что здесь не может быть такого метода, что его подход ошибочен, потому что уравнения пятой степени вообще не имеют решений в «радикалах» – выражениях, включающих арифметические операции и корни разной степени, в том числе и пятой. Еще большую путаницу привносит то, что все-таки у некоторых уравнений пятой степени есть такие решения. Например, уравнение x5 – 2 = 0 имеет решение x = . Но это простой случай, и уж точно не типичный.

Кстати, все уравнения пятой степени имеют решения: как правило, это комплексные числа, и их можно численно выразить довольно точно. Проблема кроется в алгебраических формулах для поиска этих решений.

Поиск решения

Становилось всё очевиднее, что идеи Лагранжа ошибочны, и в научной среде росла уверенность в том, что, возможно, задача вообще неразрешима: уравнения пятой степени в принципе нельзя решить с помощью радикалов. Судя по всему, к этой точке зрения склонялся и Гаусс, но в узком кругу, хотя на публике заявлял, что не считает эту задачу достойной внимания. Возможно, это был один из немногих случаев, когда ученого подвела интуиция, обычно безошибочно указывавшая ему на самые важные вопросы. Вторым таким случаем стала Великая теорема Ферма, но тут даже Гаусс не располагал необходимыми для решения методами: для их открытия потребовалось еще два века. Однако, по иронии судьбы, именно Гаусс инициировал поиск некоторых алгебраических доказательств отсутствия решений у уравнений пятой степени. Он ввел их в своей работе о построении правильных многоугольников с помощью линейки и циркуля. И он же создал прецедент, доказав (по крайней мере, для собственного удовольствия), что некоторые многоугольники не могут быть построены таким способом. В пример он привел правильный девятиугольник. Гаусс знал об этом, но так и не записал на бумаге доказательство – то самое, которое позже предложил Пьер Ванцель. Итак, Гаусс создал прецедент для предположения, что некоторые задачи не могут быть решены некими конкретными методами.

Первым ученым, попытавшимся доказать невозможность, стал Паоло Руффини, в 1789 г. занявший пост профессора математики в Моденском университете. Изучая идеи Лагранжа о свойствах симметричных функций, Руффини пришел к убеждению, что нет никакой формулы, включающей в себя только корни n-й степени (а не что-то более загадочное), чтобы решить уравнения пятой степени. В своем труде «Общая теория уравнений» в 1799 г. он дал доказательство тому, что «невозможно алгебраическое решение для уравнений степени больше, чем четыре». Но его доказательство оказалось таким длинным – 500 страниц текста, – что никто не отважился его проверить, особенно когда пошли слухи об ошибках. В 1803 г. Руффини опубликовал новое, упрощенное доказательство, но более благожелательных откликов не последовало. Так Руффини и не удалось стяжать лавры человека, доказавшего отсутствие алгебраического решения у уравнений пятой степени.

Самым ценным вкладом Руффини в науку стало понимание, что перестановки можно как-то комбинировать. До тех пор они были переупорядочиванием некоторого набора символов. Например, если мы пронумеруем корни уравнения пятой степени как 1, 2, 3, 4, 5, эти символы можно переставить: 54321, или 42153, или 23154, или как угодно. Есть 120 возможных перестановок. Руффини догадался, что на такие перегруппировки можно посмотреть иначе – как на способ перестановки любого другого набора из пяти символов. Хитрость состояла в сравнении стандартного порядка 12345 с перегруппированным. В качестве простого примера представим, что перегруппированный порядок будет 54321. Тогда правило для получения нового варианта совсем простое: поставьте символы в обратном порядке. Но ведь вы можете поставить в обратном порядке любую последовательность из пяти символов. Если это abcde, обратный порядок – edcba. Если символы первоначально стоят так: 23451, то обратный порядок будет 15432. Этот новый взгляд подразумевает, что вы можете сделать две перестановки по очереди – своего рода умножение перестановок. В алгебре перестановок умножение такого рода и содержит ключ к уравнениям пятой степени.

Абель

Теперь мы знаем, что в доказательство Руффини закралась техническая ошибка, хотя в целом его идеи были верны и заполнили основные пробелы. Он, несомненно, добился одного: его книга создала необъяснимое, но широко распространившееся убеждение в невозможности решить уравнение пятой степени с помощью радикалов. Далеко не все считали, что Руффини доказал это, но математики хотя бы засомневались в существовании решения. К сожалению, дело кончилось тем, что ученые вообще отказались заниматься этой проблемой.

Единственным исключением стал Абель, молодой норвежец с огромным талантом в математике. Он был искренне убежден, что еще в школе решил уравнение пятой степени. Правда, он вскоре нашел ошибку, но это не повлияло на его увлеченность вопросом: работа продолжалась в полную силу. В 1823 г. он нашел безупречное доказательство тому, что уравнение пятой степени не имеет решения. Абель прибегал к той же стратегии, что и Руффини, но его тактика оказалась удачнее. На первых порах он ничего не знал о работе Руффини, позже он точно ее читал, но настаивал на ее неполноте. Правда, он так и не указал ни на одну конкретную дыру в доказательстве Руффини. По иронии судьбы, один из этапов в доказательстве Абеля оказался именно тем кирпичиком, которого так не хватало в работе Руффини.

Сейчас у нас есть возможность познакомиться с общей идеей Абеля, не погружаясь в технические тонкости. Он справился с проблемой, выделив два вида алгебраических операций. Предположим, мы начинаем с набора разных величин; это могут быть как конкретные числа, так и алгебраические выражения со многими неизвестными. Из них мы можем построить много других величин путем сложения, вычитания, умножения или деления. Для простого неизвестного x возможно составить такие выражения, как x2, 3x + 4 или (x + 7)/(2x – 3). Алгебраически все эти выражения имеют тот же фундамент, что и сам x.

Другой способ получить новые величины из имеющихся – использовать радикалы. Возьмите для примера любую простую величину и извлеките из нее корень. Назовем такой шаг применением радикала. Если это квадратный корень, скажем, что степень радикала равна 2, если кубический – 3, и т. д.

В этих терминах формула Кардано для кубического уравнения может быть представлена как результат двухшаговой процедуры. Начнем с коэффициентов для кубического уравнения (и любой безобидной комбинации из них). Применим радикал со степенью 2. Затем следующий радикал со степенью 3. И всё. Описание говорит нам, какого вида формула получилась, но не какая именно. Зачастую ключом к решению математической загадки становится не фокусировка на деталях, а более широкий взгляд на ее особенности. Меньшее может оказаться более важным. И когда этот прием срабатывает, остается только удивляться «чуду»; а здесь он срабатывает прекрасно. Он позволил Абелю свести любую гипотетическую формулу для решения уравнения пятого порядка до самых существенных шагов: извлечь некую последовательность радикалов в определенном порядке, с различными степенями. И всегда остается возможность построить выражение так, чтобы степень снизилась до более простой: например, для корня шестой степени это будет кубический корень из квадратного корня.

Назовем такую последовательность башней радикалов. Уравнение считается решаемым с помощью радикалов, если хотя бы одно его решение может быть представлено башней радикалов. Но вместо того, чтобы искать ее, Абель просто предположил, что она существует, и задался вопросом, как тогда должно выглядеть исходное уравнение.

Сам того не понимая, Абель заполнил пробел в доказательстве Руффини. Он показал, что если уравнение может быть решено с помощью радикалов, то должна существовать башня радикалов, приводящая к этому решению, обязательно содержащая только коэффициенты исходного уравнения. Это теорема Абеля о решении алгебраических уравнений; она содержит утверждение, что нельзя решить уравнение за счет включения множества новых величин, не связанных с исходными коэффициентами. Вроде бы очевидно, но Абель понимал, что это решающий момент для всего доказательства.

Ключом к абелеву доказательству невозможности стал искусный предварительный результат. Предположим, мы взяли некоторое выражение от корней x1, x2, x3, x4, x5 уравнения и извлекли его корень p-й степени для некоторого простого числа p. Предположим, что исходное выражение не изменилось, когда мы применили две специальные перестановки:

S: x1, x2, x3, x4, x5 x2, x3, x1, x4, x5

и

Т: x1, x2, x3, x4, x5 x1, x2, x4, x5, x3.

Затем Абель показал, что p-й корень из этого выражения также не изменяется, когда мы применяем S и T. Этот предварительный результат напрямую подводит нас к доказательству теоремы о невозможности подъема на «башню», ступень за ступенью. Предположим, уравнение пятой степени можно решить в радикалах, т. е. существует башня радикалов, начинающаяся с коэффициентов, по которой можно подняться к некоему решению.

Первый этаж башни – безобидное выражение с коэффициентами – не меняется, когда мы применяем перестановки S и T, потому что они влияют не на коэффициенты, а на корни. Поэтому, по предварительному результату Абеля, второй этаж башни также неизменен после применения S и T, ведь он был достигнут примыканием корня p-й степени к чему-то с первого этажа для некоего простого числа p. По той же причине третий этаж остается неизменным, когда мы применяем S и T. То же касается четвертого этажа, пятого… до самого верха.

Но последний этаж содержит некое решение. Может ли им быть x1? Если да, x1 должен оставаться неизменным, когда мы применили S. Но S, примененное к x1, дает x2, а не x1; это нас не устраивает. По схожим причинам иногда после применения T решение, определяемое башней, не может быть x2, x3, x4 или x5. Все пять корней исключены из любой такой башни – и в итоге она на самом деле не может содержать решения.

Из этой логической ловушки нет выхода. Уравнения пятой степени не имеют решения, потому что любое решение в радикалах должно обладать взаимоисключающими свойствами, а значит, не может существовать.

Галуа

Эстафету в разгадке не только тайны решения уравнения пятой степени, но и алгебраических уравнений в целом принял Эварист Галуа, одна из самых трагических фигур в истории математики. Галуа сам перед собой поставил задачу определить, какие уравнения могут быть решены в радикалах, а какие нет. Как и многие его предшественники, он понимал, что ключ к алгебраическому решению кроется в поведении корней в результате перестановок. Проблема заключалась в симметрии.

Руффини и Абель понимали, что выражение корней может быть как симметричным, так и нет. Оно может оказаться частично симметричным: неизменным при одних перестановках и изменяемым при других.

Галуа заметил, что перестановки, фиксирующие некоторые выражения с корнями, не обязательно формируют такие соотношения для любого их старого набора. Они имеют простую и очень характерную особенность. Если вы берете любые две перестановки, фиксирующие выражение, и перемножаете их, результат также фиксирует перестановку. Такую систему перестановок он назвал группой. Как только вы поймете верность этой идеи, доказать ее будет очень просто. Секрет в том, чтобы ее осмыслить и осознать ее важность.

ЭВАРИСТ ГАЛУА 1811–1832

Эварист Галуа был сыном Николя-Габриеля Галуа и Аделаиды-Мари Демант. Он рос в сотрясаемой революцией Франции и проникся левыми политическими взглядами. Его огромный вклад в математику оставался неоцененным еще 14 лет после его смерти.

Французская революция началась со взятия Бастилии в 1789 г. и казни Людовика XVI в 1793 г. К 1804 г. Наполеон Бонапарт провозгласил себя императором, но после серии военных неудач был вынужден отречься от престола. Монархия возродилась только в 1814 г., при Людовике XVIII. В 1824 г. он скончался, и на престол сел Карл Х.

В 1827 г. Галуа продемонстрировал свой несравненный талант – подкрепленный ярым увлечением – к математическим исследованиям. Он попытался поступить в престижную Политехническую школу, но не прошел экзамен. В 1829 г. его отец, в то время мэр города, повесился из-за скандала по ложному обвинению, раздутого его политическими врагами. Вскоре после этого Галуа повторил попытку поступить в Политехническую школу и снова потерпел неудачу. Он обучался в Высшей нормальной школе.

В 1830 г. Галуа предоставил свои исследования по решению алгебраических уравнений на конкурс, объявленный Академией наук. Председатель жюри Фурье скоропостижно скончался, бумаги были утеряны. Награа досталась Абелю (к тому времени он уже умер от туберкулеза) и Карлу Якоби. В том же году Карл Х был низложен и вынужденно сбежал, чтобы спасти свою жизнь. Директор Высшей нормальной школы запер студентов в аудитории, чтобы помешать их участию в беспорядках. Галуа в приступе ярости написал злобное письмо, обвинив директора в малодушии, и был немедленно изгнан из школы.

Компромиссной фигурой в политической борьбе стал король Луи-Филипп. Галуа вступил в республиканское ополчение, артиллерию Национальной гвардии, но новый король ее распустил. Девятнадцать офицеров артиллерийской части были арестованы за подстрекательство к мятежу, но революционно настроенный суд снял все обвинения, и гвардейцы решили отметить освобождение праздничным обедом. Там Галуа произнес ироничный тост за короля, стоя с ножом в руке. Его арестовали, но оправдали, потому что (с его слов) тост звучал как «За Луи-Филиппа, если он не изменник», и не содержал угрозы в его адрес. Однако в День взятия Бастилии Галуа снова заключили под стражу за ношение отныне запрещенной формы Национальной гвардии.

В тюрьме ему стала известна судьба его научного труда. Пуассон даже не рассмотрел его из-за недостаточной ясности изложения. Галуа попытался наложить на себя руки, но его остановили соседи по камере. Его ненависть к любым официальным лицам стала неукротимой, налицо явные признаки паранойи. Однако из-за эпидемии холеры всех заключенных выпустили на свободу.

Отрывок манускрипта, написанного рукой Галуа

В это время Галуа влюбился в некую особу, чье имя долгие годы оставалось тайной. Наконец удалось выяснить, что ее звали Стефани дю Мотель, она была дочерью лечащего врача Галуа. Ничего хорошего из этого не вышло, и Стефани ушла. Один из соратников-революционеров вызвал Галуа на дуэль – вероятно, из-за Стефани. Наиболее приемлемой версией считается история Тони Ротмана: согласно ей, противником Галуа стал Эрнест Дюшатле, сидевший с ним в одной камере. Судя по всему, дуэль оказалась разновидностью русской рулетки, когда участники выбирают из двух пистолетов, из которых заряжен только один, и обмениваются выстрелами у барьера. Галуа выбрал несчастливый пистолет, получил пулю в живот и скончался на следующий день.

Ночью накануне дуэли он написал длинное изложение своих математических идей, в том числе и доказательство невозможности решения в радикалах уравнений пятой степени и выше. В этой работе он развил концепцию группы перестановок и сделал первые важные шаги в исследовании теории групп. Его бумаги едва не затерялись, но всё же попали в руки члена Академии Жозефа Лиувилля. В 1843 г. тот выступил перед членами Академии с сообщением о том, что в бумагах Галуа «я обнаружил решение, точность которого не уступает его глубине, такой замечательной задачи: узнать, существует или не существует решение в радикалах…»[6]. Лиувилль опубликовал бумаги Галуа в 1846 г., сделав их наконец достоянием научного сообщества.

ЧТО ТЕОРИЯ ГРУПП ДАЛА ИМ

Одним из первых серьезных практических приложений теории групп стала классификация всех возможных кристаллических структур. В кристаллах атомы образуют правильную трехмерную решетку, и главной задачей математики стало выявление всех возможных групп симметрии в ней, потому что это эффективное формирование симметрии кристалла.

В 1891 г. Евграф Федоров и Артур Шенфлис доказали, что существует ровно 230 отдельных кристаллографических пространственных групп. Похожий, но незавершенный список составил и Уильям Барлоу.

Современные методики определения структуры биологических молекул, таких как протеины, основаны на прохождении рентгеновских лучей через их кристаллическую решетку и наблюдении полученной дифракционной картинки. Симметрии кристалла очень важны для определения формы исследуемой молекулы. Так же важен анализ Фурье.

Дополнительным преимуществом идей Галуа стало открытие, что уравнение пятой степени не может быть решено в радикалах, поскольку обладает неправильной симметрией. Группа общего уравнения пятого порядка состоит из всех возможных перестановок для всех его пяти корней. Алгебраическая структура этой группы противоречит решению в радикалах.

Галуа работал и во многих других областях математики, добившись не менее впечатляющих открытий. В частности, он обобщил модульную арифметику и получил то, что мы сейчас называем полями Галуа. Это конечные системы, в которых могут быть определены арифметические действия (сложение, вычитание, умножение и деление) и для которых применимы все обычные законы. Размер поля Галуа – всегда степень простого числа, и существует только одно такое поле для каждой простой степени.

ЖордАн

В чистой форме концепция групп впервые появилась в работе Галуа, хотя и раньше намеки на нее мелькали как в эпических трудах Руффини, так и в элегантных построениях Лагранжа. На протяжении того десятилетия, когда благодаря Лиувиллю идеи Галуа получили широкое распространение, в математике появилась хорошо развитая теория групп. Главным архитектором теории считается Камиль Жордан, чей труд на 667 страницах «Трактат о подстановках и алгебраических уравнениях» был опубликован в 1870 г. Жордан развил всю тему систематически и всеобъемлюще.

Увлечение Жордана теорией групп началось в 1867 г., когда он продемонстрировал ее связь с геометрией явным образом, классифицировав основные виды движения твердого тела в евклидовом пространстве. А главное, он предпринял очень плодотворную попытку объяснить, как эти виды движения могуть быть объединены в группы. Главным его мотиватором стала работа Огюста Браве по кристаллографии, инициировавшего математическое изучение кристаллической симметрии, особенно лежащей в основе атомной решетки. Работа Жордана обобщила труды Браве. Он объявил о своей классификации в 1867 г. и опубликовал детали в 1868–1869 гг.

Технически Жордан работал только с замкнутыми группами, в которых любая конечная последовательность движений внутри группы также является движением в той же группе. Это относится ко всем конечным группам по очевидным причинам, а также к группам, которые подобны всем поворотам окружности вокруг ее центра. Типичным примером незамкнутой группы, не рассмотренной Жорданом, могут служить все повороты окружности вокруг ее центра на углы, кратные рациональному углу 360°/n. Эта группа существует, но не удовлетворяет свойству конечности (потому что, например, она не может включать в себя повороты на 360 2 градуса, поскольку 2 – не рациональное число). Незамкнутые группы движений невероятно разнообразны и практически не подлежат разумной классификации. В отличие от них замкнутые, хотя и с трудом, поддаются описанию.

Основные движения на плоскости – параллельные переносы, вращения, отражения и зеркальные отражения. В трехмерном пространстве мы также отмечаем винтовые движения, как у штопора: объект передвигается вдоль фиксированной оси и одновременно вращается вокруг нее же.

Жордан начал с группы параллельных переносов и перечислил десять видов: все сочетания непрерывных параллельных переносов (на любое расстояние) в некотором направлении и дискретных переносов (с целочисленными кратными) от фиксированного расстояния в прочих направлениях. Также он перечислил главные конечные группы для вращений и отражений: циклическая, диэдральная, тетраэдральная, октаэдральная и икосаэдральная. Он выделил группу O(2) всех вращений и отражений, которая сохраняет фиксированную линию в пространстве – ось, и группу O(3) всех вращений и отражений, которая сохраняет фиксированную точку в пространстве и точку пересечения осей.

Позже стало ясно, что список неполон. Например, в нем нет некоторых трудноуловимых кристаллографических групп в трехмерном пространстве. Однако работа стала значительным шагом к пониманию перемещений фигур, сохраняющих их неизменными в евклидовом пространстве, что крайне важно для механики, аравно и для чистой математики.

Книга Жордана получилась действительно огромной. Она начинается с модульной арифметики и полей Галуа, которые наряду с примерами групп служат логическим фундаментом всех дальнейших идей. Средняя часть посвящена группам перестановок, которые Жордан называл подстановками. Он определяет основные идеи о нормальных подгруппах, которые Галуа использовал для демонстрации, что группа симметрии уравнения пятого порядка несовместима с решением в радикалах, и доказывает, что эти подгруппы можно использовать для деления общей группы на более простые части. Он доказывает, что величина этих частей не зависит от того, как именно поделили группу. В 1889 г. Отто Гёльдер развил этот результат, проинтерпретировав части в самостоятельные группы и доказав, что не только их размер, но и структура не зависят от того, как поделили группу. Сегодня этот результат известен как теорема Жордана – Гёльдера.

Группа считается простой, если не делится таким образом. Теорема Жордана – Гёльдера однозначно утверждает, что простые группы соотносятся с общими точно так же, как атомы с молекулами в химии. Простые группы – атомные составляющие всех групп. Жордан доказал, что знакопеременная группа An, содержащая все перестановки из n символов, в которой символы попарно переставлены четное число раз, будет простой, если n 5. Это и есть главная причина, по которой теоретики групп уверены, что уравнение пятой степени не решается в радикалах.

Главным достижением стала теория линейных подстановок Жордана. Здесь преобразования, производимые с группой, не являются перестановками конечного множества: это линейные изменения для конечного списка переменных. Например, три переменные x, y, z можно преобразовать в новые переменные X, Y, Z с помощью линейных уравнений:

X = a1 x + a2 y + a3 z,

Y = b1 x + b2 y + b3 z,

Z = c1 x + c2 у + c3 z,

где a, b и с с нижними индексами – константы. Чтобы сделать группу конечной, Жордан обычно брал их так, чтобы они являлись элементами поля целых чисел по модулю некоторого простого числа, или, в общем случае, поля Галуа.

Также в 1869 г. Жордан развил свою версию теории Галуа и включил ее в свой трактат. Он доказал, что уравнение разрешимо тогда и только тогда, когда разрешима сама эта группа. Это означает, что все ее элементарные компоненты имеют простой порядок. Жордан применил теорию Галуа к геометрическим задачам.

Симметрия

Четырехтысячелетний поиск решения прекратился, когда Руффини, Абель и Галуа доказали, что решение в радикалах невозможно. И хотя результат оказался отрицательным, сам факт исследования серьезно повлиял на дальнейшее развитие и математики, и науки в целом. Это стало возможно благодаря тому, что метод, использованный для доказательства невозможности, оказался центральным в математическом понимании симметрии, а та, в свою очередь, стала неотъемлемой частью математики и науки вообще.

ЧТО ТЕОРИЯ ГРУПП ДАЕТ НАМ

В наше время теория групп неразрывно связана с математикой и широко применяется в науке. В частности, она появляется в теории формирования узоров в самых разных отраслях науки. Одним из примеров такого использования может быть реакционно-диффузная модель, предложенная Аланом Тьюрингом в 1952 г. как одно из возможных объяснений появления симметричных пятен на шкурах животных. В уравнениях модели набор химических веществ может создать диффузию в некоторой области пространства, и эти вещества также вступают в реакции, производя новые. Тьюринг предположил, что некоторые из этих процессов могли быть заложены как образец узора в развивающемся зародыше, что позже может выразиться в образовании пигментов и пятен на шкуре взрослой особи.

Страницы: «« 23456789 »»

Читать бесплатно другие книги:

Мария Кардакова, нутрициолог и мама двоих детей, дает полезные, актуальные и имеющие научную основу ...
Можно ли сократить время на изучение языка? Можно ли выучить язык быстро и эффективно? Опыт, который...
Уникальный курс по женской сексуальности, который помог тысячам женщин решить их проблемы и начать ж...
«Хрупкие люди» – это книга-путеводитель по миру нарциссизма. Миру, где каждый из нас вынужден создав...
Замечательная книга о детстве, о эпохе застоя и советского абсурда, о приходе рыночной экономики к н...
«Собственные записки» Н. Н. Муравьева-Карсского охватывают период с 1835 по 1848 годы. В этой части ...