Как избежать климатических катастроф? План Б 4.0: спасение цивилизации Браун Лестер

В середине 2009 г. компания Lockheed Martin, производящая аэрокосмические вооружения и информационные технологии, объявила о том, что строит тепловую солнечную электростанцию мощностью 290 мегаватт в Аризоне. Подобно многим другим, эта работающая на тепловом излучении Солнца электростанция будет иметь емкости для хранения энергии в течение 6 часов, что позволит генерировать электричество до полуночи и позднее. Выход на рынок солнечной энергии компании с ежегодным объемом продаж в 43 млрд долларов, компании, обладающей обширными инженерными навыками, говорит о том, что человечество имеет серьезные планы относительно предоставленного Земле изобилия солнечной энергии[422].

Как уже было отмечено, правительство Алжира планирует производить 6000 мегаватт электроэнергии с помощью солнечного тепла и передавать эту энергию в Европу по подводному кабелю. На инициативу Алжира быстро отреагировало правительство Германии, разработав план строительства линии высоковольтной передачи длиной 1900 миль, связывающей впадину Адрар в алжирской пустыне с немецким городом Аахеном, находящимся на границе с Нидерландами[423].

Первая строящаяся в Алжире электростанция — гибрид, работающий на солнечной энергии и природном газе (с наступлением темноты электроэнергию будут производить только на природном газе). Хотя первые несколько станций, строящиеся в рамках данного проекта, будут станциями гибридного типа, New Energy Algeria, государственная компания, созданная специально для поощрения развития возобновляемых источников энергии, планирует быстро перейти исключительно на использование тепловой энергии Солнца. На этих электростанциях, по-видимому, будут использовать расплав соли или какие-то другие теплоносители для хранения тепла, что необходимо для продления генерации электроэнергии на несколько часов после захода солнца и в вечерние часы пикового спроса на электроэнергию[424].

Электростанции, строящиеся в США и запланированные к строительству в Алжире, — первые шаги в эру использования тепловой солнечной энергии в промышленных масштабах. В конце 2008 г. в мире, в основном в США и Испании, действовало порядка 60 электростанций, работающих на тепловом излучении Солнца и производящих энергию в коммерческих масштабах. Из 10 крупнейших проектов подобных электростанций 8 должны быть построены в США. Большинство из них, мощностью от 250 до 900 мегаватт, будут возведены в Калифорнии. В первые месяцы 2009 г. появилось много новых сообщений о строительстве электростанций, работающих на тепловом излучении Солнца. Компания BrightSource Energy объявила о потрясающем пакете из 7 проектов, реализуемых совместно с Southern Energy Edison. В общей сложности осуществление этих проектов должно дать мощности для производства 1300 мегаватт электроэнергии. Вскоре после этого та же компания объявила об аналогичном пакете проектов, реализуемых совместно с компанией PG&E’s. Компания NRG, имеющая штаб-квартиру в штате Нью-Джерси, и компания eSolar объявили о намерении построить совместными усилиями на юго-западе США электростанции, работающие на тепловой энергии солнечных лучей, мощностью 500 мегаватт[425].

В Испании, еще одной сверхдержаве по производству электроэнергии с помощью солнечного тепла, сейчас находятся на стадии строительства около 50 таких электростанций. Мощность каждой из них составляет примерно 50 мегаватт. В других странах, в том числе в Израиле, Австралии, Южной Африке, Объединенных Арабских Эмиратах и в Египте, существуют отдельные проекты строительства электростанций, работающих на тепловой энергии солнечных лучей. По меньшей мере в десятке других солнечных стран теперь признают потенциал этого неистощимого и дешевого источника электричества и концентрируют усилия для подключения к этому источнику[426].

Индия относится к числу тех стран, которым идеально подходят электростанции, работающие на тепловой энергии солнечных лучей. Здесь не так много энергии ветра, как, скажем, в Китае или США, но Большая Индийская пустыня на северо-западе страны дает огромные возможности для строительства электростанций, работающих на тепловой энергии Солнца. Сотни таких станций, возведенных в пустыне, могли бы удовлетворить большую часть потребностей Индии в электроэнергии. Территория Индии не так уж велика, а это значит, что расстояния для строительства линий энергопередач, связывающих электростанции с центрами концентрации населения, сравнительно малы.

Издержки на производство электричества с помощью теплового излучения Солнца стремительно снижаются. Сегодня стоимость такой энергии составляет приблизительно 12–18 центов за киловатт-час. Министерство энергетики США планирует инвестировать значительные средства в исследования, которые позволят к 2020 г. снизить издержки такого производства электроэнергии до 5–7 центов за киловатт-час[427].

Мы знаем, что солнечная энергия имеется в избытке. Американское общество солнечной энергии отмечает, что только ресурсов юго-западной части США достаточно для того, чтобы покрыть нынешние потребности страны в электричестве четыре раза. Бюро землепользования США, ведомство, управляющее государственными землями, получило запросы на предоставление прав землепользования для строительства работающих на тепловой энергии Солнца или работающих на фотоэлектрических батареях электростанций общей мощностью 23 000 мегаватт в Неваде, 40 000 мегаватт в Аризоне и свыше 54 000 мегаватт в пустынной местности на юге Калифорнии[428].

На глобальном уровне Гринпис, Европейская ассоциация производства электричества с помощью теплового излучения Солнца и программа SolarPACES Международного энергетического агентства разработали план строительства работающих на тепле солнечных лучей электростанций общей мощностью 1,5 млн мегаватт. План должен быть выполнен к 2050 г. В рамках Плана Б мы предлагаем миру более скромную цель: к 2020 г. построить работающие на тепловой энергии Солнца электростанции мощностью 200 000 мегаватт. Эта цель вполне может быть перевыполнена по мере того, как будет проявляться истинный экономический потенциал такой энергетики[429].

Судить о темпах развития энергетики, питаемой солнечной энергией, можно и по тому, с какой скоростью и в каких объемах входят в употребление солнечные нагреватели воды. Например, в настоящее время в Китае на крышах домов размещено 27 млн солнечных водонагревателей. Так как такие устройства выпускают почти 4000 китайских компаний, эта сравнительно простая технология стремительно проникла в деревни, где до сих пор нет электричества. Крестьяне всего лишь за 200 долларов могут приобрести и смонтировать на крышах своих домов накопитель солнечного тепла, чтобы принять теплый душ. Эта технология распространяется по Китаю со скоростью лесного пожара, и в некоторых регионах этот рынок уже близок к насыщению. В Пекине площадь таких смонтированных на крышах накопителей-нагревателей воды сейчас составляет 114 млн кв. м, к 2020 г. эту площадь планируется увеличить до 300 млн кв. м[430].

Энергия, которую удалось произвести благодаря этим установкам в Китае, эквивалентна электроэнергии, генерируемой 49 работающими на угле электростанциями. Возможно, вскоре и другие развивающиеся страны, такие как Индия и Бразилия, станут свидетелями того, как миллионы семей перейдут на эту недорогую технологию нагревания воды. Скорость распространения этой технологии в сельских районах, лишенных линий энергоснабжения, подобна скорости, с которой мобильные телефоны обошли традиционные стационарные телефонные линии, предоставив услуги связи миллионам людей, которые, не появись мобильная связь, так бы и томились в списках очередников на подключение телефонов. И еще одна особенность: после того, как стоимость установки солнечного нагревателя на крыше оплачена, горячая вода становится, в сущности, бесплатной[431].

В Европе, где стоимость энергии сравнительно высока, солнечные нагреватели воды, устанавливаемые на крыше, также быстро распространяется. 15 % австрийских семей уже получают горячую воду из таких нагревателей. Как и в Китае, в некоторых австрийских деревнях на крышах почти всех домов установлены такие накопители. Далеко в этом направлении продвинулась и Германия. Джанет Сейвин из Worldwatch Institute отмечает, что примерно 2 млн немцев ныне проживают в домах, которые обогреваются смонтированными на крышах накопителями солнечной энергии, и получают горячую воду из тех же накопителей[432].

Быстрое распространение в последние годы нагревания воды и отопления за счет установленных на крышах систем, использующих солнечную энергию, вдохновило Европейскую федерацию промышленности тепловой энергии Солнца (ESTIF) поставить перед собой амбициозную задачу: к 2020 г. развернуть смонтированные на крышах накопители солнечного тепла на площади 500 млн кв. м, что будет равно 1 кв. м в расчете на каждого жителя Европы. Этот показатель лишь ненамного превысит 0,93 кв. м мощностей на одного человека, уже существующих ныне на Кипре, который является мировым лидером по использованию тепловой энергии солнечных лучей. Предполагается, что большинство новых установок будут системами типа Solar-Combi, которые спроектированы так, чтобы и нагревать воду, и обогревать помещения[433].

В Европе накопители солнечной тепловой энергии сосредоточены в Германии, Австрии и Греции, к которым постепенно присоединяются Франция и Испания. Появившееся в марте 2006 г. обязательство, требующее установки накопителей тепла на всех новых или реконструированных зданиях, подстегнуло соответствующую инициативу в Испании. Португалия быстро последовала примеру Испании, разработав собственный аналогичный мандат. По оценкам Европейской федерации промышленности тепловой энергии Солнца, Европейский союз обладает долгосрочным потенциалом для создания установок по нагреванию воды и обогреву помещений совокупной мощностью 1200 гигаватт. Этих мощностей может хватить для удовлетворения максимальных потребностей Европы в обогреве в течение холодного времени года[434].

В США производство устанавливаемых на крышах нагревателей воды, работающих за счет солнечной энергии, в прошлом было нишей рынка, обслуживающей бассейны. В период между 1995 и 2005 г. было продано 10 млн кв. м нагревателей воды для бассейнов. Впрочем, после введения в 2006 г. федеральных налоговых льгот, даже с такой небогатой историей отрасль сумела перестроиться на производство устройств нагревания воды и отопления помещений для массового рынка. В 2006 г. темпы развертывания таких систем в США увеличились втрое (лидерами стали Гавайи, Калифорния и Флорида), и с тех пор продолжают стремительно нарастать[435].

Итак, мы располагаем данными, необходимыми для построения глобальных прогнозов. Китай поставил задачу к 2020 г. построить работающие на тепле солнечных лучей нагреватели воды на площади 300 млн кв. м. Европейская федерация промышленности тепловой энергии Солнца ставит задачу к 2020 г. развернуть такие мощности на площади 500 млн кв. м. В США намерены развернуть такие мощности на площади 300 млн кв. м. Учитывая недавно введенные в действие налоговые стимулы, эти цели вполне достижимы. Япония, в которой монтируемые на крышах солнечные нагреватели воды в настоящее время развернуты на площади 7 млн кв. м и которая импортирует практически весь необходимый ей объем ископаемого топлива, легко может развернуть установку нагревателей воды на площади 80 млн кв. м[436].

Если Китай и Европейский союз достигнут своих целей, а Япония и США выполнят свои планы развертывания работающих на солнечной энергии нагревателей воды, в совокупности это составит 1180 млн кв. м устройств, обеспечивающих нагревание воды и отопление помещений. С учетом возможного развертывания таких мощностей в развивающихся странах помимо Китая, общая площадь, покрытая такими устройствами, в 2020 г. может превысить 1,5 млрд кв. м. К 2020 г. это даст миру 1100 гигаватт тепловой энергии, генерируемой с помощью Солнца, что эквивалентно мощности 690 тепловых станций, работающих на угле[437].

Прогнозируемое огромное расширение использования солнечной энергии для нагревания воды и обогрева помещений в промышленно развитых странах может приблизить мощности приспособлений для такого применения солнечного тепла к мощности существующих тепловых станций, работающих на угле, и сократить использование природного газа по мере вытеснения солнечными водонагревателями электрических и газовых водонагревателей. Впрочем, в странах, подобных Китаю и Индии, приборы для нагревания воды солнечным теплом просто сократят потребность в новых электростанциях, работающих на угле.

Использование солнечного тепла для нагревания воды и обогрева помещений в Европе и Китае крайне привлекательно с точки зрения экономики. В среднем в промышленно развитых странах такие системы окупают себя за счет сокращения потребления электроэнергии менее чем за 10 лет. Эти системы также предпочтительны с точки зрения энергетической безопасности и предотвращения изменений климата[438].

Поскольку стоимость монтируемых на крышах водонагревателей снижается (особенно в Китае), к Израилю, Испании и Португалии, вероятно, присоединятся многие другие страны, в которых установка на крышах новых зданий солнечных водонагревателей станет обязательной. Эти монтируемые на крышах устройства, ранее считавшиеся причудами или капризами чудаков, быстро становятся массовым явлением[439].

Таким образом, использование солнечной энергии расширяется по всем направлениям по мере роста общественной озабоченности изменениями климата, а также в связи с тревожной ситуацией в области энергетической безопасности, когда правительства материально стимулируют использование энергии Солнца в больших объемах. Издержки использования солнечной энергии снижаются, тогда как издержки сжигания ископаемого топлива растут. В 2009 г. вновь вводимые в эксплуатацию мощности, генерирующие энергию с помощью Солнца, могут впервые превысить мощности новых станций, работающих на угле[440].

ЭНЕРГИЯ ЗЕМЛИ

Энергия, которая таится в шести верхних милях земной поверхности, в 50 000 раз превышает энергию, содержащуюся во всех мировых запасах нефти и газа, вместе взятых. Это — поразительная статистика, о которой знают очень немногие. Но несмотря на изобилие этой энергии, мощность всех мировых геотермальных электростанций составляет всего лишь 10 500 мегаватт энергии[441].

Отчасти из-за господства нефтяной, газовой и угольной промышленности, которые дают дешевое топливо, исключая из стоимости этого топлива такие составляющие, как затраты, связанные с изменением климата и загрязнением воздуха, в разработку геотермальных ресурсов вкладывается сравнительно мало средств. За последнее десятилетие использование геотермальной энергии увеличивалось менее чем на 3 % в год[442].

Половина из существующих в мире мощностей, генерирующих энергию на геотермальных источниках, находится в США и на Филиппинах. Мексика, Индонезия, Италия и Япония дают большую часть остального производства. Всего геотермальную энергию превращают в электричество примерно в 24 странах. Исландия, Филиппины и Сальвадор получают, соответственно, 27, 26 и 23 % всего производимого в них электричества за счет геотермальных электростанций[443].

Возможности геотермальной энергии огромны. С ее помощью можно обогревать жилища и обеспечивать необходимым теплом промышленное производство. Особенно богаты геотермальной энергией страны, расположенные на берегах Тихого океана по так называемому Огненному кольцу. В числе этих стран — Чили, Перу, Колумбия, Мексика, США, Канада, Россия, Китай, Япония, Филиппины, Индонезия и Австралия. Не обделены геотермальными источниками и страны, расположенные вдоль Великого Африканского разлома, такие как Кения и Эфиопия, а также страны Восточного Средиземноморья[444].

Помимо производства электроэнергии, примерно 100 000 мегаватт геотермальной энергии используется непосредственно, без преобразования в электричество — для обогрева жилищ и теплиц, а также для обеспечения теплом промышленных процессов. Примером подобного использования энергии могут служить горячие бани в Японии, отопление домов в Исландии и теплицы в России[445].

Собранная Массачусетским технологическим институтом междисциплинарная группа из 13 ученых и инженеров в 2006 г. оценила имеющийся у США потенциал производства электричества с помощью геотермальной энергии. Исходя из последних достижений технологий, в том числе применяемых нефтяными и газовыми компаниями технологий бурения и повышения извлечения нефти, эта группа пришла к следующему выводу. Усовершенствованные геотермальные системы можно использовать для интенсивного развития геотермальной энергии. Данная технология предусматривает глубокое бурение скважин до уровня нагретой породы, дробление породы и закачку воды в раздробленную породу с последующим подъемом перегретой воды на поверхность для приведения в действие турбин. Группа экспертов Массачусетского технологического института отмечает, что благодаря этой технологии США обладают запасами геотермальной энергии, перекрывающими энергетические потребности США в 2000 раз[446].

Эта технология все еще остается дорогой, но ее можно применять почти во всех случаях, когда геотермальную энергию надо преобразовать в электричество. В настоящее время лидером в разработке опытных проектов применения этой технологии является Австралия. За ней следуют Германия и Франция. По оценкам группы экспертов Массачусетского университета, для того, чтобы в полной мере реализовать потенциал геотермальной энергии, США необходимо в ближайшие годы вложить в соответствующие исследования и опытно-конструкторские разработки 1 млрд долларов. Эти вложения эквивалентны затратам на строительство одной электростанции, работающей на угле[447].

Пока эта новая технология не получила широкого распространения, инвесторы вкладывают средства в уже существующие технологии использования геотермальной энергии. На протяжении многих лет работы в области использования геотермальной энергии США ограничивались проектом «Гейзеры». Этот проект осуществлялся к северу от Сан-Франциско, где находится крупнейший в мире комплекс по генерированию электричества с помощью геотермальной энергии. Мощность этого комплекса составляет 850 мегаватт. Ныне в США с помощью геотермальной энергии производят более 3000 мегаватт электроэнергии: страна переживает возрождение этого вида энергетики. В 12 штатах строятся 126 электростанций, работающих на геотермальной энергии. Ожидается, что когда эти электростанции вступят в строй, мощности, генерирующие электричество с помощью геотермальной энергии в США, утроятся. Пока в этом процессе лидируют штаты Калифорния, Невада, Орегон, Айдахо и Юта, но в области геотермальной энергетики появляется множество новых компаний, так что в США уже сложились все условия для массированного развития геотермальной энергетики[448].

Чрезвычайно богатая геотермальной энергией Индонезия в 2008 г. заявила о планах по созданию геотермальных мощностей по производству 6900 мегаватт электроэнергии. Развернуть ряд новых проектов в этой области планируют и Филиппины, ныне занимающие второе место в мире по производству электричества с помощью геотермальной энергии[449].

Лидером по производству геотермального электричества среди африканских стран, расположенных вдоль Большого разлома, — Танзании, Кении, Уганды, Эритреи, Эфиопии и Джибути и других — является Кения. В настоящее время с помощью геотермальной энергии там генерируют более 100 мегаватт электроэнергии, а к 2015 г. планируют увеличить этот показатель до 1 200 мегаватт. Такое наращивание удвоит общие мощности страны по производству электроэнергии с нынешних 1200 до 2400 мегаватт[450].

Япония, в которой действуют 18 электростанций, работающих на геотермальной энергии (их общая мощность составляет 535 мегаватт), — один из пионеров использования геотермальной энергии. После почти двух десятилетий спячки эта богатая геотермальными источниками страна, издавна известная тысячами горячих бань, снова начинает строить электростанции, работающие на геотермальной энергии[451].

В Европе в Германии действуют 4 маленькие электростанции, работающие на геотермальной энергии, и строится еще примерно 180 таких станций. Вернер Буссман, глава Геотермальной ассоциации Германии, говорит: «Геотермальные источники могли бы в 600 раз перекрыть потребности Германии в электричестве». Моник Барбут, глава организации Global Environment Facility, ожидает, что число стран, использующих геотермальную энергию для производства электричества, за период с 2000 по 2010 г. увеличится примерно с 20 до 50[452].

Помимо электростанций, работающих на геотермальной энергии, геотермальное тепло, выкачиваемое из скважин насосами, сейчас широко используют для отопления и охлаждения помещений. Действительно, почему бы не воспользоваться поразительным постоянством температуры небольших земных глубин? Эта постоянная температура становится источником тепла в зимний период и источником холода в летний. Подобная технология особенно привлекательна тем, что может обеспечить и обогрев, и охлаждение, причем затраты электричества при ее применении на 25–50 % меньше, чем при использовании традиционных систем отопления и охлаждения. Например, в Германии в настоящее время действует 130 тыс. геотермальных насосов, обогревающих и охлаждающих жилые и коммерческие здания, при этом ежегодно в эксплуатацию вводят по меньшей мере 25 тыс. новых насосов[453].

Лидеры в области прямого использования геотермального тепла — Исландия и Франция. В Исландии геотермальную энергию используют для отопления почти 90 % домов, что в основном сделало использование угля в этих целях излишним. На долю геотермальной энергии приходится более трети общего энергопотребления Исландии. Во Франции после двух нефтяных кризисов 1970-х гг. было построено около 70 геотермальных тепловых станций, которые обеспечивают теплом и горячей водой примерно 200 000 жителей. В США геотермальное тепло получают индивидуальные дома в г. Рино, штат Невада, и в г. Кламат-Фоллс, штат Орегон. В числе других стран, в которых есть обширные местные системы отопления, работающие на геотермальной энергии, — Китай, Япония и Турция[454].

В северных странах геотермальное тепло идеально для теплиц. В числе тех, кто использует этот источник тепла для производства свежих овощей в зимний период, — Россия, Венгрия, Исландия и США. Поскольку растущие цены на нефть резко повышают расходы на транспортировку свежей продукции, использование геотермального тепла в тепличном хозяйстве, вероятно, в будущем получит дальнейшее распространение[455].

Среди 16 стран, использующих геотермальную энергию в аквакультуре, — Китай, Израиль и США. Например, в Калифорнии 15 рыбных хозяйств, использующих подземные теплые воды, ежегодно дают примерно 10 млн фунтов тилапии, полосатого окуня и зубатки[456].

Число стран, обращающихся к геотермальной энергии как к источнику получения электричества и тепла, быстро растет. Расширяется и спектр способов использования геотермальной энергии. Например, в Румынии с помощью геотермальной энергии обогреваются целые районы, а также теплицы, и осуществляется горячее водоснабжение домов и предприятий[457].

Горячую воду из геотермальных источников широко используют в банях и бассейнах. В Японии есть 2800 курортов с горячими водами, 5500 общественных бань и 15 600 гостиниц, использующих геотермальные воды. В Исландии геотермальную энергию используют для обогрева примерно 1000 общественных бассейнов, большинство из них действуют круглый год и не являются крытыми спортивными сооружениями. В Венгрии на геотермальных водах работает 1200 плавательных бассейнов[458].

Если бы четыре самые населенные страны, расположенные по Тихоокеанскому огненному кольцу, — США, Япония, Китай и Индонезия — сделали серьезные инвестиции в развитие своих геотермальных ресурсов, эти ресурсы вполне смогли бы стать одним из основных источников энергии в мире. Осторожные оценки возможности производства электричества с помощью геотермальной энергии показывают, что если только в США и Японии будут производить 240 000 мегаватт с помощью геотермальной энергии, легко представить мир, где к 2020 г. будут действовать тысячи работающих на геотермальной энергии электростанций, производящих 200 000 мегаватт электроэнергии. Это и составляет цель, поставленную в Плане Б[459].

БИОЛОГИЧЕСКИЕ ИСТОЧНИКИ ЭНЕРГИИ

По мере истощения запасов нефти и природного газа мир обращает все большее внимание на энергию, получаемую из растений. В дополнение к энергетическим культурам, о которых шла речь в главе 2, к таким источникам относятся отходы лесной промышленности, отходы сахарной промышленности, городской мусор, навоз домашнего скота, посадки быстрорастущих деревьев, остатки урожаев и отходы городских и дворовых насаждений. Все это можно использовать для производства электроэнергии, тепла или горючего для автомобилей.

Возможности использования биологических источников энергии ограниченны. Даже кукуруза, наиболее эффективная из всех зерновых культур, может преобразовать в электричество всего лишь 0,5 % солнечной энергии. Напротив, солнечные фотоэлектрические или тепловые электростанции преобразуют в электричество примерно 15 % солнечного света. В мире, испытывающем нехватку земли, энергетические культуры не могут конкурировать с электричеством, производимым с помощью энергии Солнца, тем более с электричеством, производимым с помощью ветра (такое производство намного эффективнее использует землю)[460].

В лесной и деревообрабатывающей промышленности, в том числе на лесопилках и бумажных комбинатах, отходы уже давно используют для производства электричества. Американские компании сжигают отходы деревообработки и для получения необходимого им производственного тепла, и для выработки электричества, которое компании продают местным электростанциям. На предприятиях США, главным образом благодаря сжиганию отходов деревообработки, производят почти 11 тыс. мегаватт электроэнергии[461].

Кроме того, отходы деревообработки широко используют для производства тепла и электроэнергии (тепло обычно используют в системах центрального отопления). В Швеции почти половина всех жилых и коммерческих зданий подключена к системам центрального отопления. Еще недавно, в 1980 г., свыше 90 % тепла для этих систем получали за счет сжигания импортируемой нефти, но к 2007 г. нефть по большей части была вытеснена деревянной щепой и городским мусором[462].

В США, в г. Сен-Пол в штате Миннесота (в городе проживают 275 тыс. жителей) модернизировать систему центрального отопления начали более 20 лет назад. В городе построили теплоэлектроцентраль, работающую на отходах древесины из городских парков, отходах деревообработки и древесине из других источников. ТЭЦ, потребляющая 250 тыс. тонн древесных отходов в год, ныне обеспечивает отоплением 80 % центра города — или более 1 кв. мили жилых и коммерческих площадей. Это позволило в основном отказаться от угля, что привело к сокращению выбросов углерода на 76 тыс. т в год. Также это привело к ликвидации отходов древесины, и в целом город приобрел устойчивый и возобновляемый источник тепла и электричества[463].

Oglethorpe Power, крупная группа коммунальных электростанций в штате Джорджия, объявила о планах строительства трех работающих на биомассе электростанций мощностью 100 мегаватт каждая. Основным топливом станут деревянная щепа, опилки, хворост, собираемый при очистке лесов, и, в тех случаях, когда эти виды топлива становятся доступными, орехи пекан и скорлупа арахисовых орехов[464].

В сахарной промышленности недавно начали сжигать остатки сахарного тростника для производства тепла и электроэнергии. Наибольшее распространение эта практика получила в Бразилии. Компании, занимающиеся перегонкой сахарного тростника в этанол, поняли, что сжигание выжимок сахарного тростника, а также волокон, остающихся после извлечения сахарного сиропа, может давать и тепло, необходимое для процесса ферментации, и электроэнергию, которую можно продавать местным электростанциям. Теперь эта система пустила прочные корни и распространяется на сахарных заводах других стран, в которых производят остальные четыре пятых вырабатываемого в мире сахара[465].

В городах для производства тепла и электроэнергии используют также мусор, который сжигают после того, как из него извлекают (будем на это надеяться) все материалы, подлежащие вторичной переработке. В Европе мусоросжигательные заводы обеспечивают теплом 20 млн человек. Лидерами в этой сфере являются Франция (128 мусоросжигательных заводов) и Германия (67 заводов).

В США действует около 89 мусоросжигательных заводов, которые обеспечивают энергией 6 млн потребителей. Впрочем, желательно все же продвигаться к созданию экономики, не производящей мусора, экономике, в которой энергию, затраченную на производство бумаги, картона, пластмасс и других горючих материалов, можно было бы легко извлечь в процессе переработки. Сжигание мусора — не слишком изящный способ решения проблемы отходов[466].

До того как мы достигнем нулевого уровня отходов, для производства электричества на тепловых электростанциях или тепла для производственных процессов можно использовать метан (природный газ), образующийся на существующих свалках в процессе разложения погребенных в мусоре органических материалов. Компания Puget Sound Energy планирует строительство электростанции мощностью 35 мегаватт, работающей на газе, который образуется на свалке г. Сиэтл. Эта электростанция пополнит сотню других подобных электростанций, уже работающих в США[467].

Вблизи Атланты компания Interface, крупнейший в мире производитель промышленных ковровых покрытий, убедила город инвестировать 3 млн долларов в улавливание метана, выделяющегося на муниципальной свалке, и строительство трубопровода длиной 9 миль от свалки до предприятия компании. Природный газ из этого трубопровода стоит на 30 процентов меньше мировых рыночных цен на газ и обеспечивает 20 % потребностей предприятия в топливе. Предполагается, что свалка будет давать метан в течение 40 лет, принося городу 35 млн долларов дохода на 3 млн долларов начальных вложений и снижая эксплуатационные расходы Interface[468].

Как уже было сказано в главе 2, для производства горючего для автомобилей, в том числе этанола и биологического дизельного топлива, используют также сельскохозяйственные культуры. В 2009 г. в мире должны произвести 19 млрд галлонов топливного этанола и почти 4 млрд галлонов биологического дизельного топлива. Половину этанола произведут в США, треть — в Бразилии, остальное биотопливо будет произведено примерно в десятке других стран, среди которых лидируют Китай и Канада. Германия и Франция дают по 15 % мирового производства биологического дизельного топлива, крупными производителями которого являются также США, Бразилия и Италия[469].

Некогда разрекламированное как альтернатива нефти, горючее, полученное из сельскохозяйственных культур, в последние годы подверглось тщательному изучению. В ходе этого изучения возникли серьезные сомнения в его технических возможностях. США, которые в 2005 г. обогнали Бразилию по производству этанола, а за 2007–2008 гг. почти удвоили это производство, способствовали повышению мировых цен на продовольствие до максимума. Далеко идущие планы в области использования биологического дизельного топлива вынашивают и в Европе. Но, обладая низким потенциалом расширения производства масличных культур, европейские предприятия по производству биологического дизельного топлива переходят на пальмовое масло из Малайзии и Индонезии, стимулируя тем самым вырубку влажных тропических лесов под плантации масличных пальм[470].

В мире, в котором у пахотных земель нет больше избытка производительности, каждый акр, засеянный кукурузой под этанол, означает необходимость расчистки другого акра для производства зерновых. В исследовании, выполненном под руководством Тима Серчингера из Принстонского университета в начале 2008 г. и опубликованном в журнале Science, с помощью глобальной сельскохозяйственной модели было продемонстрировано: вырубка тропических лесов под пашню и расширение производства биологического топлива в США существенно увеличили ежегодные выбросы парниковых газов, а не сократили их, как утверждалось в проведенных на более узкой основе исследованиях[471].

Подобный вывод сделан и в другом опубликованном в журнале Science исследовании, выполненном группой ученых из университета штата Миннесота. Сосредоточив внимание на связанных с вырубкой тропических лесов выбросах углерода, эта группа ученых показала, что превращение земель, занимаемых влажными тропическими лесами или пастбищами, в пахотные земли для возделывания кукурузы, соевых бобов или масличной пальмы для производства биологического топлива привело к увеличению выбросов углерода и возникновению «углеродного долга биологического топлива», который по меньшей мере в 37 раз превышает ежегодное снижение выброса парниковых газов, достигаемое за счет перехода с ископаемых видов топлива на биологические[472].

Сторонники производимого из сельскохозяйственных культур биотоплива получили еще один жестокий удар от группы ученых, которую возглавил Пауль Крутцен, лауреат Нобелевской премии по химии из Института химии Макса Планка в Германии. Эта группа ученых пришла к выводу, что выбросы окислов азота, газов с мощным парниковым эффектом, от синтетических азотных удобрений, используемых при выращивании таких культур, как кукуруза и рапс, являющихся сырьем для производства биотоплива, могут свести на нет любые сокращения выбросов СО2, достигнутые благодаря замещению ископаемых видов топлива биотопливом. Таким образом, биотопливо оказывается угрозой стабильности климата. Американские производители этанола отвергли выводы группы Пауля Крутцена, но в докладе Международного научного совета, всемирной федерации научных ассоциаций, за 2009 г. эти выводы тем не менее подтвердили[473].

Чем больше изучают жидкие виды биологического горючего, тем менее привлекательными они выглядят. Сегодня этаноловое горючее производят почти исключительно из сахарного тростника и крахмалосодержащих кормовых культур. В настоящее время ведутся работы по созданию эффективных технологий получения этанола из целлюлозосодержащих материалов. Некоторые исследования указывают на то, что большие объемы этанола можно получать при переработке трав, высеваемых при севообороте, и гибридов тополя (и то, и другое можно выращивать на малоплодородных землях). Однако в настоящее время дешевых технологий получения этанола из целлюлозы не существует. Не предвидится появление таких технологий и в обозримом будущем[474].

В третьем опубликованном в журнале Science докладе указывается, что непосредственное сжигание целлюлозосодержащих растений с целью получить электричество для электромобилей дает на 81 % больше пробега, чем переработка этих растений в жидкое топливо. Так насколько же велик возможный вклад растительных материалов в обеспечение мира энергией? Основываясь на исследовании, проведенном министерствами энергетики и сельского хозяйства США, мы прогнозируем, что, используя отходы лесопереработки и городской мусор, а также некоторые многолетние культуры (например травы, используемые при севообороте, и быстрорастущие деревья, высаживаемые на малоплодородных землях), США к 2020 г. смогут вырабатывать более 40 гигаватт электроэнергии, т. е. примерно в 4 раза больше, чем ныне. В рамках Плана Б мы предполагаем, что мировое использование растительных материалов для производства электричества может добавить 200 гигаватт мощности к тому же 2020 г.[475]

ГИДРОЭНЕРГЕТИКА: РЕКИ, ПРИЛИВЫ И ВОЛНЫ

Традиционно с понятием «гидроэнергетика» связан образ плотины, обуздывающей энергию речных стоков. Однако современная гидроэнергетика способна обуздать и энергию приливов и волн, а также получать электроэнергию на малых турбинах, устанавливаемых на реках и в зонах приливов без сооружения плотин[476].

За счет использования гидроэнергии, возникающей за счет сброса воды с высоких плотин, получают примерно 16 % мирового производства электроэнергии. Некоторые страны (например Бразилия и Демократическая Республика Конго) получают львиную долю электричества за счет гидроэнергии рек. Строительство крупных плотин получило огромное распространение в третьей четверти ХХ в., но затем этот процесс замедлился, так как количество точек, удобных для строительства таких сооружений, сократилось, а затраты, связанные с переселением людей, экологическим ущербом и затоплением земель, стали более заметны[477].

Но маломасштабные проекты, которые не столь разрушительны для окружающей среды, по-прежнему популярны. В 2006 г. в сельских районах Китая были построены небольшие плотины, совокупная генерирующая мощность которых составила 6 000 мегаватт. Для многих сельских общин такие плотины ныне — единственный источник электричества. Китай — признанный лидер в строительстве таких плотин, но возводят их и во многих других странах. Новая экономика все больше благоприятствует возобновляемым источникам энергии, а не ископаемым видам топлива. Растет интерес к турбинам, установка которых не требует сооружения плотин. Такие турбины оказывают меньшее воздействие на окружающую среду[478].

Большой потенциальной силой обладает и энергия приливов (в сущности, сила лунного притяжения). Например, залив Фанди в Канаде имеет потенциальную мощность генерации свыше 4000 мегаватт. В других странах рассматривают проекты строительства приливных гидроэлектростанций мощностью от 7000 до 15 000 мегаватт[479].

Первая крупная приливная электростанция — плотина Ла Ранс. Максимальная мощность этой станции составляет 240 мегаватт. Станция была построена 40 лет назад во Франции и работает по сей день. В последние несколько лет к энергии приливов проявляют активный интерес все новые и новые страны. На западном побережье Южной Кореи, например, строится приливная электростанция мощностью 254 мегаватта. Завершение строительства намечено на 2009 г. Эта электростанция даст достаточно энергии для обеспечения полумиллиона человек, проживающих в районе г. Ансан. На другой площадке, в 30 милях к северу, близ Инчхона планируется построить приливную электростанцию мощностью 812 мегаватт. В марте 2008 г. компания Lunar Energy of the United Kingdom заключила соглашение с компанией Korea Midland Power о строительстве у берегов Южной Кореи турбинного поля, на котором будет вырабатываться 300 мегаватт электроэнергии. Китай планирует строительство приливной электростанции мощностью 300 мегаватт в устье р. Ялу вблизи от Северной Кореи. Далеко на юге, в Новой Зеландии, планируют построить приливную электростанцию мощностью 200 мегаватт в бухте Кайпара на северо-западном побережье страны[480].

Проекты строительства крупных приливных электростанций в настоящее время рассматривают несколько стран, в том числе Индия, Россия и Великобритания. В Индии планируют построить на северо-восточном побережье страны плотину, перегораживающую залив Хамбхат на северо-западном побережье. Проектная генерирующая мощность этого сооружения — 7000 мегаватт. В Великобритании несколько политических лидеров выступают за строительство в эстуарии р. Северн на юго-восточном побережье страны приливной электростанции мощностью 8600 мегаватт, что равно 11 % существующих в Великобритании мощностей по генерированию электричества. Русские проектировщики говорят о строительстве на Белом море, в северо-западной части России, поблизости от Финляндии, приливной электростанции мощностью 15 000 мегаватт. Вероятно, часть вырабатываемой этой станцией энергии будут экспортировать в Европу. Обсуждается строительство на Дальнем Востоке приливной электростанции в Тугурском заливе. Эта электростанция будет давать местной энергетике 8000 мегаватт[481].

В США внимание проектировщиков сосредоточено на небольших приливных электростанциях. С 2007 г. Федеральная комиссия по регулированию энергетики выдала более 30 предварительных разрешений на строительство таких электростанций, в том числе на осуществление проектов в проливе Паджет, в заливе Сан-Франциско, на Ист-Ривер в Нью-Йорке. Проект в Сан-Франциско, осуществляемый Oceana Energy Company, предусматривает создание по меньшей мере 20 мегаватт генерирующих мощностей[482].

Освоение энергии волн на несколько лет отстает от освоения энергии приливов, но в настоящее время все активнее привлекает внимание и инженеров, и инвесторов. В США действующая в северной Калифорнии энергетическая компания PG&E представила план строительства у северного побережья Калифорнии работающей на энергии волн электростанции мощностью 40 мегаватт. Организация Green Wave Energy Solutions выдала предварительные разрешения на осуществление двух проектов строительства у берегов Калифорнии работающих на энергии волн электростанций мощностью до 100 мегаватт каждая. А Сан-Франциско стремится получить разрешение на постройку близ своих берегов работающей на энергии волн электростанции мощностью 10–30 мегаватт[483].

Первая такая электростанция мощностью 2 мегаватта, построенная британской компанией Pelamis Wave Power, действует у берегов Португалии. Осуществление второй фазы этого проекта увеличит мощность электростанции до 22 мегаватт. Шотландские компании Aquamarine Power и Airtricity объединяют силы для строительства работающей на энергии волн и приливов электростанции мощностью 1000 мегаватт у берегов Ирландии и Великобритании. Ирландия выдвигает более трудновыполнимую задачу в деле развития электростанций, работающих на энергии волн, планируя к 2020 г. получить 500 мегаватт мощностей волновых электростанций. Этих мощностей хватит для обеспечения 7 % потребностей страны в электроэнергии. В целом использование энергии волн может принести миру ошеломляющие 10 000 гигаватт электроэнергии, более чем удвоив все нынешнее мировое производство электроэнергии, составляющее 4000 гигаватт[484].

Согласно нашим прогнозам, 945 гигаватт (945 000 мегаватт) электроэнергии, генерируемой в 2008 г. в мире с помощью гидроэнергии, к 2020 г. увеличатся до 13 500 гигаватт. По прогнозам китайских властей, Китай увеличит производство электричества с помощью гидроэнергии на 270 гигаватт, преимущественно за счет строительства крупных плотин на юго-западе страны. Остальные 135 гигаватт, предусматриваемые нашим прогнозом увеличения производства электричества с помощью электроэнергии, будут обеспечены за счет строительства крупных плотин в различных странах, в частности, в Бразилии и Турции, введения в эксплуатацию малых гидроэлектростанций, быстрого увеличения числа приливных гидроэлектростанций и многочисленных электростанций, работающих на энергии волн[485].

В США, где не проявляют особого интереса к строительству новых плотин, наблюдается возрождение интереса к установке генерирующих мощностей на плотинах, построенных для других целей, и наращиванию мощностей на уже существующих гидроэлектростанциях. Если интерес к энергетике, основанной на энергии приливов и волн, будет по-прежнему расти, к 2020 г. дополнительные мощности, полученные за счет использования гидроэнергии, энергии приливов и волн, запросто могут превысить те 400 гигаватт, которые необходимы для достижения целей, которые предусматривает План Б[486].

ЭНЕРГЕТИКА МИРОВОЙ ЭКОНОМИКИ В 2020 г.

Как уже отмечалось в этой главе, переход от угля, нефти и газа к энергии ветра, солнечной энергии и геотермальной энергии уже идет полным ходом. В старой экономике энергию получают за счет сжигания чего-то — нефти, угля или природного газа, что приводит к выбросам углерода. Новая энергетическая экономика обуздывает энергию ветра, энергию, которую дает Солнце, и тепло, исходящее из земных глубин. Новую экономику будет по большей части двигать электричество. Помимо использования электричества для освещения и питания бытовых приборов, в новой экономике электричество будут широко использовать на транспорте и для обогрева и охлаждения зданий. Разрушающее климат ископаемое топливо постепенно исчезнет по мере того, как страны станут переходить на чистые виды энергии, стабилизирующие климат, — на неистощимые источники энергии.

Отказ от ископаемых видов топлива начинается с сектора производства электричества. В этом секторе к 2020 г. будет построено 5300 гигаватт мощностей, работающих на новых, возобновляемых источниках энергии. Более половины этих мощностей будет работать на энергии ветра. Этих мощностей будет достаточно для того, чтобы полностью отказаться от угля, нефти и 70 % природного газа, которые ныне сжигают для производства электричества. Кроме того, к 2020 г. добавится примерно 1500 гигаватт мощностей, работающих на тепловой энергии. Две трети этой энергии будут получены за счет монтируемых на крышах солнечных водонагревателей и обогревателей помещений, что приведет к резкому снижению использования нефти и газа для обогрева помещений и нагревания воды (табл. 5–1)[487].

Глядя на масштабные сдвиги, которые должны произойти для того, чтобы достичь энергетической экономики, предусматриваемой Планом Б, следует подчеркнуть, что производство электричества за счет сжигания ископаемого топлива должно сократиться за указанный период на 90 %. Это сокращение более чем нейтрализуется пятикратным увеличением производства электроэнергии за счет возобновляемых источников. В транспортном секторе использование энергии, получаемой за счет сожжения ископаемого топлива, сократится на 70 %. Это сокращение будет достигнуто за счет перехода на электромобили и автомашины с высокоэффективными гибридными двигателями, работающими почти исключительно на электричестве, которое полностью получено из возобновляемых источников. Также сокращение будет достигнуто за счет перехода железных дорог к электрической тяге, которая эффективнее дизельной тяги. Многие здания будут потреблять только электричество, т. е. будут отапливаться, охлаждаться и освещаться исключительно за счет электричества, генерируемого благодаря возобновляемым источникам, без сожжения углерода.

Таблица 5–1

Мировой потенциал возобновляемых источников энергии в 2008 г. и цели Плана Б на 2020 г.

Источник: см. примечание 110.

На уровне стран и регионов энергетика будет определяться уникальным сочетанием местных возобновляемых ресурсов энергии. Вероятно, некоторые страны (такие, как США, Турция и Китай) будут полагаться на широкий спектр возобновляемых источников энергии — энергию ветра, Солнца и геотермальную энергию, но скорее всего, главным источником энергии в этих странах станет ветер, улавливаемый как на суше, так и в море.

В июне 2009 г. Сяо Дзинью, директор китайского Национального центра климата, заявил, что Китай обладает потенциалом производства 1200 гигаватт электроэнергии с помощью ветра. Сравните этот потенциал с ныне существующими электрогенерирующими мощностями, равными 790 гигаваттам. Сяо отметил, что приведенная им новая оценка «гарантирует удовлетворение всех потребностей страны в электричестве только за счет ветра». Кроме того, в исследовании выявлена возможность производства еще 250 гигаватт электроэнергии за счет потенциала морских ветров. Высокопоставленный китайский чиновник ранее заявлял о том, что к 2020 г. производство электроэнергии с помощью ветра достигнет 100 мегаватт. Это означает, что генерирование электричества с помощью ветра задолго до этого времени превзойдет производство электричества на атомных станциях[488].

Другие страны, в том числе Испания, Алжир, Египет, Индия и Мексика, будут обеспечивать свои экономики электричеством за счет, главным образом, станций, использующих тепловую энергию солнечных лучей, и станций, преобразующих энергию солнечного света. Для Исландии, Индонезии, Японии и Филиппин главным источником получения электричества станет геотермальная энергия. Наконец, существует третья группа стран, включающая Норвегию, Демократическую Республику Конго и Непал. В этих странах основной упор будут делать на гидроэнергию. Разумеется, повсюду будут дополнительно использоваться такие технологии, как устанавливаемые на крышах нагреватели воды, работающие на солнечной энергии.

При осуществлении задач, которые ставит План Б в области энергетики на 2020 г., США будут получать 44 % электроэнергии за счет энергии ветра. Станции, работающие на геотермальной энергии, обеспечат еще 11 % электроэнергии. Фотоэлектрические батареи, большая часть которых будет смонтирована на крышах, будут давать 8 % электричества, а станции, преобразующие тепловую энергию солнечных лучей, — 5 %. Примерно 7 % электроэнергии дадут гидроэлектростанции. Остающиеся 25 % дадут, перечисляю в порядке убывания, атомные электростанции, биомасса и природный газ (мощности см. в табл. 5–2)[489].

По мере развития этого перехода к другим источникам энергии до неузнаваемости преобразится и система транспортировки энергии от источника до потребителя. В старой энергетической экономике нефть доставлялась с месторождений потребителям или в порты, где ее перегружали на танкеры, через трубопроводы. Доставкой нефти из Персидского залива на рынки всех континентов занимается огромный танкерный флот.

Техас предлагает модель построения системы энергообеспечения, в которой используют возобновляемые источники энергии. Комиссия по коммунальным услугам Техаса провела обследование, показавшее, что в штате есть два района концентрации производства электроэнергии с помощью ветра. Один из этих районов находится в западном Техасе, другой — в районе штата, вклинивающемся между штатами Оклахома и Нью-Мексико. Комиссия построила скоординированную сеть высоковольтных передач, связавшую эти районы с центрами потребления электроэнергии, такими как Даллас-Форт-Уэрт и Сан-Антонио. Вложив 5 млрд долларов в строительство линий передач длиной 2900 миль, власти штата создали условия, позволяющие использовать 18 500 мегаватт мощностей, генерирующих электроэнергию с помощью ветра, только в двух указанных районах. Этой энергии достаточно для обеспечения половины населения штата, насчитывающего 24 млн человек[490].

Крупные частные и муниципальные инвесторы уже предлагают построить эффективные высоковольтные линии передач постоянного тока, связывающие районы, богатые энергией ветра, с центрами потребления. Например, компания TransCanada предлагает построить две линии высоковольтных передач — линию «Зефир», которая свяжет богатый энергией ветра штат Вайоминг с рынком Калифорнии, и линию «Чинук», которая свяжет богатый энергией ветра штат Монтана с той же Калифорнией. Эти линии, обе длиной примерно в 1000 миль, разработаны для передачи примерно 3000 мегаватт электроэнергии, произведенной с помощью ветра[491].

На Северо-западной равнине и на Среднем Западе компания ITC Holdings Corporation предлагает построить линию, которую называют Green Power Express. Этот план предусматривает инвестиции в строительство высоковольтной линии длиной 3000 миль для передачи 12 000 мегаватт генерированной с помощью ветра электроэнергии из штатов Северная Дакота, Южная Дакота, Айова и Миннесота в промышленный район Среднего Запада с большей плотностью населения. Эти первые мощные линии передач могут со временем стать элементами национальной сети, которую хочет создать министр энергетики США Стивен Чу[492].

Таблица 5–2

Электрогенерирующие мощности в 2008 г. и предусматриваемые Планом Б цели на 2020 г.

Примечание. Поскольку значения округлены, их суммы могут не равняться значениям, приведенным в строках «Итого»

Источник: см. примечание 112.

Мощная эффективная национальная сеть передач электроэнергии сократит потребности в генерирующих мощностях, позволит снизить расходы потребителей и ограничить выбросы углерода. Поскольку нет двух ветровых хозяйств, имеющих одинаковые характеристики используемой энергии ветра, каждое ветровое хозяйство, подключенное к сети, делает ветер более стабильным источником электричества. При наличии тысяч ветровых хозяйств по всей стране, от океана до океана, ветер окажется стабильным источником энергии, элементом, обеспечивающим основную нагрузку электросети. Это, в сочетании со способностью прогнозировать силу ветров и интенсивность солнечного излучения по всей стране по меньшей мере на день вперед, делает возможным эффективное управление разнообразием возобновляемых источников энергии[493].

В Индии национальная сеть могла бы использовать огромные источники солнечной энергии, имеющиеся в Великой индийской пустыне. В Европе также начинают всерьез задумываться об инвестировании средств в строительство континентальной суперсети. Такая сеть, простирающаяся от Норвегии до Египта и от Марокко до Западной Сибири, позволила бы Европе обуздать огромные объемы энергии ветра, особенно за счет электростанций, расположенных на море у берегов Западной Европы, и почти неограниченные объемы солнечной энергии в северной Сахаре и на южном побережье Европы. Подобно предлагаемой национальной сети в США, общеевропейская сеть использует линии высоковольтных передач прямого тока, передающие электричество намного эффективнее, чем существующие линии[494].

Ирландская компания Mainstream Renewable Power предлагает использовать прокладываемые под водой высоковольтные линии передач прямого тока для создания европейской суперсети электростанций, размещенных на море. Эта сеть должна протянуться от Балтийского до Северного моря, а затем — через Ла-Манш далее на юг, вплоть до южной Европы. В компании отмечают, что создание такой сети позволило бы избежать затяжных процедур, связанных с приобретением участков земли под строительство континентальной сухопутной системы передач электроэнергии. Шведская компания ABB Group, только что завершившая прокладку подводного высоковольтного кабеля для передачи постоянного тока (эта линия связала Норвегию с Нидерландами) вступает в партнерские отношения с Mainstream Renewable Power, предлагающей построить в первую очередь суперсети.[495]

Римский клуб давно уже выдвигает предложение, называемое планом DESERTEC. Это предложение заходит того дальше и призывает к подключению Европы к гигантским запасам солнечной энергии Северной Африки и Среднего Востока. В июле 2009 г. 11 ведущих европейских компаний, включая Munich Re, Deutsche Bank, ABB и Siemens, и алжирская компания Cevital объявили о плане создания компании DESERTEC Industrial Initiative. Цель компании — разработка конкретного плана и финансирование проекта создания в Северной Африке и на Среднем Востоке мощностей, генерирующих электричество с помощью тепловой энергии Солнца. Объем произведенного этими мощностями электричества позволит как экспортировать электроэнергию в Европу, так и обеспечить потребности стран-производителей. Это проект, реализация которого может привести к созданию более 300 000 мегаватт мощностей по генерированию электричества с помощью тепловой энергии солнечных лучей, глобален по любым стандартам. Причинами его появления являются обеспокоенность общественности разрушительными изменениями климата и истощением запасов нефти и газа. Кайо Кох-Везер, вице-председатель Deutsche Bank, сказал: «Эта инициатива показывает, какими масштабными категориями нам следует мыслить, если мы хотим совладать с вызовами, которые нам бросают изменения климата»[496].

ХХ век стал свидетелем глобализации мировой энергетической экономики, произошедшей из-за того, что весь мир стал зависеть от нефти, поставляемой несколькими странами, многие из которых находятся в одном регионе. XXI век станет свидетелем локализации мировой энергетической экономики, которая произойдет из-за подключения стран к своим собственным ресурсам возобновляемой энергии.

Локализация энергетической экономики приведет к локализации экономики продовольствия. Например, по мере удорожания доставки свежей сельскохозяйственной продукции из отдаленных районов ее производства (это удорожание обусловлено растущими ценами на нефть) появится больше рынков, на которых будет продаваться продукция местных фермеров. Диеты будут в большей мере основываться на местной продукции и в большей мере реагировать на сезонные колебания, чем сегодня. Сочетание смещения потребления на более низкую ступень пищевой цепочки и сокращения расстояний, на которые перевозят продукты питания, существенно снизит затраты энергии в экономике производства продовольствия.

По мере локализации сельского хозяйства производство продуктов животноводства, скорее всего, также претерпит изменения: в прошлое уйдут большие поголовья крупного рогатого скота, свиней и домашней птицы. Хозяйств, специализирующихся на скотоводстве и птицеводстве, станет меньше, хозяйств, в которых земледелие сочетается с животноводством, — больше. Определенному упадку специализированных животноводческих хозяйств будет способствовать нарастающая необходимость вторичной переработки пищевых веществ, которая обусловлена истощением конечных запасов фосфатов и ростом цен на удобрения. Наблюдающееся в последнее время увеличение количества мелких ферм в США, по всей вероятности, продолжится и в будущем. С усилением ненадежности обеспечения продовольствием все больше и больше людей станут присматриваться к возможности производства части потребляемого ими продовольствия в собственных дворах, на участках перед домами, на крышах, на общинных землях — везде, где это возможно, что еще больше будет способствовать локализации сельского хозяйства.

Несколько лет назад, пролетая по пути из Хельсинки в Лондон над Данией, давно лидирующей в производстве электроэнергии с помощью ветра, я насчитал 22 ветровых хозяйства. И подумал: не это ли прообраз будущего? Когда-нибудь люди, совершающие перелет над США, увидят тысячи ветровых хозяйств на Великих равнинах, простирающихся от побережья Мексиканского залива в Техасе до границ Канады. Владельцы ферм будут получать по два урожая: один — в виде традиционной сельскохозяйственной продукции (мяса, кукурузы, пшеницы), другой — в виде электроэнергии, полученной с помощью ветра.

В пустынях на юго-западе США появятся комплексы станций, вырабатывающих электроэнергию с помощью тепловой энергии солнечных лучей, комплексы с огромными множествами зеркал. Каждый такой комплекс будет занимать несколько квадратных миль территории. Ветровые хозяйства и станции, генерирующие электроэнергию с помощью солнечной энергии, станут одними из наиболее заметных и характерных черт новой энергетической экономики. Крыши миллионов домов и коммерческих зданий покроются решетками солнечных батарей и превратятся в источники электрической энергии Кроме того, на крышах появятся миллионы нагревателей воды и устройств отопления помещений.

Для того чтобы стимулировать реструктурирование энергетики, правительства прибегают к разнообразным политическим инструментам. В числе таких инструментов — повышение налога на выбросы углерода (и снижение подоходных налогов) и системы продаваемых квот на выбросы углерода. Первый из этих подходов более прозрачен, и его легче администрировать. Кроме того, им не так легко манипулировать, как в случае с системой квот[497].

В деле перестройки электроэнергетики удивительно успешными оказываются льготные тарифы. При таких тарифах коммунальные службы обязаны платить больше. Впечатляющий успех, достигнутый Германией на ранних стадиях энергетического перехода благодаря этой мере, привел к тому, что данную меру скопировали более чем в 40 странах, в том числе в большинстве стран — членов Европейского союза. В США по меньшей мере в 33 штатах приняты стандарты использования возобновляемых источников энергии. Эти стандарты обязывают коммунальные предприятия (поставщиков электричества) включать в свой портфель определенное количество электроэнергии, полученной благодаря возобновляемым источникам. В США также используют налоговые льготы и кредиты при оплате энергии, генерированной с помощью ветра, геотермальных источников, фотоэлектрических батарей и при оплате нагревания воды и отопления помещений с помощью солнечного тепла и тепла, получаемого из геотермальных источников[498].

Для достижения некоторых целей правительства просто используют наказы или мандаты, например, обязывают устанавливать на крышах всех новых зданий системы нагревания воды с помощью солнечных лучей, вводят более высокие стандарты эффективности для автомобилей и бытовых приборов или запрет на продажу осветительных ламп накаливания. Каждое правительство должно выбрать политические инструменты, которые лучше всего действуют в конкретных экономических и культурных условиях.

В новой энергетической экономике города вряд ли останутся такими, какими мы их знаем. Городской воздух будет чистым, на улицах будет тихо, и эту тишину будет нарушать только едва слышимое гудение электромоторов. Предупреждения об опасном загрязнении воздуха станут делом прошлого, поскольку электростанции, работающие на угле, будут демонтированы, а двигатели, работающие на бензине и дизельном топливе, исчезнут.

Этот переход ныне обретает собственную инерцию, которую питает осознание того факта, что мы подключаемся к источникам энергии, которые будут существовать столько времени, сколько просуществует Земля. Нефтяные скважины и угольные разрезы истощатся, впервые со времен Промышленной революции мы инвестируем в источники энергии, которые могут существовать вечно.

6. Города для людей

В 1998 г. в Тель-Авиве по пути из моего отеля в конференц-центр я не мог не обратить внимания на огромное количество машин и парковок. Наглядное подтверждение того, что превращение Тель-Авива из маленького поселения, которым он был всего полвека назад, в мегаполис с населением более 3 млн человек происходило в эру автомобилей. Тогда мне пришла в голову мысль, что соотношение парков и автомобильных парковок может являться единственным и самым убедительным показателем пригодности города для проживания человека — показателем того, что город построен для людей, а не для машин[499].

Тель-Авив — не единственный быстрорастущий город мира. Урбанизация — вторая из преобладающих демографических тенденций нашего времени, которая след в след идет за ростом численности населения. В 1900 г. лишь около 150 млн человек жили в городах. К 2000 г. городских жителей было уже 2,8 млрд, т. е. их количество выросло в 19 раз. В 2008 г. к числу горожан относилось более половины человечества — впервые в нашей истории человек превратился в урбанистический вид[500].

В 1900 г. население лишь нескольких городов мира достигало миллиона человек. Сегодня на Земле существует 431 город с населением, превышающим миллион человек. Кроме того, в мире насчитывается 10 мегаполисов-гигантов, численность населения которых составляет 10 или более миллионов. В Большом Токио живет 36 млн человек, что превышает население всей Канады. Население Нью-Йорка и пригородов достигло 19 млн, что почти равно количеству жителей Австралии. От Нью-Йорка не отстают Мехико, Мумбай (бывший Бомбей), Сан-Пауло, Дели, Шанхай, Калькутта и Дакка[501].

Сегодня города нашей планеты сталкиваются с беспрецедентными проблемами. В Мехико, Тегеране, Калькутте, Бангкоке, Пекине и сотнях других городов уже небезопасно дышать. В некоторых городах воздух настолько загрязнен, что вдыхать его так же вредно, как выкуривать две пачки сигарет в день. Там свирепствуют респираторные заболевания. Во многих мегаполисах, где все больше горожан многие часы проводят в пробках на перегруженных автомобилями магистралях, ежегодно растет количество психологических проблем. В частности, все больше людей ощущают постоянную подавленность[502].

Мы становимся свидетелями того, как в ответ на эти опасные тенденции возникает философия нового урбанизма, философия планирования, которая, по словам эколога Франчески Лиман, «стремится возродить традиционное городское планирование тех времен, когда города создавались вокруг человека, а не автомобиля». Одна из самых удивительных урбанистических трансформаций современности произошла в столице Колумбии Боготе, где в течение трех лет мэром был Энрике Пеньялоса. Придя к власти в 1998 г., он не стал задаваться вопросом, как улучшить жизнь тех 30 % горожан, у которых были автомобили; он хотел знать, что можно сделать для 70 % горожан, не являвшихся автовладельцами[503].

Пеньялоса понимал, что город, в котором хорошо детям и старикам, будет удобен для всех. Всего за несколько лет он преобразил качество городской жизни в соответствии со своим видением города — города, созданного для людей. Под его руководством была запрещена парковка машин на тротуарах, созданы или восстановлены 1200 парков, введена очень эффективная система автобусных экспресс-перевозок (BRT), построены сотни километров велосипедных дорожек и пешеходных зон, на 40 % снижена загруженность улиц автомобилями в час пик, посажен миллион деревьев, а местные жители привлечены к участию в обустройстве своих микрорайонов. Пеньялосе удалось привить чувство гражданской гордости 8 млн горожан, и сейчас ходить по улицам Боготы, столицы страны, терзаемой внутренними распрями, так же безопасно, как по улицам Вашингтона[504].

Пеньялоса считает, что «большое количество общественных пешеходных зон в целом и парков в частности свидетельствуют о настоящей демократии в действии». Далее он отмечает: «Парки и места общественного пользования очень важны для демократичного общества, поскольку только там люди могут встречаться как равные… Парки так же важны для физического и эмоционального здоровья города, как водоснабжение». Он отмечает, что такой подход к градоустройству не воплощен в бюджете большинства городов, где парки считаются роскошью. Напротив, «дороги, общественные автомобильные парковки получают бесконечно большее количество ресурсов, на них реже урезают бюджетные ассигнования, чем на парки и места для прогулок детей. Но почему, — спрашивает Пеньялоса, — считается, что общественные автомобильные парковки важнее, чем детские площадки?»[505]

Пеньялоса не одинок в своем стремлении поддержать эту новую философию градостроительства. В развитых и развивающихся странах мы видим примеры городов, где предприняты схожие меры для существенного увеличения скорости передвижения по городу благодаря отказу от автомобиля. Джейми Лернер в свою бытность мэром бразильского города Куритиба положил начало разработке и внедрению альтернативной системы недорогого пассажирского транспорта. Начиная с 1974 г. транспортная система Куритибы была полностью реструктурирована. Хотя 60 % населения владеют автомобилями, здесь чаще пользуются автобусом, велосипедом или ходят пешком, так что 80 % всех перемещений в городе осуществляется без использования частных автомобилей[506].

Эксперименты градостроителей, стремящихся создавать города для людей, а не машин, сегодня ведутся повсюду. Да, автомобили гарантируют мобильность, и в больших сельских районах без них не обойтись. Однако во все более урбанизирующемся мире существует фундаментальный, неустранимый конфликт между автомобилем и городом. По достижении критической точки, по мере увеличения количества автомобилей вместо мобильности горожанам гарантируется неподвижность[507].

ЭКОЛОГИЯ ГОРОДОВ

Эволюция современных городов была связана с развитием транспорта, сначала — водного и железнодорожного. Однако лишь двигатель внутреннего сгорания в совокупности с дешевой нефтью обеспечили беспрецедентную мобильность людей и грузов, способствовавшую феноменальному росту городов в ХХ в.

Городам необходимо сосредоточение продуктов питания, воды, энергии и материалов, которое не может обеспечить природа. Накопление этих ресурсов в огромном количестве и их дальнейшее превращение в мусор, нечистоты, загрязняющие примеси в воздухе и воде — сложнейшая проблема городских управленцев всего мира.

Когда-то продуктами питания города снабжали окрестные фермеры, а вода поступала из близлежащей сельской местности, однако сегодня в получении необходимых продуктов и основных благ цивилизации мегаполисы все чаще зависят от весьма удаленных источников. Так, Лос-Анджелес берет большую часть своей воды в реке Колорадо, расположенной в 600 милях от города. Растущее население Мехико, города, расположенного на высоте более 9000 футов над уровнем моря, зависит от дорогостоящих насосных станций, которые перекачивают воду за 100 миль и поднимают ее на высоту 3000 футов для того, чтобы пополнить нехватку запасов воды в городе. Пекин планирует брать воду из бассейна реки Янцзы, протекающей приблизительно в 800 милях от города[508].

Продукты питания поступают с еще бльших расстояний, и ярким примером этого является Токио. Хотя город все еще покупает рис у высокопроизводительных фермерских хозяйств Японии, земли которых надежно защищены правительством, большая часть пшеницы поступает с Великих равнин Северной Америки и из Австралии. Кукурузу привозят со Среднего Запада США. Соевые бобы импортируют также со Среднего Запада США и из бразильской саванны[509].

Нефть, используемую для перевозки продуктов в города и из них, часто добывают на отдаленных месторождениях. Рост цен на нефть влияет на города, но еще больше это затрагивает окружающие их пригороды. Все большая нехватка воды и высокая стоимость энергии, необходимой для транспортировки продуктов на большие расстояния, может приостановить рост некоторых городов.

На этом фоне Ричард Реджистер, автор книги Ecocities: Rebuilding Cities in Balance with Nature («Экополисы: перестраивая города в соответствии с природой»), заявляет, что пришла пора фундаментально пересмотреть проектирование городов. Он согласен с Пеньялосой в том, что города должны служить людям, а не машинам. Он идет даже дальше, поднимая тему пешеходных городов — районов, спроектированных так, чтобы в них можно было обходиться без автомобилей, т. е. чтобы в случае необходимости до любого места в этом районе можно было дойти пешком или добраться на общественном транспорте. По словам Реджистера, город может считаться функционирующей системой, только когда речь идет не о какой-то из его частей, а о едином целом. Он также делает убедительное заявление о том, что города должны не навязывать свои законы местным экосистемам, а вливаться в них[510].

Реджистер с гордостью описывает, как в Сан-Луис-Обиспо, калифорнийском городе, расположенном к северу от Лос-Анджелеса, население которого составляет 43 000 человек, была осуществлена интеграция в местную экосистему. «Этот превосходный проект восстановления природной среды по берегам реки включал в себя и реконструкцию ряда улиц и переулков с магазинчиками по обеим сторонам. Когда этот район еще не был закрыт для автомобилей, здесь была парковка, ныне превращенная в парк. Природа по берегам реки возродилась, а главная торговая улица города, к которой вели реконструированные улицы и перекрестки, стала легко доступна. 40 % вакансий в магазинах города было незанято. Теперь пустующих мест нет. Конечно, это популярное место. Вы сидите в ресторанчике у реки, где легкий бриз колышет деревья, и вас окружает мир, не нарушаемый шумом машин, вы дышите чистым воздухом без выхлопных газов»[511].

Реджистер считает, что при планировании городов и зданий необходимо учитывать окружающий пейзаж, с выгодой используя местную экологию. Дома можно проектировать так, чтобы они, хотя бы отчасти, имели естественный обогрев и естественное охлаждение. Более того, по мере роста цен на нефть в городе должно расшириться производство фруктов и овощей, выращенных на свободных площадях и крышах домов. Города смогут повторно использовать большую часть воды, очищая ее и используя снова и снова. После того, как производство нефти достигнет пика, многим городам, страдающим от нехватки воды, система потребления воды «спусти и забудь» будет обходиться слишком дорого.[512]

МОДЕРНИЗАЦИЯ ГОРОДСКОГО ТРАНСПОРТА

Лучшим из существующих вариантов городского транспорта является сочетание рельсовых, автобусных, велосипедных и пешеходных маршрутов. Именно такая система способна обеспечить одновременно и мобильность, и недорогие перевозки, и здоровую городскую экологию.

Основа транспортной системы городов — рельсовые перевозки. Географическая стационарность рельсового сообщения обеспечивает бесперебойное функционирование данного вида транспорта, и пассажиры могут смело доверять расписанию движения. Точки пересечения рельсовых маршрутов становятся естественными местами концентрации офисов, высотных жилых домов и магазинов.

Выбор между подземкой, наземными рельсовыми маршрутами или сочетанием того и другого зависит от размера и географического положения города. Например, в Берлине используются оба вида рельсового транспорта, Мегаполисы часто строят подземные рельсовые системы, способные обеспечить мобильность жителей. Для городов среднего размера часто самым привлекательным вариантом является наземное рельсовое сообщение[513].

Как отмечалось выше, некоторые наиболее новаторские системы общественного транспорта, способные переманить огромные толпы людей из автомобилей в автобусы, были созданы в Куритибе и Боготе. Успех системы автобусных экспресс-перевозок (система BRT) в Боготе, названной TransMilenio, (специальные экспресс-маршруты, позволяющие людям быстро перемещаться по городу), повторили не только в шести других городах Колумбии, но и во множестве мегаполисов других стран, в том числе в Мехико, Сан-Пауло, Ханое, Сеуле, Стамбуле и Кито. Только в Китае Пекин — один из восьми городов, где действует система BRT[514].

В Мехико недавнее продление коридора BRT, действующего на Инсурхентес-Авеню, с 13 до 19 миль, и добавление к нему еще 26 новых автобусных маршрутов позволяет этой линии перевозить 260 000 пассажиров в день. К 2012 г. город планирует запустить 10 линий BRT. А на юге Китая к концу 2009 г. система BRT вступит в строй в Гуанчжоу, где пассажиропоток составит боле 6 млн человек в день. Система не только будет в трех местах соединяться с городским метро, но и по всей длине параллельно с ней пройдет велосипедная дорожка. Для тех, кто для поездок по городу пересаживается с велосипеда на BRT и обратно, здесь планируют построить 5500 стоянок для велосипедов[515].

В столице Ирана Тегеране первая линия BRT была запущена в начале 2008 г. Еще несколько линий, строящихся в настоящее время, будут интегрированы с новыми линиями городского метро. Несколько городов в Африке также планируют создание систем BRT. Даже такие города в индустриальных странах, как Оттава, Торонто, Нью-Йорк, Миннеаполис, Чикаго, Лас-Вегас и — к всеобщему удовольствию — Лос-Анджелес, запустили или в настоящий момент рассматривают возможность использования систем BRT[516].

В некоторых городах загруженность улиц транспортом и загрязнение воздуха снижают, делая въезд автомобилей в центр города платным. Сингапур, издавна являющийся лидером новаторского подхода к решению проблем городского транспорта, стал одним из первых городов, где с автомобилей, въезжающих в центр, стали взимать плату. Электронные сенсоры, установленные на въезде, идентифицируют каждый автомобиль, и затем стоимость проезда снимается с кредитной карточки его владельца. Эта система значительно уменьшила количество машин в Сингапуре, обеспечив горожанам и большую мобильность, и более чистый воздух[517].

К инициативе Сингапура присоединились три города Норвегии — Осло, Берген и Тронхейм, а затем Лондон и Стокгольм. В Лондоне, где до недавнего времени средняя скорость движения автомобиля была сравнима со скоростью, с которой сто лет назад здесь ездили конные экипажи, въезд в центр был сделан платным в начале 2003 г. За въезд любого вида автомобильного транспорта в центр Лондона с 7 утра до 6:30 вечера стали взимать плату в размере 5 фунтов стерлингов (в настоящее время — около 8 долларов США), что немедленно уменьшило количество машин и снизило плотность уличного движения, благодаря чему упал уровень загрязненности воздуха, а также уровень шума[518].

За первый год платного въезда в центр города количество людей, приезжающих сюда на автобусах, возросло на 38 %, а скорость автомобилей на основных магистралях выросла на 21 %. В июле 2005 г. плата за въезд в центр города была повышена до 8. В феврале 2007 г. тарифная зона была расширена на запад. Поскольку средства, собранные в результате взимания платы за въезд в центр Лондона, идут на обновление и улучшение системы общественного транспорта, лондонцы все чаще пересаживаются с автомобилей на автобусы, метро и велосипеды. К настоящему моменту дневной поток машин и такси в центре Лондона в часы пик упал на 36 %, а количество велосипедов выросло на 66 %[519].

В январе 2008 г. в Милане был введен «тариф на загрязнение» в размере 14 евро, который взимался с автомобилей, въезжавших в исторический центр города в дневное время в рабочие дни. В других городах также рассматривают возможность применения подобных мер. Об этом подумывают городские власти в Сан-Франциско, Турине, Генуе, Киеве, Дублине и Окленде[520].

Мэр Парижа Бертран Делано, избранный на этот пост в 2001 г., получил «в наследство» город с самой высокой в Европе загруженностью улиц транспортом вкупе со страшным загрязнением воздуха. Делано решил, что к 2020 г. интенсивность уличного движения в Париже должна снизиться на 40 %. Первым шагом к этой цели стали инвестиции в транзитные маршруты, связывающие город с прилегающими районами, с тем, чтобы каждый человек в Большом Париже мог пользоваться высококачественным общественным транспортом. Затем на основных магистралях города были созданы экспресс-полосы для автобусов и велосипедов, что уменьшило количество полос для автомобилей. По мере роста скорости передвижения автобусов люди чаще стали пользоваться этим видом транспорта[521].

Еще одной новаторской инициативой в Париже стало создание городской программы аренды велосипедов «велошер», благодаря которой горожане могут пользоваться 20 600 велосипедами, припаркованными на 1450 стоянках, разбросанных по всему городу. Аренда велосипеда оплачивается кредитной картой, горожане могут выбирать между дневным, недельным и годовым тарифом, составляющим от 1 евро в день до 40 евро в год. Поездка на велосипеде, продолжающаяся менее 30 минут, обходится бесплатно. Первые два года осуществления программы показали, что велосипеды пользуются невероятной популярностью: за это время было совершено 48 млн поездок. Патрик Аллен, парижанин, с энтузиазмом пользующийся программой «велошер», говорит, что благодаря ей люди стали больше общаться друг с другом. «Мы уже не сидим в одиночестве в машинах. Мы разговариваем друг с другом. Это по-настоящему изменило атмосферу в городе, люди болтают на парковках и даже на светофорах»[522].

Описывая эту программу в New York Times, Серж Шмеманн говорит о ней, как об «уроке для больших городов: время этой идеи пришло». Сегодня мэр Делано многое делает для того, чтобы осуществить свою цель — к 2020 г. на 40 % сократить интенсивность уличного движения и выбросы углекислого газа в атмосферу. Благодаря популярности программы аренды велосипедов было решено охватить ею 30 пригородов Парижа. В целом же, успех этой программы вдохновил многие другие города, такие как, например, Лондон, которые также внедряют у себя систему «велошер»[523].

В США, которые сильно отстали от Европы в области создания диверсифицированных систем городского транспорта, активно развивается движение «за полноценные улицы». Это движение призывает сделать максимум возможного для того, чтобы улицы не были враждебны ни пешеходам, ни велосипедистам, ни автомобилям. Во многих американских городах тротуары и велосипедные дорожки отсутствуют, что осложняет пешеходам и велосипедистам безопасное передвижение по городу, особенно в местах наибольшей загруженности улиц. Менеджер по планированию транспорта Норм Стейнман из города Шарлотт, штат Северная Каролина, замечает: «Мы не строили тротуаров уже пятьдесят лет. Инженеры 60-х, 70-х, 80-х и 90-х в основном проектировали улицы для машин»[524].

Бороться с моделью «город только для машин» пытается Национальная коалиция полноценных улиц — влиятельная группа, членами которой являются гражданские организации, в том числе Комитет защиты природных ресурсов, Американская ассоциация пенсионеров (объединяющая 40 млн американцев старшего возраста) и бесчисленное количество местных и общенациональных объединений велосипедистов. Движение «за полноценные улицы» возникло в результате «настоящего вала проблем, совокупность которых встала перед нами», говорит Рэнди Нойфилд, руководитель по стратегии Альянса активистов транспортных средств. Среди этих проблем — эпидемия ожирения, рост цен на бензин, насущная проблема снижения выбросов углекислого газа в атмосферу, загрязнение воздуха и ограничение мобильности стареющего поколения людей, родившихся в конце 40-х — начале 60-х гг. ХХ в. Пожилые люди, которые уже не водят машину, но живут в городах, улицы которых лишены тротуаров, оказываются, в прямом смысле слова, запертыми в собственных домах[525].

По информации Национальной коалиции полноценных улиц, которую возглавляет Барбара Макканн, на июль 2009 г. политика «полноценных улиц», «улиц для всех» принята в 18 штатах, в том числе в Калифорнии и Иллинойсе, и в 46 городах. Одна из причин, по которой штаты заинтересованы в принятии подобного закона, заключается в том, что интеграция велосипедных дорожек и тротуаров в градостроительный проект на начальном этапе обходится гораздо дешевле, чем последующее строительство таких маршрутов. Как отмечает Макканн, «деевле делать это с самого начала». Национальный законопроект о полноценных улицах был рассмотрен обеими палатами конгресса в начале 2009 г.[526]

В тесной взаимосвязи с этими инициативами находится и движение «В школу пешком». Движение возникло в Великобритании в 1994 г. и сегодня распространилось почти в 40 странах, в том числе и в США. Сорок лет назад более 40 % американских детей добирались в школу пешком или на велосипеде, сегодня же этот показатель упал ниже 15 %. В настоящее время 60 % детей добираются в школу на машине, на пассажирском сиденье автобуса или за рулем. Подобная практика — не просто вклад в распространение ожирения и раннего диабета, но и потенциальная угроза жизни: по информации Американской академии педиатров, дети, которые добираются в школу на машине, гибнут в автокатастрофах и получают увечья гораздо чаще, чем те, что ходят в школу пешком или ездят на велосипеде[527].

И, наконец, страны с хорошо развитой транспортной системой и сложившейся инфраструктурой велосипедных дорожек в городах надежнее защищены от последствий падения производства нефти в мире, чем те, что полагаются только на автомобили. Благодаря наличию тротуаров и велосипедных дорожек количество поездок на машинах в городах с легкостью может снизиться на 10–20 %[528].

ВОЗВРАЩЕНИЕ ВЕЛОСИПЕДА

Как вид личного транспорта велосипед очень привлекателен. Он требует мало места, не загрязняет воздух, препятствует ожирению своих владельцев, улучшая их физическую форму. Немаловажно и то, что велосипед не выбрасывает в воздух разрушающий климат углекислый газ, а его цена доступна миллиардам людей, которые не могут позволить себе автомобиль. Велосипеды повышают мобильность горожан, снижая не только загруженность улиц, но и размер заасфальтированных территорий. Еще нагляднее его преимущества на парковках: 20 велосипедов занимают место, необходимое для размещения одной машины[529].

Мировое производство велосипедов, в среднем достигавшее в период с 1990 по 2002 г. 94 млн единиц в год, в 2007 г. выросло до 130 млн, значительно превысив производство автомобилей, количество которых на тот момент составляло 70 млн единиц в год. Продажи велосипедов в ряде стран заметно растут, поскольку их правительства разрабатывают множество инициатив, поощряющих использование велосипедов с целью снижения загрязненности воздуха и транспортной загруженности. Так, в 2009 г. итальянское правительство запустило широкомасштабную программу поощрения покупателей велосипедов и электромопедов — с целью улучшения качества городского воздуха и снижения количества машин на дорогах. Прямые выплаты покупателям покрывают до 30 % стоимости велосипеда[530].

Крупнейший велопарк в мире содержит Китай — 430 млн велосипедов, однако «плотность пользования» велосипедом в Европе выше. В Нидерландах на человека приходится более одного велосипеда, а в Германии и Дании — по одному на человека[531].

Велосипед — не только удобный вид транспорта, это и идеальное средство восстановления баланса между потреблением и сжиганием калорий. Регулярные велосипедные маршруты помогают велосипедисту снизить риск сердечно-сосудистых заболеваний, остеопороза и артрита, укрепляют иммунную систему.

Немногие новейшие методы снижения выбросов углекислого газа в атмосферу настолько же эффективны, как замена автомобиля велосипедом при поездках на короткие расстояния. Велосипед — истинный инженерный шедевр эффективности: инвестиции в 22 фунта металла и резины повышают личную мобильность втрое. По моим расчетам, 7 миль на велосипеде я могу проехать на одной картофелине. По сравнению с велосипедом, автомобиль, требующий по крайней мере тонну материалов для того, чтобы возить одного человека, невероятно неэффективен.

Способность велосипеда обеспечить высокую мобильность населения с низкими доходами была наглядно продемонстрирована в Китае. В 1976 г. в этой стране было произведено 6 млн велосипедов. После осуществления реформ 1978 г., приведших к возникновению открытой рыночной экономики и быстрому росту доходов населения, производство велосипедов начало расти, и в 2007 г. достигло почти 90 млн. То, что число владельцев велосипедов в Китае с 1978 г. возросло до 430 млн, привело к величайшему в истории этой страны росту персональной мобильности. Велосипеды завоевали сельские дороги и улицы городов. Безусловно, в Китае ищут решение проблемы 14 млн легковых автомобилей, загружающих городские улицы, и все-таки именно велосипеды обеспечивают свободу передвижения миллионам китайцев.[532]

В США почти 75 % полицейских патрулируют улицы на велосипедах, обеспечивая порядок в поселениях, в которых проживает 50 000 или чуть больше человек. Городские полицейские на велосипедах работают более эффективно отчасти потому, что они более мобильны и могут добраться до места происшествия быстрее, чем их коллеги на автомобилях. По статистике, полицейские на велосипедах совершают на 50 % больше арестов в день, чем их коллеги на патрульных машинах. К тому же с финансовой точки зрения расходы, связанные с перемещениями на велосипеде, ничтожно малы по сравнению с расходами на эксплуатацию патрульного автомобиля[533].

Колледжи и университеты также переходят на велосипеды. Кампусы, перегруженные автомобилями, страдающие от нехватки дорог и необходимости дополнительно строить жилые здания, просто вынуждены вводить новаторские меры, препятствующие использованию автомобилей. В Чикагском университете Сен-Ксавье программу «велошер» запустили осенью 2008 г. Эта программа построена по образу и подобию парижской, только для того, чтобы получить велосипед, студенты пользуются не кредитными картами, а удостоверениями личности. Университет Эмори в Атланте, штат Джорджия, ввел программу бесплатной аренды велосипедов, также предоставляемой при предъявлении удостоверения личности. Жасмин Смит, управляющая программой, говорит: «Мы с удовольствием способствуем развитию велосипедной культуры»[534].

Рипон-колледж в штате Висконсин и университет Новой Англии в штате Мэн пошли еще дальше. Там считают, что предоставление велосипеда каждому новому студенту, который согласен оставить свою машину дома, экономит учебному заведению значительную сумму. Замена автомобилей велосипедами не только снижает загрязнение воздуха и загруженность дорог в кампусе, но и создает чувство сообщества[535].

Курьеры на велосипедах — обычное явление в крупнейших городах мира. Мелкие посылки, доставляемые такими курьерами на велосипедах, попадают к адресатам гораздо быстрее, чем на машинах, да и цена доставки получается ниже. По мере распространения электронной коммерции, потребность в быстрой, надежной доставке в городах растет. Компаниям, продающим товары через Интернет, быстрая доставка дает больше клиентов[536].

Ключом к реализации потенциала велосипеда является создание не препятствующей его движению транспортной системы. Это предполагает строительство не только велосипедных дорожек, но и специализированных выделенных полос на улицах. Среди развитых стран, которые лидируют в создании совместимой с велосипедами транспортной системы, — Нидерланды, где 27 % всех поездок совершаются на велосипеде, Дания, где этот показатель равен 18 %, и Германия, где он достигает 10 %. В США и Великобритании, напротив, количество поездок на велосипедах составляет всего 1 %[537].

Превосходное исследование Джона Пачера и Ральфа Бюлера, проведенное в Университете Ратгерс, анализирует причины неравномерного использования велосипедов в разных странах. Исследователи отмечают, что «разветвленная сеть велосипедных дорожек в Нидерландах, Дании и Германии дополнена множеством парковок для велосипедов и отличается абсолютной интеграцией с общественным транспортом. Также в этих странах ведется широкая разъяснительная работа и обучение велосипедистов и мотоциклистов». Пачерс и Бюлер отмечают, что эти страны «добились того, что поездки на автомобилях в центральных городах стали дороги и неудобны, за счет введения ряда налогов и ограничений на владение, использование и парковку автомобилей… Координированное внедрение этих многосторонних, взаимно усиливающих мер является лучшим объяснением успеха этих стран в продвижении использования велосипедов». Именно отсутствие таких мер, по их словам, объясняет то, что распространение велосипедов в Великобритании и Канаде минимально»[538].

К счастью, многие американцы стремятся изменить ситуацию. Среди них хорошо известен конгрессмен от штата Орегон Эрл Блуменауэр. Ярый велосипедист, он стал основателем и координатором Велосипедного собрания конгресса, в котором участвуют 180 человек[539].

В Нидерландах, которые являются абсолютным лидером среди развитых стран в поощрении пользования велосипедом, был разработан Велосипедный генеральный план. Помимо создания велосипедных дорожек и выделенных полос, во всех городах велосипедистам предоставляется преимущество проезда перед автомобилистами на светофорах. Некоторые светофоры разрешают велосипедистам движение, когда автомобили еще стоят. В 2007 г. Амстердам стал первым индустриальным городом на Западе, где количество поездок на велосипедах превысило количество поездок на машинах[540].

В Нидерландах также была создана неправительственная группа под названием «Взаимодействие велосипедного опыта» (I-ce), которая ставит своей целью распространение по миру своего опыта создания современных транспортных систем, в которых особое место занимают велосипеды. Эта организация работает с группами из Ботсваны, Бразилии, Чили, Колумбии, Эквадора, Ганы, Индии, Кении, Перу, ЮАР и Уганды (в этих странах стремятся способствовать более широкому использованию велосипеда). Ройлоф Виттинк, глава I-ce, отмечает: «Если вы планируете улицы только для автомобилей, то королями дороги будут себя чувствовать водители. Именно так и возникает уверенность некоторых в том, что велосипед — это отсталое средство передвижения, на котором ездят только бедняки. Проектируя улицы и для велосипедистов, вы меняете общественное мнение»[541].

Нидерланды и Япония одновременно сделали попытку интегрировать велосипедный и рельсовый транспорт: оснастили парковки для велосипедов на железнодорожных станциях, что облегчило велосипедистам пересадку на поезд. В Японии количество велосипедов, оставляемых для пересадки на поезд, стало так велико, что на некоторых станциях властям пришлось вложиться в строительство многоуровневых парковочных гаражей для велосипедов, очень похожих на те, что возводят для автомобилей[542].

Сравнительного недавно возник новый вид транспорта — электромопеды. Они работают подобно гибридным автомобилям, приводятся в действие двумя источниками энергии (в данном случае силой мускулов и батареей) и в случае необходимости их можно подключать к сети для подзарядки. В Китае, где родилась эта технология, продажи электромопедов выросли с 40 000 штук в 1998 г. до 21 млн в 2008 г. Сегодня на дорогах Китая почти 100 млн электромопедов — впечатляющая цифра, если сравнить ее с 14 млн автомобилей. В настоящее время этот вид транспорта начал привлекать внимание и других стран Азии, страдающих от загрязнения воздуха, а также США и Европы, где продажи электромопедов достигли 300 000 единиц в год[543].

В отличие от гибридных автомобилей, электромопедам не требуется органическое топливо. Если нам удастся перейти от тепловых электростанций, работающих на угле, к энергии ветра, солнца и геотермальных вод, электромопеды, которым ископаемое топливо также не нужно, станут естественным решением транспортной проблемы.

Город, в котором пешеходные и велосипедные дорожки интегрированы в городские транспортные системы, более приемлем с точки зрения экологии, чем город, в котором пользуются исключительно частными автомобилями. Шум, загрязнение воздуха, загруженность транспортом и психологическое напряжение — всего этого становится меньше там, где люди передвигаются на велосипедах. Мы и сама Земля становимся здоровее.

СОКРАЩЕНИЕ ПОТРЕБЛЕНИЯ ВОДЫ В ГОРОДАХ

Разовое использование воды для утилизации продуктов человеческой жизнедеятельности и промышленных отходов — устаревшая практика. Сокращение запасов воды в мире требует отказа от подобной практики, а новые технологии позволяют это сделать. Город использует воду для смыва промышленных отходов и продуктов человеческой жизнедеятельности, в результате она загрязняется и после использования представляет опасность для человека и природы. Токсичные промышленные отходы, сливаемые в реки или колодцы, проникают в водоносный слой, что делает и поверхностные, и подземные источники непригодными для питья.

Привычная инженерная концепция утилизации отходов человеческой жизнедеятельности — это смыв этих отходов большим количеством воды, предпочтительно в систему канализации. Затем эта вода, иногда очищенная, а чаще — нет, попадет в местную реку. Кроме того, система «смой и забудь» уносит в ближайший водоем и питательные вещества, содержавшиеся когда-то в почве. Дело не только в том, что эти питательные вещества потеряны для сельского хозяйства, но и в том, что их избыток приводит к гибели многих рек и формированию около 405 «мертвых зон» в прибрежных океанских районах. Эта устаревшая система дорога в эксплуатации и требует огромного количества воды, разрушает круговорот питательных веществ в природе и может стать основным источником заболеваемости и гибели людей. По всему миру плохая санитария и отсутствие личной гигиены уносит жизни около 2 млн детей в год — треть 6 млн жертв, приписываемых голоду и плохому питанию[544].

Сунита Нарайн, представитель индийского Центра науки и окружающей среды, убедительно утверждает, что водные системы утилизации отходов, оснащенные сооружениями очистки канализации, ни с экологической, ни с экономической точки зрения не жизнеспособны в Индии. Она отмечает, что индийская семья из пяти человек, производящая 250 л экскрементов в год и использующая смывной туалет, спуская свои отходы в канализацию, загрязняет 150 000 л воды[545].

В настоящее время канализационная система Индии — это источник распространения болезнетворных организмов. Небольшого количества заражающего материала достаточно для того, чтобы тонны воды стали непригодны для человека. Благодаря существующей системе, по словам Нарайн, «умирают наши дети и наши реки». Правительство Индии, которое, как и власти многих развивающихся стран, безуспешно стремится внедрить универсальные водные системы канализации и очистки сточных вод, но не в состоянии сократить огромный разрыв между теми услугами, которые предоставляют населению, и теми, в которых население нуждается. Однако правительство не готово признать, что предпринимаемые им меры неоправданны с экономической точки зрения[546].

К счастью, существует дешевая альтернатива — сухой биотуалет. Это простой, безводный и не издающий запаха туалет с небольшим отделением для компостирования отходов и отдельным резервуаром для сбора мочи. Собранную мочу можно отвозить на близлежащие фермы, где она будет служить удобрением. Сухое компостирование превращает человеческие фекалии в подобный почве перегной, который почти не имеет запаха и едва составляет 10 % первоначального объема. Отделения для компостирования необходимо опорожнять каждый год или около того, в зависимости от их конструкции и размера. Торговцы периодически собирают перегной и продают его как добавку к почве, благодаря чему питательные вещества и органический материал возвращаются в землю, снижая потребность в энергоемких удобрениях[547].

Данная технология значительно сокращает бытовое потребление воды по сравнению со смывными туалетами, уменьшает счета за воду и снижает количество энергии, необходимое на откачивание и очистку воды. Помимо прочего, она уменьшает количество отбросов и, если утилизировать в биотуалете пищевые отходы, облегчает проблему очистки сточных вод и восстанавливает круговорот питательных веществ. Сегодня в списке сухих биотуалетов, одобренных Агентством по защите окружающей среды США, несколько торговых марок. Созданные в Швеции, эти туалеты хорошо зарекомендовали себя в самых разнообразных условиях, в том числе в шведских многоквартирных домах, частных домах в США и китайских деревнях. Для 2,5 млн человек, страдающих от нехватки современных санитарно-технических сооружений, сухие биотуалеты могут стать ответом на многие вопросы[548].

Роуз Джордж, автор книги The Big Necessity: The Unmentionable World of Human Waste and Why It Matters («Большая нужда: мир человеческих отходов, о котором не принято говорить, и почему он важен») напоминает нам, что система «смой и забудь» еще и просто пожирает энергию. Это происходит по двум причинам. Во-первых, много энергии требуется на то, чтобы доставить на место потребления большие количества чистой воды, которую можно пить (до 30 % потребляемой воды домохозяйства используют для смыва отходов). Во-вторых, много энергии нужно на то, чтобы работала система очистки сточных вод. Много лет назад президент США Теодор Рузвельт отметил: «цивилизованные люди должны знать, как очищать канализационные стоки иначе, чем смешивая их с питьевой водой»[549].

Можно коротко перечислить несколько насущных причин, по которым новые сухие биотуалеты заслуживают самого пристального внимания. В числе этих причин — усиливающийся дефицит воды, рост цен на энергоносители, увеличение выбросов углекислого газа в атмосферу, сокращение запасов фосфатов, рост объемов загрязненных канализационными отходами мертвых зон в океанах, повышение расходов на здравоохранение (на борьбу с кишечными заболеваниями, распространяющимися из-за отсутствия санитарно-технических сооружений) и рост капитальных затрат на системы удаления сточных вод по принципу «смой и забудь».

Как только туалет будет отделен от системы потребления воды, очистка использованной домохозяйствами воды перестанет представлять сложнейшую проблему. Для городов самая действенная мера повышения эффективности потребления воды — это внедрение повсеместной системы очистки, благодаря которой человек сможет употреблять одну и ту же воду снова и снова. Эта система станет гораздо проще, если результаты жизнедеятельности человека не будут попадать в использованную воду, в этом случае каждый раз при повторении цикла из-за испарения будет теряться лишь небольшая доля воды. Применяя технологии, которые доступны уже сегодня, вполне возможно очищать потребляемую городом воду в течение неограниченного времени, благодаря чему города будут исключены из числа претендентов на ограниченные водные ресурсы.

Некоторые города, столкнувшиеся с нехваткой водных ресурсов и ростом расходов на воду, уже начали использование оборотной воды. Так, Сингапур, покупающий воду в Малайзии по высокой цене, очищает и употребляет ее повторно, снижая, таким образом, объем импорта. Виндхук, столица Намибии, расположенная в одном из самых засушливых мест в Африке, очищает использованную воду, вновь превращая ее в питьевую. В страдающей от нехватки воды Калифорнии округ Ориндж инвестировал 481 млн долларов в строительство очистных сооружений, которые начали функционировать в начале 2008 г. Здесь сточные воды перерабатывают в чистую питьевую воду, используемую для пополнения запасов местного водоносного слоя. В Лос-Анджелесе планируют сделать то же самое. В штате Южная Флорида в конце 2007 г. был одобрен план очистки сточных вод до состояния питьевой воды. Все большее количество городов рассматривает вопрос переработки воды как вопрос о выживании[550].

Отдельные отрасли промышленности, столкнувшись с нехваткой воды, также отказываются от использования чистой воды в пользу повторно очищенной. Некоторые компании разделяют промышленные стоки, обрабатывая каждый соответствующими химическими веществами и фильтруя их с помощью мембран. Таким образом воду готовят для повторного использования. Питер Глик, ведущий автор доклада The World’s Water («Вода в мире»), который публикуется каждые два года, пишет: «Некоторые отрасли промышленности, такие как целлюлозно-бумажная, металлообрабатывающая, а также промышленные прачечные начинают создавать замкнутые системы, в которых всю воду используют повторно и которые требуют лишь небольшие количества свежей воды для возмещения того, что потрачено на производство продукта или потеряно в результате испарения». Промышленность идет вперед быстрее, чем города, но технологии, которые она разрабатывает, также можно использовать для очистки воды, которую потребил город[551].

На уровне домохозяйств воду также можно экономить, используя водосберегающие лейки для душа, туалеты со смывом, посудомоечные и стиральные машинки. Некоторые страны принимают стандарты экономии воды и маркируют бытовую технику так же, как энергосберегающие приборы. С неизбежным ростом расходов на воду домовладельцам будут выгодны инвестиции в сухие биотуалеты и водосберегающую бытовую технику.

Два вида бытовой техники — туалеты и души — совместно потребляют более половины воды, которую тратит семья. В то время как традиционный смывной унитаз использует 6 галлонов (22,7 л) на один смыв, законодательно установленный в США максимум составляет 1,6 галлона (6 л) воды. Новые унитазы с технологией двойного слива используют лишь 1 галлон воды для смыва жидких отходов и 1,6 галлона воды для твердых. Переход с лейки для душа, из которой вытекает 5 галлонов воды в минуту, на модель, выпускающую 2,5 галлона в минуту, снижает использование воды в два раза. Что касается стиральных машинок, то модели с горизонтальной осью вращения, разработанные в Европе, требуют на 40 % меньше воды, чем традиционные машинки с верхней загрузкой[552].

Существующая в настоящий момент экономика очистки сточных вод нежизнеспособна. Слишком много домохозяйств, фабрик и скотоводческих хозяйств просто сливают свои отходы на нашу перенаселенную планету. Это не просто устаревший, но и безответственный с точки зрения экологии метод — так можно было поступать, когда на Земле было меньше людей, а их экономическая активность была не так высока.

СЕЛЬСКОЕ ХОЗЯЙСТВО В ГОРОДСКИХ УСЛОВИЯХ

Осенью 1974 г. я приехал на конференцию, которая проходила в пригороде Стокгольма. По пути на заседания я шел мимо сада, который разбили жители многоквартирного дома. Было идиллическое бабье лето, прекрасный солнечный день, и многие горожане вышли поработать в садах и огородах неподалеку от своих домов. 35 лет спустя я все еще могу восстановить в памяти эту картину — так запал мне в душу ореол довольства, окружающий этих обрабатывавших землю людей. Они были поглощены выращиванием не столько овощей, сколько, скорее, цветов. Помню, я подумал: «Это признак цивилизованного общества».

В 2005 г. Продовольственная и сельскохозяйственная организация ООН (ФАО) сообщила, что городские и пригородные сельскохозяйственные угодья, расположенные в городах или в непосредственной близости от них, снабжают продуктами питания около 700 млн городских жителей по всему миру. Они обычно невелики и занимают пустыри, прячутся во дворах и даже на крышах домов[553].

В столице Танзании Дар-эс-Саламе и его окрестностях овощи выращивают на территории 650 га. Эта земля не только поставляет свежие овощи горожанам, но и обеспечивает средства к существованию 4000 фермерам, которые круглый год тщательно обрабатывают свои небольшие наделы. На другом конце континента проект ФАО направлен на поддержку городских жителей Дакара, столицы Сенегала, которые в огородах на крышах своих домов круглогодично выращивают до 30 килограммов (66 фунтов) помидоров на квадратный метр[554].

В столицу Вьетнама Ханой 80 % свежих овощей поступает с ферм, расположенных в непосредственной близости от города. Городские и пригородные фермеры также производят 50 % свинины и птицы, которую потребляет город. Половина пресноводной рыбы, поступающей на столы горожан, выловлена предприимчивыми городскими рыбаками. 40 % потребляемых яиц также производится в городе и его окрестностях. Городские фермеры искусно перерабатывают отходы жизнедеятельности человека и животных в удобрения для своих ферм и подкормку для рыбных водоемов[555].

Рыбоводы в окрестностях индийского города Калькутта разводят рыбу в сточных водоемах, расположенных на территории почти 4000 га, откуда ежегодно вылавливают 18 000 т рыбы. Бактерии в водоемах разлагают органические отходы из городских стоков. Это, в свою очередь, поддерживает быстрый рост водорослей, которыми питаются местные породы травоядных рыб. Эта система постоянно снабжает город свежей рыбой гораздо лучшего качества, чем та, что поступает на рынок Калькутты из других мест[556].

Журнал Urban Agriculture пишет о том, как в Шанхае была создана пригородная зона повторного использования питательных веществ. Муниципальное правительство управляет 300 000 га сельскохозяйственных земель, на которых в качестве удобрений используются нечистоты — отходы жизнедеятельности человека, собранные в районах, не оснащенных современными санитарно-техническими сооружениями. Половина свинины и птицы, съедаемых в Шанхае, 60 % овощей и 90 % молока и яиц производят прямо в городе и прилегающих районах.[557]

В венесуэльском Каракасе финансируемый правительством проект, осуществляемый при поддержке ФАО, способствовал созданию в городских «барриос» (кварталах) 8000 микроогородов, каждый размером в 1 кв. м, часто расположенных прямо у выхода из семейной кухни. Как только здесь созревает один урожай, его собирают и высаживают новую рассаду. Каждый квадратный метр такого огорода, постоянно дающего урожай, может принести 330 кочанов салата, 18 кг помидоров или 16 кг капусты в год. Цель Венесуэлы — создать 100 000 микроогородов в городских зонах и 1000 га городских удобряемых компостом огородов по всей стране[558].

В европейских городах существует давняя традиция разведения общественных садиков. Въезжая в Париж, вы видите бесконечные сады городских предместий. По информации Общественной коалиции безопасности продуктов питания (CFSC), 14 % жителей Лондона производят часть того, что едят, самостоятельно. В Ванкувере, крупнейшем городе Западного побережья Канады, этот показатель достигает впечатляющих 44 %[559].

В некоторых странах, таких как США, существует огромный нереализованный потенциал городского огородничества. Согласно исследованиям, в Чикаго 70 000 пустырей, а в Филадельфии — 31 000. По всей стране насчитываются сотни тысяч городских пустырей. В отчете CFSC говорится, что городское огородничество особенно привлекательно тем, что «пустыри перестают быть неприятными для глаз, заросшими сорняками, замусоренными и опасными местами сбора местной шпаны, и превращаются в красивые плодоносящие огороды»[560].

В Филадельфии городских огородников спросили, почему они возделывают свои участки. Около 20 % опрошенных назвали это занятие отдыхом, 19 % — отметили, что это благоприятно влияет на их душевное здоровье и 17 % сказали, что огородничество положительно сказывается на их физическом самочувствии. Еще 14 % хотели употреблять в пищу высококачественные, свежие овощи, которые мог дать им их огород. Остальные заявили, что, по большей части, дело в экономии и удобстве[561].

Параллельно развитию городских огородов возникает множество местных сельскохозяйственных рынков, на которые фермеры, чьи угодья расположены вблизи городов, поставляют свежие овощи и фрукты, свинину, птицу, яйца и сыр — для прямых продаж потребителям на городских рынках.

Принимая во внимание скорый и неизбежный рост цен на нефть, экономические преимущества распространения сельского хозяйства в городах и появления местных фермерских рынков становятся все очевиднее. Также разведение огородов в городах и производство продуктов питания неподалеку от них помимо общественной пользы может помочь обрести психологическое здоровье многим людям.

БЛАГОУСТРОЙСТВО НЕЗАКОННЫХ ПОСЕЛЕНИЙ

По прогнозам, между 2000 и 2050 г. городское население Земли вырастет до 3 млрд, однако этот рост, по большей части, произойдет не в развитых или сельскохозяйственных странах, а в городах развивающихся стран. И большая часть городского роста произойдет за счет незаконных поселений[562].

Незаконные поселения, будь то фавелы в Бразилии, барриадас в Перу или гечеконду в Турции, обычно представляют собой городские жилые районы, населенные бедняками, не владеющими землей. Они просто «самовольно заселяют» свободную территорию, частную или муниципальную[563].

Жизнь в этих поселениях характеризуется кучностью застройки, неудовлетворительными жилищными и санитарными условиями и отсутствием доступа к городским службам. Как пишет Хари Сринивас, координатор Центра исследований глобального развития, мигранты, приезжающие из сельской местности в города, предпринимают «решительные действия по нелегальному заселению пустующих земель, на которых строят примитивные жилища» просто потому, что других вариантов у них нет. Правительственные агентства обычно безразличны к ним или, напротив, проявляют очевидную антипатию, считая их захватчиками, от которых одни неприятности. Некоторые полагают, что незаконные поселения — это социальное зло, которое необходимо искоренять[564].

Сделать миграцию из сельских районов в города управляемой можно, улучшив условия жизни в сельской местности. Это означает не только предоставление основных социальных услуг, таких как здравоохранение и образование детей, о чем будет рассказано в главе 7, но и поощрение инвестиций в производство в небольших городах по всей стране, а не только в крупнейших мегаполисах, таких как Мехико или Бангкок. Подобная политика снизит скорость перетекания людей из сельской местности в города.

Эволюция городов в развивающихся странах часто определяется незапланированным характером самовольных поселений. Позволяя самовольным поселениям возникать в самых непригодных для жизни местах — на крутых косогорах, в поймах рек, на других небезопасных для проживания территориях, — правительства осложняют ситуацию с предоставлением их обитателям базовых услуг, таких как общественный транспорт, водоснабжение и санитарно-технические сооружения. В Куритибе, на передовом крае нового урбанизма, под самовольные поселения были отведены специальные участки земли. Это позволило по крайней мере структурировать процесс самозахвата земли соответственно с планами развития городов[565].

Среди простейших услуг, которые можно предоставлять незаконным поселениям, — водоснабжение, обеспечивающее жителей чистой водой, и общественные сухие биотуалеты. Сочетание этих двух услуг будет способствовать снижению заболеваемости в подобных густонаселенных районах. Регулярное автобусное сообщение позволит людям, живущим в этих поселениях, с бльшими удобствами добираться до работы. Если повсюду последуют примеру Куритибы, в местах, отведенных под подобные поселения, можно изначально разбивать парки и создавать другие места общего пользования.

Страницы: «« 1234567 »»

Читать бесплатно другие книги:

В данной книге представлена подробная информация для будущих мам. Доступным языком изложены вопросы,...
Основанная на четырех реальных уголовных делах, эта пьеса представляет нам взгляд на контекст престу...
Данная книга предлагает ознакомиться с особенностями построения и ведения бухгалтерского и налоговог...
Пьеса о том, что такое «свой» и «чужой», о доме и бездомности, о национальном вопросе и принадлежнос...
Полный справочник содержит подробную информацию, касающуюся вопросов детского диетического питания з...
Полковник Лев Гуров отправляется в деревню Онуфриево погостить у своего друга – отставного криминали...