Вселенная. Емкие ответы на непостижимые вопросы Хокинг Стивен

В действительности, ускоренное движение приводит не только к искривлению пространства, но и к аналогичному искривлению времени. (Исторически Эйнштейн сначала сосредоточил внимание на кривизне времени, и только потом осознал важность кривизны пространства.[9]) То, что время также подвергается искривлению, неудивительно — в главе 2 мы уже видели, что специальная теория относительности провозглашает союз пространства и времени. Это слияние было подытожено поэтическими словами Минковского, который на лекции по специальной теории относительности в 1908 г. сказал: «Отныне пространство и время, рассматриваемые отдельно и независимо, обращаются в тени и только их соединение сохраняет самостоятельность».{12} Пользуясь более приземлённым, но столь же вольным языком, можно сказать, что сплетая пространство и время в единую ткань пространства-времени, специальная теория относительности провозглашает: «То, что истинно для пространства, то истинно и для времени». Однако здесь возникает вопрос. Мы можем представить себе искривлённое пространство, зная, как искривлена его форма, но что мы имеем в виду, говоря о кривизне времени?

Для того чтобы нащупать ответ, ещё раз посадим Слима и Джима на аттракцион и попросим их провести следующий эксперимент. Слим будет стоять на краю радиального отрезка спиной к кругу, а Джим будет медленно ползти к нему вдоль этого радиуса от центра круга. Через каждые несколько метров Джим будет останавливаться, и они будут сравнивать показания своих часов. Что они увидят? Наблюдая со своей позиции с высоты птичьего полёта, мы снова сможем предсказать ответ. Их часы будут расходиться в показаниях. Мы пришли к этому выводу потому, что увидели, что Слим и Джим движутся с разной скоростью — при движении на аттракционе чем дальше от центра вы находитесь, тем большее расстояние должны пройти для того, чтобы совершить один оборот и, следовательно, тем быстрее вы движетесь. Но, согласно специальной теории относительности, чем быстрее вы движетесь, тем медленнее идут ваши часы — из этого мы заключаем, что часы Слима будут идти медленнее, чем часы Джима. Далее, Слим и Джим обнаружат, что по мере того как Джим будет приближаться к Слиму, его часы будут идти всё медленнее, и скорость их хода будет становиться такой же, как у часов Слима. Это отражает тот факт, что по мере приближения Джима к краю круга, его скорость приближается к скорости Слима.

Мы приходим к выводу, что для наблюдателей на вращающемся круге, таких как Слим и Джим, скорость течения времени зависит от их положения — в нашем случае от их расстояния до центра круга. Это является иллюстрацией того, что мы понимаем под кривизной времени. Время искривлено, если скорость его хода изменяется от одной точки к другой. Важно подчеркнуть, что Джим заметит кое-что ещё, когда будет ползти вдоль радиуса. Он почувствует возрастающую силу, выталкивающую его с круга, поскольку не только скорость, но и ускорение увеличиваются по мере удаления от центра круга. Используя наш аттракцион, мы видим, что большее ускорение связано с более сильным замедлением хода часов, — т. е. большее ускорение приводит к более значительному искривлению времени.

Эти наблюдения дали возможность Эйнштейну сделать заключительный шаг. Поскольку он уже показал, что гравитацию и ускоренное движение нельзя по существу различить, и поскольку, как он показал теперь, ускоренное движение связано с искривлением пространства и времени, он сделал следующее предположение о внутреннем содержании «чёрного ящика» гравитации, механизме, с помощью которого действует гравитация. Согласно Эйнштейну, гравитация представляет собой искривление пространства и времени. Посмотрим, что это означает.

Основы общей теории относительности

Чтобы почувствовать, в чём суть нового представления о гравитации, рассмотрим типичную ситуацию, в которой планета типа нашей Земли вращается вокруг звезды, похожей на наше Солнце. В ньютоновской теории гравитации Солнце удерживает Землю на некоей неопределяемой «привязи», которая каким-то образом мгновенно преодолевает огромные расстояния в пространстве и захватывает Землю (аналогичным образом и Земля захватывает Солнце). Эйнштейн предложил новую концепцию того, что происходит. Нам будет удобнее обсуждать подход Эйнштейна, имея конкретную наглядную модель пространства-времени, которой было бы удобно манипулировать. Для этого сделаем два упрощения. Во-первых, на какое-то время забудем о времени и сконцентрируемся исключительно на наглядной модели пространства. Позже мы вновь включим время в наше обсуждение. Во-вторых, для того, чтобы иметь возможность рисовать модели и размещать рисунки на страницах этой книги, мы часто будем использовать двумерные аналоги трёхмерного пространства. Большинство выводов, которые мы получим, работая с моделями более низких размерностей, непосредственно применимо к физической трёхмерной среде, поэтому более простые модели представляют собой прекрасные средства для бъяснения и обучения.

Используя эти упрощения, мы изобразили на рис. 3.3 двумерную модель области нашей Вселенной.

Рис. 3.3. Схематическое представление плоского пространства

Координатная сетка удобна для указания положения, точно так же, как сеть улиц позволяет описать местонахождение в городе. При задании адреса в городе, кроме положения на двумерной сетке улиц, указывается также положение по вертикали, например, указание этажа. Для облегчения визуального восприятия будем отбрасывать третье измерение в наших двумерных моделях.

Эйнштейн высказал предположение, что в отсутствие материи и энергии пространство будет плоским. На языке двумерных моделей это означает, что «форма» пространства должна быть плоской, подобно поверхности гладкого стола, как показано на рис. 3.3. Это изображение пространственной структуры нашей Вселенной, которое было общепринятым в течение тысяч лет. Но что произойдёт с пространством, если в нём присутствует массивный объект, подобный Солнцу? До Эйнштейна ответом на этот вопрос было слово «ничего»: пространство (и время) считались инертной средой, сценой, на которой события в жизни Вселенной развивались сами по себе. Однако цепочка рассуждений Эйнштейна, которую мы рассмотрели выше, приводит к другому выводу.

Массивное тело, подобно нашему Солнцу, а на самом деле любое тело, оказывает гравитационное воздействие на другие тела. В примере с бомбой террориста мы установили, что действие гравитационных сил неотличимо от действия ускоренного движения. Пример с аттракционом «Верхом на торнадо» показал, что математическое описание ускоренного движения требует введения искривлённого пространства. Эта связь между гравитацией, ускоренным движением и кривизной пространства привела Эйнштейна к блестящей догадке: присутствие массивного тела, подобного нашему Солнцу, приводит к тому, что структура пространства вокруг этого тела искривляется, как показано на рис. 3.4.

Рис. 3.4. Массивное тело, такое как Солнце, заставляет структуру пространства искривляться подобно тому, как деформируется резиновая плёнка, если на неё положить шар для боулинга

Полезная и часто используемая аналогия состоит в том, что структура пространства деформируется в присутствии массивных тел, таких как наше Солнце, подобно резиновой плёнке, на которую положили шар для боулинга. Согласно этой радикальной гипотезе, пространство не является просто пассивной ареной событий во Вселенной; форма пространства изменяется под влиянием присутствующих в нём тел.

Это искривление, в свою очередь, влияет на другие тела, движущиеся вблизи Солнца, которые теперь будут перемещаться по деформированному пространству. Используя аналогию с резиновой плёнкой и шаром для боулинга, можно сказать, что если мы поместим на плёнку шарик и придадим ему начальную скорость, его траектория будет зависеть от того, присутствует ли в центре плёнки массивный шар для боулинга. Если шара для боулинга там нет, резиновая плёнка будет плоской, и шарик будет двигаться по прямой. Если шар для боулинга присутствует, он будет искривлять плёнку, и шарик будет двигаться по искривлённой траектории. Если мы придадим шарику соответствующую скорость и направим его в соответствующем направлении, он будет совершать периодическое движение вокруг шара для боулинга (если игнорировать действие сил трения), т. е. фактически «выйдет на орбиту». Наш язык способствует применению этой аналогии к гравитации.

Солнце, подобно шару для боулинга, искривляет структуру окружающего его пространства, а движение Земли, как и движение шарика, определяется этой кривизной. Если скорость и направление движения Земли имеют подходящие значения, она, подобно шарику, будет вращаться вокруг Солнца. Это влияние кривизны на движение Земли, показанное на рис. 3.5, и есть то, что мы обычно называем гравитационным воздействием Солнца.

Рис. 3.5. Земля остаётся на орбите вокруг Солнца потому, что катится по ложбине в искривлённой структуре пространства. Говоря более точно, она следует «линии наименьшего сопротивления» в деформированной окрестности Солнца

Разница состоит в том, что в отличие от Ньютона Эйнштейн указал механизм, с помощью которого действует гравитация. Этим механизмом является кривизна пространства. С позиций Эйнштейна, гравитационная привязь, удерживающая Землю на орбите, не связана с каким-то мистическим мгновенным воздействием, оказываемым Солнцем; на самом деле это кривизна структуры пространства, вызванная присутствием Солнца.

Такая картина позволяет по-новому взглянуть на две важные особенности гравитации. Во-первых, чем массивнее будет шар для боулинга, тем сильнее он будет деформировать плёнку. Так же и в эйнштейновской модели гравитации — чем массивнее объект, тем более сильно он искривляет окружающее пространство. Это означает, в точном соответствии с экспериментальными фактами, что чем массивнее объект, тем сильнее его гравитационное воздействие на другие тела. Во-вторых, так же как деформация резиновой плёнки, вызванная шаром для боулинга, становится всё меньше по мере удаления от шара, так и кривизна пространства, созданная присутствием массивного тела, уменьшается при увеличении расстояния от него. Это опять же согласуется с нашим пониманием гравитации, которая ослабевает при увеличении расстояния между объектами.

Здесь важно помнить, что шарик сам искривляет резиновую плёнку, хотя и слабо. Земля, которая сама является массивным телом, тоже искривляет пространство, хотя и в гораздо меньшей степени, чем Солнце. Это объясняет с позиций общей теории относительности то, почему Земля удерживает на орбите Луну, а также не даёт нам с вами улететь в космическое пространство. Когда парашютист совершает свой прыжок, он скользит вниз по впадине в пространстве, образовавшейся под действием массы Земли. Более того, каждый из нас, как и любое массивное тело, также искривляет пространство вблизи своего тела, хотя из-за относительной малости массы человеческого тела эти впадины очень малы.

В заключение заметим, что Эйнштейн был полностью согласен с утверждением Ньютона: «Гравитация должна передаваться каким-то посредником», и принял вызов Ньютона, который оставил определение этого посредника «на усмотрение моих читателей». Согласно Эйнштейну, посредником гравитации является структура пространства.

Некоторые замечания

Аналогия с резиновой плёнкой и шаром для боулинга полезна, поскольку она даёт наглядный образ, с помощью которого можно реально понять, что означает искривление пространственной структуры Вселенной. Физики часто используют эту и другие подобные ей аналогии для выработки интуитивных представлений о гравитации и кривизне пространства. Однако, несмотря на полезность, аналогия с резиновой плёнкой и шаром для боулинга несовершенна, и мы хотим для полной ясности привлечь внимание читателя к некоторым её недостаткам.

Во-первых, когда Солнце вызывает искривление структуры пространства, это не связано с тем, что оно «тянет пространство вниз» в результате действия силы тяжести, как это происходит в случае с шаром для боулинга. В случае с Солнцем здесь нет других объектов, которые «тянут пространство». Напротив, как учит Эйнштейн, кривизна пространства и есть тяготение. Пространство реагирует искривлением на присутствие объекта, имеющего массу. Аналогично, Земля остаётся на орбите не потому, что гравитационное притяжение какого-то другого внешнего тела направляет её по ложбине в искривлённой структуре пространства, как это происходит с шариком на искривлённой резиновой плёнке. Как показал Эйнштейн, тела движутся в пространстве (или, точнее, в пространстве-времени) по кратчайшим возможным путям — «по наиболее лёгким путям» или, иными словами, «по путям наименьшего сопротивления». Если пространство искривлено, такие пути тоже будут искривлёнными. Таким образом, хотя модель, состоящая из резиновой плёнки и шара для боулинга, даёт хорошую наглядную аналогию, показывающую, как объекты, подобные Солнцу, искривляют пространство вокруг себя и тем самым оказывают влияние на движение других тел, физический механизм этих деформаций совершенно иной. Модель обращается к нашей интуиции в рамках традиционных ньютоновских представлений, тогда как для объяснения механизма используется понятие кривизны пространства. Второй недостаток этой аналогии связан с тем, что плёнка является двумерной. На самом деле Солнце (как и все другие массивные тела) искривляют окружающее их трёхмерное пространство, но это труднее наглядно представить. На рис. 3.6 сделана попытка изобразить это.

Рис. 3.6. Пример искривлённого трёхмерного пространства, окружающего Солнце

Всё пространство, окружающее Солнце, «снизу», «с боков» и «сверху» подвергается деформации, и на рис. 3.6 схематически показана часть такого искривлённого пространства. Тело, подобное Земле, движется сквозь трёхмерное пространство, искривлённое в результате присутствия Солнца. При взгляде на рисунок у вас могут возникнуть вопросы, — например, почему Земля не ударяется о «вертикальную часть» показанного на нём искривлённого пространства? Следует, однако, иметь в виду, что пространство, в отличие от резиновой плёнки, не образует сплошного барьера. Криволинейная сетка, показанная на рисунке, представляет собой всего лишь набор сечений трёхмерного искривлённого пространства, в которое Земля, мы с вами и всё остальное погружены, и в котором всё это свободно движется. Возможно, вам покажется, что это ещё более усложняет картину; у вас может возникнуть вопрос: почему мы не ощущаем пространства, если погружены в его структуру? Но мы ощущаем его. Мы ощущаем силу тяжести, а пространство представляет собой среду, которая передаёт гравитационное воздействие. Выдающийся физик Джон Уилер часто говорил, описывая гравитацию, что «масса управляет пространством, говоря ему, как искривляться, а пространство управляет массой, говоря ей, как двигаться».{13}

Третьим недостатком этой аналогии является то, что мы игнорировали временное измерение. Мы сделали это для большей наглядности: хотя специальная теория относительности и провозглашает, что мы должны рассматривать временное измерение наравне с пространственными, «увидеть» время значительно сложнее. Однако, как видно из примера с аттракционом «Верхом на торнадо», ускорение и, следовательно, гравитация, искривляют и пространство, и время. (В действительности, использование математического аппарата общей теории относительности показывает, что при относительно медленном движении тел, например, при вращении планеты вокруг обычной звезды, подобной Солнцу, искривление времени на самом деле оказывает гораздо меньшее влияние на движение планеты, чем искривление пространства.) Мы вернёмся к обсуждению искривления времени позже.

Если вы будете помнить об этих трёх важных замечаниях, то использование наглядной модели, состоящей из резиновой плёнки и шара для боулинга, в качестве интуитивного обобщения предложенного Эйнштейном нового взгляда на гравитацию, является вполне приемлемым.

Разрешение противоречия

Введя пространство и время в качестве динамических объектов, Эйнштейн создал ясный концептуальный образ того, как устроено тяготение. Главная проблема, однако, состоит в том, разрешает ли новая формулировка гравитационного взаимодействия то противоречие со специальной теорией относительности, которым страдала теория тяготения Ньютона. Да, разрешает. И снова аналогия с резиновой плёнкой поможет понять основную идею. Представим себе, что у нас есть шарик, который катится по прямой линии по поверхности плоской плёнки в отсутствие шара для боулинга. Если поместить шар для боулинга на плёнку, движение шарика изменится, но не мгновенно. Если бы мы сняли эту последовательность событий на видеоплёнку и просмотрели её в замедленном темпе, мы бы увидели, что возмущение, вызванное появлением шара для боулинга, распространяется подобно волнам в пруду и, в конце концов, достигает места, в котором находится шарик. Спустя короткое время переходные колебания резиновой плёнки затухнут, и она перейдёт в стационарное искривлённое состояние.

То же самое справедливо и для структуры пространства. При отсутствии масс пространство является плоским, и небольшое тело будет находиться в состоянии безмятежного покоя или двигаться с постоянной скоростью. Когда на сцене появляется большая масса, пространство искривляется, — но, как и в случае с плёнкой, деформация не будет мгновенной. Она будет распространяться в стороны от массивного тела и, в конце концов, придёт в установившееся состояние, передающее гравитационное притяжение нового тела. В нашей аналогии возмущение распространяется по резиновой плёнке со скоростью, зависящей от характеристик материала, из которого изготовлена плёнка. Эйнштейн сумел рассчитать скорость, с которой распространяется возмущение структуры Вселенной в реальных условиях. Оказалось, что она в точности равна скорости света. Это означает, например, что в рассмотренном выше гипотетическом примере, когда гибель Солнца оказывает влияние на судьбу Земли ввиду изменения их взаимного гравитационного притяжения, это влияние не будет мгновенным. Когда тело изменяет своё положение или даже взрывается, оно вызывает изменение в деформированном состоянии структуры пространства-времени, которое распространяется во все стороны со скоростью света, в полном соответствии с устанавливаемым специальной теорией относительности пределом для космических скоростей. Таким образом, мы на Земле увидим гибель Солнца в тот самый момент, когда ощутим изменения гравитационного притяжения спустя примерно восемь минут после взрыва Солнца. Тем самым формулировка Эйнштейна разрешает конфликт — гравитационные возмущения не отстают от фотонов, но и не опережают их.

Снова об искривлении времени

Картинки, которые мы видим на рис. 3.2, 3.4 и 3.6, иллюстрируют сущность того, что означает «искривлённое пространство». Кривизна деформирует форму пространства. Физики пытались создать аналогичные образы для того, чтобы продемонстрировать смысл «искривлённого времени», но они оказались гораздо сложнее для восприятия, поэтому мы не будем их здесь приводить. Вместо этого последуем примеру Слима и Джима из аттракциона «Верхом на торнадо» и попытаемся осознать ощущение искривлённости времени, обусловленной гравитацией.

Для этого снова посетим Джорджа и Грейс, которые находятся уже не во мраке пустого космического пространства, а где-то на окраине Солнечной системы. Оба они всё ещё носят на своих скафандрах большие цифровые часы, которые мы когда-то синхронизировали. Для простоты не станем учитывать влияние планет и будем рассматривать только гравитационное поле Солнца. Далее, представим себе, что космический корабль, зависший около Джорджа и Грейс, размотал длинный трос, конец которого достигает окрестностей солнечной поверхности. С помощью этого троса Джордж медленно перебирается ближе к Солнцу. По пути он периодически останавливается, чтобы сравнить темп хода времени на его часах и на часах Грейс. Искривление времени, предсказываемое общей теорией относительности Эйнштейна, означает, что по мере того, как он будет испытывать всё более сильное воздействие гравитационного поля, его часы будут всё больше отставать от часов Грейс. Иными словами, чем ближе он будет к Солнцу, тем медленнее будут идти его часы. Именно в этом смысле гравитация деформирует не только пространство, но и время.

Вы должны были заметить, что в отличие от случая, рассмотренного в главе 2, когда Джордж и Грейс находились в пустом пространстве, перемещаясь относительно друг друга с постоянной скоростью, сейчас между ними нет симметрии. Джордж, в отличие от Грейс, ощущает, что сила тяжести становится всё сильнее — ему приходится держаться за трос всё крепче, чтобы не дать Солнцу притянуть себя. Оба согласны с тем, что часы Джорджа идут медленнее. Их точки зрения уже не являются «одинаково равноправными», что позволяло им обмениваться ролями и менять выводы на противоположные. На самом деле, ситуация схожа с той, с которой мы столкнулись в главе 2, когда Джордж испытал ускорение, включив ранцевый двигатель для того, чтобы догнать Грейс. Тогда ускорение Джорджа привело к тому, что его часы определённо стали идти медленнее, чем часы Грейс. Поскольку теперь мы знаем, что ощущение ускоренного движения совпадает с ощущением воздействия гравитационной силы, в теперешнем положении Джорджа, перебирающегося по тросу, действует тот же самый принцип, и мы снова видим, что часы Джорджа и все события в его жизни замедляются по сравнению с ходом времени у Грейс.

В гравитационном поле, подобном тому, которое существует на поверхности рядовой звезды вроде нашего Солнца, замедление темпа хода часов будет небольшим. Если Грейс находится на расстоянии миллиарда километров от Солнца, то когда Джордж будет в нескольких километрах от поверхности нашего светила, темп хода его часов составит примерно 99,9998 % темпа хода часов Грейс. Такое замедление очень мало.[10] Однако если Джордж будет спускаться по тросу, который висит над поверхностью нейтронной звезды, масса которой примерно равна массе Солнца, а плотность вещества превышает солнечную примерно в миллион миллиардов раз, сильное гравитационное поле этой звезды замедлит темп хода его часов до 76 % темпа хода часов Грейс. Ещё более сильные гравитационные поля, подобные тем, которые имеют место на внешней поверхности чёрных дыр (они обсуждаются ниже), могут замедлить ход времени ещё сильнее. Более сильные гравитационные поля вызывают более сильное искривление времени.

Экспериментальное подтверждение общей теории относительности

Большинство из тех, кому приходится изучать общую теорию относительности, бывают очарованы её эстетической привлекательностью. Путём замены холодного, механистического взгляда Ньютона на пространство, время и тяготение на динамическое и геометрическое описание, включающее искривлённое пространство-время, Эйнштейн сумел «вплести» тяготение в фундаментальную структуру Вселенной. Перестав быть структурой, наложенной дополнительно, гравитация стала неотъемлемой частью Вселенной на её наиболее фундаментальном уровне. Вдохнув жизнь в пространство и время, позволив им искривляться, деформироваться и покрываться рябью, мы получили то, что обычно называется тяготением.

Если оставить в стороне эстетическое совершенство, конечным подтверждением справедливости физической теории является её способность объяснять и точно предсказывать физические явления. Теория гравитации Ньютона блестяще выдерживала это испытание с момента её появления в конце XVII в. и до начала XX столетия. Применительно к подбрасываемым в воздух мячам, телам, падающим с наклонных башен, кометам, кружащимся вокруг Солнца, или планетам, вращающимся по своим орбитам, теория Ньютона всегда давала чрезвычайно точное объяснение всем наблюдениям и предсказаниям, которые бесчисленное количество раз проверялись в самых разных условиях. Как мы уже подчёркивали, причины появления сомнений в этой необычайно успешной с экспериментальной точки зрения теории состояли в том, что согласно ей гравитационное взаимодействие передаётся мгновенно, а это противоречит специальной теории относительности.

Эффекты специальной теории относительности, имея огромное значение для понимания пространства, времени и движения на самом фундаментальном уровне, остаются чрезвычайно малыми в мире малых скоростей, в котором мы обитаем. Аналогично, расхождения между общей теорией относительности Эйнштейна — теорией гравитации, совместимой со специальной теорией относительности, — и теорией тяготения Ньютона также чрезвычайно малы в большинстве обычных ситуаций. Это и хорошо, и плохо. Хорошо потому, что любая теория, претендующая на то, чтобы занять место теории тяготения Ньютона, должна полностью согласовываться с ней в тех областях, где теория Ньютона получила экспериментальное подтверждение. Плохо потому, что это затрудняет экспериментальный выбор между двумя теориями. Выявление различий между теориями Эйнштейна и Ньютона требует проведения чрезвычайно точных измерений в экспериментах, которые очень чувствительны к различиям этих двух теорий. Если вы бросите бейсбольный мячик, для предсказания места его приземления могут быть использованы и ньютоновская, и эйнштейновская теории гравитации. Ответы будут разными, но различия будут столь малы, что они лежат за пределами наших возможностей их экспериментального подтверждения. Требуются более тонкие эксперименты, и Эйнштейн предложил один из них.{14}

Мы любуемся звёздами по ночам, но они, конечно, остаются на небе и днём. В это время мы обычно не видим их, потому что их далёкие, точечные огни затмеваются светом Солнца. Однако во время солнечных затмений Луна временно заслоняет часть света, идущего от Солнца, и удалённые звезды становятся видимыми и днём. Тем не менее, присутствие Солнца продолжает оказывать влияние на испущенный ими свет. Свет от некоторых отдалённых звёзд на своём пути к Земле должен пройти вблизи Солнца. Общая теория относительности Эйнштейна утверждает, что Солнце искривляет пространство и время, и что эта деформация оказывает влияние на траекторию идущего от звёзд света. В конце концов, фотоны, излучённые далёкими звёздами, путешествуют по Вселенной, и если её структура искривлена, это окажет влияние на движение фотонов, также как и на движение любого материального тела. Искривление траектории будет максимальным для тех лучей, которые проходят вблизи поверхности Солнца на своём пути к Земле. Такие лучи обычно полностью затмеваются светом Солнца, но во время солнечных затмений их можно увидеть.

Угол, на который отклоняется луч света, несложно измерить. Отклонение траектории луча приводит к смещению видимого положения звезды. Это смещение может быть точно измерено путём сравнения видимого положения звезды по сравнению с её истинным положением, известным по результатам ночных наблюдений звезды (в отсутствие отклоняющего влияния Солнца), полученным с интервалом примерно в полгода до или после затмения, когда Земля находится в соответствующем положении. В ноябре 1915 г. Эйнштейн, используя разработанную им новую теорию гравитации для расчёта угла, на который должен отклониться луч света от звезды, прошедший рядом с поверхностью Солнца, получил значение 0,00049 градуса (1,75 угловых секунд, где одна угловая секунда равна 1/3600 градуса). Этот крошечный угол равен углу раствора диафрагмы, сфокусированной на двадцатипятицентовой монетке в трёх километрах от неё. Однако измерение столь малого угла было уже под силу технике тех дней. По просьбе сэра Фрэнка Дайсона, директора Гринвичской обсерватории, сэр Артур Эддингтон, известный астроном и секретарь Королевского астрономического общества Англии, организовал экспедицию на остров Принсипе, расположенный у западного побережья Африки, для проверки предсказания Эйнштейна в ходе солнечного затмения, которое должно было произойти 29 мая 1919 г.

6 ноября 1919 г., после пяти месяцев анализа фотографий, сделанных во время затмения на о. Принсипе (а также фотографий того же затмения, сделанных в Собрале в Бразилии второй британской экспедицией, возглавляемой Чарльзом Дэвидсоном и Эндрю Кроммелином), на совместном заседании Королевского научного общества и Королевского астрономического общества было объявлено, что предсказания, сделанные Эйнштейном на основе общей теории относительности, подтвердились. За короткое время весть об этом успехе — революционном пересмотре ранее существовавших понятий пространства и времени — вышла далеко за пределы научного сообщества, сделав Эйнштейна знаменитым во всём мире. 7 ноября 1919 г. заголовок лондонской Таймс сообщал: «Революция в науке! Новая теория мироздания! Идеи Ньютона низвергнуты!».{15} Это было звёздным часом Эйнштейна.

За годы, прошедшие со времени этого эксперимента, подтверждение общей теории относительности, сделанное Эддингтоном, неоднократно подвергалось критическому анализу. Многочисленные сложности и тонкости, связанные с измерениями, затрудняют их воспроизведение и ставят под вопрос достоверность первоначальных результатов. Однако за последние 40 лет были выполнены разнообразные эксперименты с использованием последних достижений современной техники. Эти эксперименты предназначались для проверки различных аспектов общей теории относительности. Все предсказания общей теории относительности получили подтверждение. Сегодня не существует сомнений, что модель гравитации, предложенная Эйнштейном, не только совместима со специальной теорией относительности, но и даёт более точное совпадение с экспериментальными данными, чем теория Ньютона.

Чёрные дыры, Большой взрыв и расширение Вселенной

Если эффекты специальной теории относительности становятся наиболее очевидными при больших скоростях движения тел, то общая теория относительности выходит на сцену, когда тела имеют очень большую массу и вызывают сильное искривление пространства и времени. Рассмотрим два примера.

Первым из них является открытие, сделанное во время Первой мировой войны немецким астрономом Карлом Шварцшильдом, когда он, находясь в 1916 г. на русском фронте, в перерывах между расчётом траекторий артиллерийских снарядов знакомился с достижениями Эйнштейна в области гравитации. Удивительно, что спустя всего несколько месяцев после того, как Эйнштейн нанёс завершающие мазки на полотно общей теории относительности, Шварцшильд сумел, используя эту теорию, получить полную и точную картину того, как искривляются пространство и время в окрестности идеально сферической звезды. Шварцшильд послал полученные им результаты с русского фронта Эйнштейну, который по его поручению представил их Прусской академии.

Помимо подтверждения и математически точного расчёта искривления, которое мы схематически показали на рис. 3.5, работа Шварцшильда — известная в настоящее время под названием «решения Шварцшильда» — выявила одно поразительное следствие общей теории относительности. Было показано, что если масса звезды сосредоточена в пределах достаточно малой сферической области (когда отношение массы звезды к её радиусу не превосходит некоторого критического значения), то результирующее искривление пространства-времени будет столь значительным, что никакой объект (включая свет), достаточно приблизившийся к звезде, не сможет ускользнуть из этой гравитационной ловушки. Поскольку даже свет не сможет вырваться из таких «сжатых звёзд», первоначально они получили название тёмных, или замороженных[11], звёзд. Более броское название было предложено годы спустя Джоном Уилером, который назвал их чёрными дырами — чёрными, потому что они не могут излучать свет, и дырами, потому что любой объект, приблизившийся к ним на слишком малое расстояние, никогда не возвращается назад. Это название прочно закрепилось и устоялось.

Решение Шварцшильда иллюстрируется на рис. 3.7.

Рис. 3.7. Чёрная дыра искривляет структуру окружающего пространства-времени настолько сильно, что любой объект, пересекающий её «горизонт событий» — обозначенный чёрной окружностью — не может ускользнуть из её гравитационной ловушки. Никто не знает в точности, что происходит в глубинах чёрных дыр

Хотя чёрные дыры известны своей «прожорливостью», тела, которые проходят мимо них на безопасном расстоянии, отклоняются точно так же, как они отклонились бы под действием обычной звезды, и следуют дальше своей дорогой. Но тела любой природы, подошедшие слишком близко, ближе, чем на расстояние, которое называется горизонтом событий чёрной дыры, приговорены — они будут неуклонно падать к центру чёрной дыры, подвергаясь действию всё более интенсивных и становящихся, в конце концов, разрушительными гравитационных деформаций. Если, например, вы подплываете к центру чёрной дыры ногами вперёд, то при пересечении горизонта событий вы будете ощущать растущее чувство дискомфорта. Гравитационное притяжение чёрной дыры возрастёт столь значительно, что оно будет притягивать ваши ноги гораздо сильнее, чем голову (ведь ноги будут несколько ближе к центру чёрной дыры, чем голова), настолько сильно, что сможет быстро разорвать ваше тело на куски.

Если же вы будете благоразумнее в странствиях в окрестностях чёрной дыры и позаботитесь о том, чтобы не пересекать её горизонт событий, то можно использовать чёрную дыру для замечательного трюка. Представим, например, что вы обнаружили чёрную дыру, масса которой в 1 000 раз превышает массу Солнца, и спускаетесь на тросе, точно так же, как Джордж спускался на Солнце, до высоты 3 см над горизонтом событий. Как мы уже отмечали, гравитационные поля вызывают искривление времени, это означает, что ваше путешествие во времени замедлится. В действительности, поскольку чёрные дыры имеют столь сильные гравитационные поля, ход вашего времени замедлится очень сильно. Ваши часы будут идти примерно в десять тысяч раз медленнее, чем часы вашего друга, оставшегося на Земле. Если вы провисите над горизонтом событий чёрной дыры в таком положении один год, а потом вскарабкаетесь по тросу назад на ожидающий вас неподалёку космический корабль для короткого, но приятного путешествия домой, то по возвращении вы обнаружите, что с момента вашего отбытия прошло более десяти тысяч лет. Вы можете использовать чёрную дыру в качестве своего рода машины времени, которая позволит вам попасть в отдалённое будущее Земли.

Чтобы почувствовать всю грандиозность масштабов этих явлений, отметим, что звезда массой, равной массе Солнца, станет чёрной дырой, если её радиус будет составлять не наблюдаемое значение (около 700 000 км), а всего лишь около 3 км. Вообразите, что всё наше Солнце сжалось до размеров Манхэттена. Чайная ложка вещества такого сжатого Солнца будет весить столько же, сколько гора Эверест. Чтобы сделать чёрной дырой нашу Землю, мы должны сжать её в шарик радиусом менее сантиметра. В течение долгого времени физики скептически относились к возможности существования таких экстремальных состояний материи, многие из них считали, что чёрные дыры являются всего лишь издержками разгулявшегося воображения перетрудившихся теоретиков.

Однако в течение последнего десятилетия накопилось достаточно много наблюдательных данных, подтверждающих существование чёрных дыр. Конечно, поскольку они являются чёрными, их нельзя наблюдать непосредственно, исследуя небосвод с помощью телескопа. Вместо этого астрономы пытаются обнаружить чёрные дыры по аномальному поведению обычных излучающих свет звёзд, расположенных поблизости от горизонтов событий чёрных дыр. Например, когда частицы пыли и газа из внешних слоёв находящихся по соседству с чёрной дырой обычных звёзд устремляются в направлении горизонта событий чёрной дыры, они разгоняются почти до световой скорости. При таких скоростях трение в газопылевом водовороте засасываемого вещества приводит к выделению огромного количества тепла, заставляющего газопылевую смесь светиться, излучая обычный видимый свет и рентгеновское излучение. Поскольку это излучение генерируется вне горизонта событий, оно может избежать попадания в чёрную дыру. Это излучение распространяется в пространстве, оно может непосредственно наблюдаться и изучаться. Общая теория относительности детально предсказывает характеристики такого рентгеновского излучения; наблюдение этих предсказанных характеристик даёт убедительные, хотя и косвенные подтверждения существования чёрных дыр. Например, имеется всё больше свидетельств в пользу того, что очень массивная чёрная дыра, масса которой в два с половиной миллиона раз превосходит массу нашего Солнца, расположена в центре нашей Галактики. Но даже эти прожорливые чёрные дыры бледнеют по сравнению с теми, которые, по-мнению астрономов, расположены в центрах рассеянных по всему космосу сияющих ошеломляюще ярким светом квазаров. Это чёрные дыры, массы которых в миллиарды раз превосходят массу Солнца.

Шварцшильд умер всего через несколько месяцев после того, как нашёл своё решение. Он умер от кожного заболевания, которым заразился на русском фронте. Ему было 42 года. Его трагически краткое знакомство с теорией гравитации Эйнштейна открыло одну из наиболее ярких и таинственных граней жизни Вселенной.

Второй пример, который позволил общей теории относительности нарастить мускулы, относится к возникновению и эволюции всей Вселенной. Как мы уже видели, Эйнштейн показал, что пространство и время реагируют на присутствие массы и энергии. Эта деформация пространства-времени оказывает влияние на движение других космических тел, оказавшихся поблизости от образовавшегося искривления. Точная траектория движения этих тел зависит от их собственных массы и энергии, которые, в свою очередь, оказывают влияние на кривизну пространства-времени, влияющую на движение этих тел, и так до бесконечности. Используя уравнения общей теории относительности, основанные на достижениях в описании геометрии искривлённого пространства, которых добился великий математик XIX в. Георг Бернхард Риман (подробнее мы расскажем о нём ниже), Эйнштейн сумел количественно описать взаимную эволюцию пространства, времени и материи. К его великому изумлению, применение этих уравнений не к изолированной системе (такой, как планета или комета, обращающаяся вокруг Солнца), а к Вселенной в целом, привело к поразительному выводу: общий пространственный размер Вселенной должен изменяться с течением времени. Иными словами, Вселенная либо расширяется, либо сжимается, но никогда не остаётся в неизменном состоянии. И это явственно следовало из уравнений общей теории относительности.

Это было слишком даже для Эйнштейна. Такой вывод опрокидывал общепринятые интуитивные представления о сущности пространства и времени, сформировавшиеся в течение тысяч лет под влиянием повседневного опыта. Даже такой радикальный мыслитель не смог отказаться от представлений о вечно существующей и неизменной Вселенной. По этой причине Эйнштейн пересмотрел свои уравнения и модифицировал их, добавив дополнительный член, ставший известным как космологическая постоянная, который позволял избежать такого вывода и возвращал нас в комфортные условия статической Вселенной. Однако 12 лет спустя, проводя тщательные наблюдения за отдалёнными галактиками, американский астроном Эдвин Хаббл экспериментально установил, что Вселенная расширяется. История, закреплённая ныне в анналах науки, свидетельствует о том, что Эйнштейн вернул первоначальную форму своим уравнениям, признав их временную модификацию величайшим заблуждением в своей жизни.[12] Теория Эйнштейна предсказывает расширение Вселенной, вопреки первоначальному нежеланию её автора принять этот вывод. На самом деле, в начале 1920-х гг., за несколько лет до наблюдений Хаббла, русский метеоролог Александр Фридман, используя уравнения Эйнштейна, детально продемонстрировал, что все галактики переносятся в субстрате расширяющегося пространства, быстро удаляясь друг от друга. Наблюдения Хаббла и многочисленные данные, накопленные впоследствии, полностью подтвердили это потрясающее следствие общей теории относительности. Предложив объяснение расширения Вселенной, Эйнштейн совершил один из величайших интеллектуальных подвигов всех времён.

Если принять, что пространство Вселенной расширяется, приводя к увеличению расстояния между галактиками, переносимыми космическими потоками, можно мысленно обратить развитие Вселенной вспять по времени, чтобы исследовать её происхождение. При таком обращении пространство Вселенной сокращается, и галактики становятся всё ближе и ближе друг к другу. По мере того, как сокращающаяся Вселенная сжимает галактики, в ней, как в автоклаве, происходит резкое увеличение температуры, звёзды разрушаются, и образуется раскалённая плазма из элементарных составляющих вещества. Дальнейшее сжатие сопровождается непрекращающимся ростом температуры, а также плотности первичной плазмы. Если мы представим, что часы отсчитали примерно пятнадцать миллиардов лет назад от современного состояния, известная нам Вселенная сократится до ещё меньшего размера. Материя, из которой состоит всё: каждый автомобиль, каждое здание, каждая гора на Земле, сама Земля, Луна, Сатурн, Юпитер и все другие планеты, Солнце и все другие звёзды Млечного пути, галактика Андромеда с её 100 миллиардами звёзд и все остальные 100 миллиардов галактик — всё это сожмётся в космических тисках до чудовищной плотности. А когда часы покажут ещё более раннее время, весь космос сожмётся до размеров апельсина, лимона, горошины, песчинки и даже до ещё более крошечного размера. Если экстраполировать весь этот путь назад, к «началу всех начал», можно прийти к выводу, что Вселенная должна была возникнуть как точка (образ, который мы подвергнем критическому анализу в последующих главах), в которой всё вещество и вся энергия были спрессованы до невообразимых плотности и температуры. Считается, что огненный шар, вырвавшийся из этой гремучей смеси в результате Большого взрыва, исторг семена, из которых в дальнейшем развилась известная нам Вселенная.

Образ Большого взрыва как космической вспышки, извергнувшей материальное содержимое Вселенной, как шрапнель из разорвавшейся бомбы, полезен для восприятия, но он может ввести в заблуждение. Когда взрывается бомба, она взрывается в определённом месте в пространстве и в определённый момент времени. Её содержимое выбрасывается в окружающее пространство. При прокручивании вспять эволюции Вселенной, её материя сжималась потому, что сокращалось всё пространство. Размер апельсина, размер горошины, размер песчинки — обратная эволюция размеров относится ко всей Вселенной, а не к чему-то внутри Вселенной. Следуя вспять всё ближе к началу, мы не найдём никакого пространства вне точечной гранаты. Большой взрыв представлял собой извержение сжатого пространства, развёртывание которого, подобно приливной волне, и по сей день несёт с собой материю и энергию.

Верна ли общая теория относительности?

В экспериментах, выполненных с использованием современной техники, не было обнаружено отклонений от предсказаний общей теории относительности. Только время сможет показать, позволит ли возрастающая точность экспериментов выявить какие-либо отклонения и, тем самым, показать, что эта теория также представляет собой лишь приближённое описание сущности мироздания. Систематическая проверка теорий со всё более высокой степенью точности является, конечно, одним из путей развития науки, но это не единственный путь. На самом деле мы уже видели это: поиск новой теории гравитации был инициирован не экспериментальным опровержением теории Ньютона, а конфликтом между ньютоновской гравитацией и другой теорией — специальной теорией относительности. Только после появления общей теории относительности (как конкурирующей теории) были установлены экспериментальные изъяны в теории Ньютона, которые проявлялись в ничтожных, но поддающихся измерению расхождениях между двумя теориями. Таким образом, внутренние теоретические противоречия могут быть такой же движущей силой прогресса, как и экспериментальные данные.

За последние полвека физики столкнулись с другим теоретическим противоречием, не уступающим противоречию между специальной теорией относительности и ньютоновской гравитацией. Выяснилось, что общая теория относительности, по-видимому, на фундаментальном уровне несовместима с другой чрезвычайно тщательно проверенной теорией — квантовой механикой. Применительно к вопросам, рассмотренным в данной главе, это противоречие не позволяет физикам прийти к пониманию того, что на самом деле происходит с пространством, временем и материей, когда они находятся в спрессованном состоянии, подобном состоянию в момент Большого взрыва или в центре чёрной дыры. В более общем плане, это противоречие предупреждает нас об отсутствии некоторого фундаментального звена в нашем понимании природы. Разрешить это противоречие не смогли величайшие физики-теоретики, и оно завоевало вполне заслуженную репутацию центральной проблемы современной теоретической физики. Понимание сущности этого противоречия требует знания некоторых основных положений квантовой теории, к которым мы сейчас и перейдём.

Глава 4. Микроскопические странности

Слегка утомившиеся после своей последней экспедиции за пределы Солнечной системы, Джордж и Грейс вернулись на Землю и решили заглянуть в H-бар[13], чтобы немного освежиться после пребывания в космосе. Джордж, как обычно, заказал сок папайи со льдом для себя и водку с тоником для Грейс, откинулся на спинку кресла, скрестил руки за головой и приготовился наслаждаться сигарой, которую он только что зажёг. Собравшись затянуться, он вдруг с изумлением обнаружил, что сигара, которая только что была между его зубами, исчезла. Решив, что сигара могла как-нибудь выскользнуть у него изо рта, Джордж наклонился вперёд, ожидая увидеть дырку, прожжённую на рубашке или на брюках. Но дырки не было. Сигары не было тоже. Грейс, озадаченная странными движениями Джорджа, огляделась вокруг и увидела, что сигара лежит на стойке прямо за стулом Джорджа. «Странно, — сказал Джордж, — как, чёрт возьми, могла она туда попасть? Такое чувство, что она прошла прямо сквозь мою голову — но язык не обожжён, и я не чувствую в себе никаких новых дырок». Грейс осмотрела Джорджа и неохотно подтвердила, что его язык и голова выглядят совершенно нормально. Поскольку тут как раз подоспели напитки, Джордж и Грейс пожали плечами и отнесли пропавшую сигару к одной из маленьких тайн жизни. Однако чудеса в H-баре на этом не закончились.

Джордж бросил взгляд на бокал с соком папайи и увидел, что кубики со льдом находятся в непрерывном движении, постоянно сталкиваясь друг с другом и со стенками бокала, как маленькие автомобили в детском аттракционе. На этот раз удивлён был не он один. Грейс держала в руках свой бокал, который был раза в два меньше, чем у Джорджа, и оба они увидели, что её кубики льда кружились ещё более неистово. Они с трудом могли различить отдельные кубики, которые сливались в одну ледяную массу. Но это было ничто по сравнению с тем, что случилось в следующее мгновение. Глядя изумлёнными глазами на напитки, совершающие стремительную пляску, они вдруг заметили, как один кубик льда прошёл сквозь стенку бокала и упал на стойку. Они схватили бокал и увидели, что он совершенно цел; кубик льда каким-то таинственным образом прошёл сквозь стекло, не вызвав никаких повреждений. «Должно быть, галлюцинации после прогулок по открытому космосу», — заметил Джордж. Они остановили бешеную пляску ледяных кубиков, осушив одним глотком свои бокалы, и отправились восстанавливаться домой. Торопясь покинуть заведение, Джордж и Грейс даже не заметили, что по ошибке вышли не через обычную дверь, а через декоративную, нарисованную на стене. Однако персонал H-бара, давно привыкший к людям, проходящим сквозь стены, даже не заметил их поспешного ухода.

Столетие назад, в то время, когда Конрад и Фрейд исследовали потёмки человеческой души, немецкий физик Макс Планк впервые пролил свет на квантовую механику — систему понятий, которая провозглашает, помимо всего прочего, что то, с чем столкнулись Джордж и Грейс в H-баре (если это происходит в микромире), вовсе не требует для своего объяснения привлечения потусторонних сил. Столь необычные и причудливые события типичны для поведения нашей Вселенной, рассматриваемой на сверхмалых масштабах.

Квантовая теория

Квантовая механика представляет собой систему понятий, предназначенную для понимания свойств микромира. Точно так же, как специальная и общая теории относительности потребовали решительного пересмотра нашего взгляда на мир для случая объектов, которые движутся очень быстро или имеют очень большую массу, квантовая механика установила, что наша Вселенная имеет такие же, если не ещё более поразительные свойства, если исследовать её в масштабе атомных и субатомных расстояний. В 1965 г. Ричард Фейнман, один из величайших специалистов в области квантовой механики, писал: «Было время, когда газеты сообщали, что только двенадцать человек понимают теорию относительности. Я не верю, что такое время когда-либо было. Могло быть время, когда её понимал только один человек, тот самый парень, который схватил её суть перед тем, как написать свою статью. Но после того как люди прочитали его статью, масса людей стала так или иначе понимать теорию относительности, и уж точно число этих людей превышало двенадцать. С другой стороны, я думаю, что могу совершенно спокойно сказать, что квантовую механику не понимает никто».{16}

Хотя Фейнман высказал свою точку зрения более тридцати лет назад, она остаётся справедливой и сегодня. Он имел в виду следующее: хотя специальная и общая теории относительности потребовали волнующего пересмотра нашего видения мира, после того, как вы полностью примете лежащие в их основе фундаментальные принципы, все новые и необычные следствия этих теорий для пространства и времени могут быть получены непосредственно путём логических рассуждений. Если вы достаточно интенсивно поработаете над выводами Эйнштейна, приведёнными в предыдущих двух главах, вы сможете хотя бы на короткое время понять неизбежность сделанных им заключений. Не так обстоит дело с квантовой механикой. Примерно к 1928 г. уже было установлено множество математических формул и законов квантовой механики. Затем с их помощью неоднократно делались самые точные и успешные в истории науки количественные предсказания. Однако на самом деле те, кто использует квантовую механику, просто следуют формулам и правилам, установленным «отцами-основателями» теории, и чётким и недвусмысленным вычислительным процедурам, но без реального понимания того, почему эти процедуры работают, или что они в действительности означают. В отличие от теории относительности едва ли найдётся много людей, если такие найдутся вообще, кто смог понять квантовую механику на «интуитивном» уровне.

Что же нам предпринять в такой ситуации? Означает ли это, что в масштабах микромира Вселенная функционирует столь непонятным и непривычным образом, что человеческое мышление, привыкшее в течение тысячелетий иметь дело с явлениями, протекающими в обычном, макроскопическом масштабе, неспособно до конца понять то, «что происходит в действительности»? Или, быть может, по какой-то исторической случайности, физики создали чрезвычайно уродливую формулировку квантовой механики, которая оказалась успешной с точки зрения количественных предсказаний, но маскирует истинную сущность природы? Этого не знает никто. Может быть, когда-нибудь в будущем появится более талантливый исследователь, который предложит новую формулировку, ясно отвечающую на все «почему» и «как» квантовой механики. А может и не появится. Единственное, что мы знаем наверняка, это то, что квантовая механика совершенно ясно и недвусмысленно показывает, что ряд фундаментальных концепций, имеющих существенное значение для понимания того мира, с которым мы сталкиваемся в повседневной жизни, полностью теряет всякий смысл при переходе к микромиру. В результате, пытаясь понять и объяснить Вселенную на атомном и субатомном уровнях, мы должны кардинально менять наш язык и логику рассуждений.

В последующих разделах мы рассмотрим основы этого языка и опишем ряд удивительных результатов, к которым ведёт его применение. Если по ходу изложения квантовая механика покажется вам в целом странной и нелепой, вы должны вспомнить о двух вещах. Во-первых, помимо того, что это математически корректная теория, единственная причина, по которой мы доверяем квантовой механике, состоит в том, что её предсказания подтверждаются с поразительной точностью. Если кто-то сможет рассказать вам со всеми мучительными подробностями массу самых сокровенных историй из вашего детства, трудно будет не поверить, что это ваш давно пропавший брат (или сестра). Во-вторых, вы не одиноки в такой реакции на квантовую механику. Сходной точки зрения придерживалось, в большей или меньшей степени, немало уважаемых физиков. Эйнштейн отказывался признать квантовую механику. И даже Нильс Бор, один из первооткрывателей квантовой механики, однажды заметил, что если вы никогда не чувствуете себя ошеломлённым, когда размышляете о квантовой механике, значит, вы не понимаете её по-настоящему.

На кухне слишком жарко

Путь к квантовой механике начался с одной сбивающей с толку проблемы. Представьте, что стоящая у вас в доме духовка имеет идеальную изоляцию, что вы установили её на некоторую температуру, скажем, 200 °C, и что у вас достаточно времени, чтобы подождать, пока она нагреется. Даже если перед включением духовки вы откачаете из неё весь воздух, она будет излучать волны в результате нагрева стенок. Это тот же вид излучения (теплота и свет являются разновидностями электромагнитных волн), что и излучение поверхности Солнца или раскалённой докрасна железной кочерги.

Проблема состоит в следующем. Электромагнитные волны переносят энергию. Например, жизнь на Земле критически зависит от солнечной энергии, переносимой с Солнца на Землю электромагнитными волнами. В начале XX столетия физики рассчитали общее количество энергии электромагнитного излучения замкнутой полости, находящейся при заданной температуре. Используя хорошо известные методы расчёта, они получили нелепый ответ: при любой заданной температуре общая энергия оказывалась бесконечной.

Всем было ясно, что это нонсенс — духовка может дать значительное количество энергии, но уж точно не бесконечное. Для того чтобы понять решение, предложенное Планком, стоит рассмотреть проблему более детально. Оказалось, что когда электромагнитная теория Максвелла применяется для расчёта излучения духовки, она показывает, что волны, генерируемые стенками, должны быть такими, чтобы между противоположными стенками укладывалось целое число максимумов и минимумов. Несколько примеров показано на рис. 4.1.

Рис. 4.1. Теория Максвелла говорит нам, что волны излучения в духовке имеют целое число максимумов и минимумов — они совершают полные циклы колебаний

Физики используют для описания таких волн три понятия: длина волны, частота и амплитуда. Длина волны, как показано на рис. 4.2, представляет собой расстояние между соседними максимумами или минимумами волны.

Рис. 4.2. Длина волны определяется как расстояние между соседними максимумами или минимумами. Амплитуда представляет собой наибольшую высоту или глубину волны

Чем больше максимумов и минимумов, тем короче длина волны, так как все они должны уместиться между неподвижными стенками печи. Частота обозначает число циклов колебаний вверх-вниз, которые волна совершает в течение одной секунды. Частота и длина волны являются взаимосвязанными параметрами: чем больше длина волны, тем меньше частота; чем меньше длина волны, тем больше частота. Чтобы понять, почему это так, представьте себе, что вы создаёте волны, раскачивая один конец длинного каната, другой конец которого привязан к стенке. Для того чтобы получить волну с большой длиной волны, вы лениво помахиваете концом каната вверх и вниз. Частота волн равна числу движений вашей руки за секунду и, следовательно, является очень небольшой. Чтобы генерировать более короткую волну, вам придётся трясти ваш конец более интенсивно, более часто: это даст волну более высокой частоты. Наконец, физики используют термин амплитуда для описания максимальной высоты или глубины волны (см. рис. 4.2).

Если электромагнитные волны вам кажутся слишком абстрактными, есть другая хорошая аналогия: волны, воспроизводимые при игре на струнах скрипки. Разные длины волн соответствуют разным музыкальным нотам: чем выше частота, тем выше нота. Амплитуда волны, создаваемой скрипичной струной, определяется тем, с какой силой вы цепляете смычком по струне. При большей силе вы вкладываете больше энергии в колебания струны; следовательно, большее количество энергии соответствует большей амплитуде. Результатом будет более громкий звук. Аналогично меньшее количество энергии соответствует меньшей амплитуде и меньшей громкости звука.

Используя установленные в XIX в. уравнения термодинамики, физики смогли определить, какое количество энергии передают горячие стенки духовки электромагнитным волнам каждой разрешённой длины волны, т. е. фактически насколько сильно стенки «цепляют» каждую волну. Полученный результат оказался весьма простым: каждая из разрешённых волн независимо от её длины волны будет нести одно и то же количество энергии (которое определяется температурой духовки). Иными словами, когда речь идёт о количестве переносимой энергии, все возможные волны в духовке оказываются в совершенно равноправном положении.

На первый взгляд мы получили интересный и довольно безобидный результат. Однако это совсем не так. Он провозгласил крах того, что называлось классической физикой. Причина состоит в следующем. Даже при ограничении, чтобы все волны имели целое число максимумов и минимумов, — что исключает огромное число видов волн, — в печи по-прежнему остаётся бесконечное количество волн с нарастающим количеством максимумов и минимумов. Поскольку каждая волна несёт одно и то же количество энергии, бесконечное число волн будет переносить бесконечное количество энергии. Так на рубеже столетий в бочке мёда теоретической физики объявилась огромная «гаргантюанская» ложка дёгтя.

Деление на порции на рубеже веков

В 1900 г. Планк высказал удивительную догадку, позволившую решить эту головоломку и принёсшую ему Нобелевскую премию 1918 г. по физике.{17} Для того чтобы понять решение Планка, представьте себе, что вы вместе с огромной толпой людей, «бесконечной» по количеству, ютитесь в огромном и холодном ангаре, принадлежащем скаредному домовладельцу. На стенке установлен затейливый цифровой термостат, который регулирует температуру. Узнав, сколько домовладелец требует в уплату за отопление, вы потрясены. Если термостат установлен на 15 °C, каждый должен платить домовладельцу по 15 долларов. Если он установлен на 16 °C, каждый платит по 16 долларов и т. д. Вы понимаете, что поскольку кроме вас помещение арендует бесконечное число съёмщиков, как только отопление будет включено, домовладелец станет получать бесконечную сумму денег.

Однако, более внимательно прочитав правила оплаты, вы обнаруживаете лазейку. Ваш домовладелец очень занятой человек, он не хочет терять время на отсчитывание сдачи, особенно бесконечному количеству отдельных съёмщиков. Поэтому он устанавливает следующую систему оплаты. Те, кто могут выплатить точную сумму без сдачи, платят строго по счёту. Остальные платят столько, сколько могут набрать имеющимися у них купюрами, но так, чтобы не нужно было давать сдачи. Поэтому, желая привлечь к оплате всех и, в то же время, избежать непомерной платы за тепло, вы уговариваете своих компаньонов разделить все деньги по следующему принципу. Один из вас собирает все центы, другой — все пятицентовые монеты, третий — все десятицентовые, четвёртый — все двадцатипятицентовые и т. д., включая тех, кто будет хранить однодолларовые банкноты, пятидолларовые, десятидолларовые, двадцатидолларовые, пятидесятидолларовые, стодолларовые и даже банкноты более крупных (и незнакомых) номиналов. Вы нахально устанавливаете термостат на 25° C и ждёте появления домовладельца. Когда он приходит, тот компаньон, у которого все центы, платит ему первым, отсчитывая 2 500 монеток. Затем хранитель пятицентовых монет отдаёт 500 монет; хранитель десятицентовых монет отдаёт 250 монет, далее платит обладатель 100 двадцатипятицентовых монет, затем идёт парень с долларами, отдающий домовладельцу 25 бумажек. Далее хранитель пятидолларовых купюр передаёт 5 банкнот, а хранитель десятидолларовых банкнот ограничивается только 2 банкнотами (поскольку три десятидолларовые банкноты уже превышают сумму, подлежащую уплате, и требуют сдачи). Ваш компаньон с купюрами по 20 долларов также ограничивается только 1 банкнотой (ибо с двух уже потребуется сдача), а у всех остальных номинал имеющихся у них купюр — минимальная порция денег — превышает требуемую к оплате сумму. Поэтому они не могут заплатить домовладельцу, и в результате, вместо того, чтобы получить бесконечную сумму денег, на которую рассчитывал домовладелец, он удаляется с жалкими 190 долларами.

Планк использовал очень похожий подход для того, чтобы обойти абсурдный вывод о бесконечном количестве энергии в духовке и получить конечное значение. Вот как он добился этого. Планк смело предположил, что количество энергии, переносимой электромагнитной волной в духовке, подобно деньгам, изменяется порциями. Энергия может быть равна одному такому фундаментальному «номиналу энергии», или двум, или трём и т. д. — но это всё. Согласно Планку, когда речь идёт об энергии, доли не допустимы, точно так же, как вы не можете иметь монету в одну треть цента или в половину от двадцати пяти центов. (В настоящее время денежные номиналы США определяются федеральным казначейством.) В поисках более фундаментального объяснения Планк предположил, что энергетический номинал волны, т. е. минимальное количество энергии, которое она может нести, определяется её частотой. Точнее, он постулировал, что минимальная энергия, которую может нести волна, пропорциональна её частоте: большая частота (более короткая длина волны) предполагает большую минимальную энергию, меньшая частота (большая длина волны) — меньшую минимальную энергию. Можно привести такое грубое сравнение: так же, как пологие океанские волны длинны и величественны, а сильные коротки и порывисты, длинноволновое излучение менее энергично, чем коротковолновое.

Расчёты Планка показали, что дискретность допустимой энергии волн избавляет от нелепого результата о бесконечной суммарной энергии. Нетрудно понять, почему это так. Когда духовка нагревается до некоторой заданной температуры, то согласно расчётам, основанным на термодинамике XIX в., каждая волна вносит свой вклад в общую энергию. Однако, подобно компаньонам, которые не могут внести обычную сумму платы домовладельцу, поскольку номинал их денег слишком велик, если минимальная энергия, которую может переносить конкретная волна, превышает её ожидаемый энергетический вклад, она не даёт вклада вообще и остаётся безучастной. Поскольку минимальная энергия, которую может нести волна, согласно Планку, пропорциональна её частоте, то, исследуя волны в духовке и переходя к волнам со всё более высокой частотой (всё меньшей длиной волны), рано или поздно обнаружится, что минимальная энергия, которую может нести волна, превышает ожидаемый энергетический вклад. Подобно компаньонам, которым доверили банкноты с номиналом, превышающим двадцать долларов, эти волны с возрастающими частотами не могут дать вклада, которого требует физика XIX в. Аналогично тому, что только конечное число компаньонов смогло заплатить за тепло, и общая сумма оказалась конечной, только конечное число волн может дать вклад в общую энергию печи, что опять же приводит к конечности полного количества энергии. Говорим ли мы об энергии или о деньгах, порционность фундаментальных единиц и всё возрастающий размер этих единиц по мере того, как мы переходим к более высоким частотам (или к более крупным купюрам), приводит к замене бесконечного ответа конечным.[14]

Избавившись от очевидно абсурдного бесконечного результата, Планк сделал важный шаг. Но то, что действительно заставило людей поверить в справедливость его догадки — замечательное совпадение результата его нового подхода для вычисления энергии в духовке с экспериментальными данными. Планк обнаружил, что подстроив один параметр, входящий в его новую расчётную схему, можно точно предсказать результаты измерения энергии в духовке для любой заданной температуры. Этот параметр представляет собой коэффициент пропорциональности между частотой волны и минимальным количеством энергии, которую волна может нести. Планк установил, что этот коэффициент пропорциональности, известный ныне как постоянная Планка и обозначаемый символом , составляет в обычных единицах примерно одну миллиардную от одной миллиардной от одной миллиардной доли.[15] Ничтожно малая величина постоянной Планка означает, что размер порций энергии обычно очень мал. По этой причине нам, например, кажется, что мы заставляем энергию волны, создаваемой струной скрипки (и, следовательно, громкость звука), изменяться непрерывно. В действительности, однако, энергия волны изменяется дискретными шагами согласно формуле Планка, но размер этих шагов настолько мал, что дискретные скачки от одного уровня громкости к другому кажутся нам плавными переходами. По утверждению Планка, амплитуда этих скачков энергии растёт по мере увеличения частоты волны (сопровождаемого уменьшением длины волны). Это тот основной момент, который разрешает парадокс бесконечной энергии.

Как мы увидим далее, квантовая гипотеза Планка не просто позволяет понять энергетику духовки, но идёт гораздо дальше. Она опрокидывает многое из того, что мы считали само собой разумеющимся. Малое значение постоянной Планка заточает в границы микромира большинство отклонений от привычной картины, но если бы постоянная была гораздо больше, то происходящие в H-баре странные вещи стали бы обыденными. Как мы увидим, аналоги этих странностей являются привычным делом в микромире.

Что представляют собой порции?

Планк не мог обосновать гипотезу дискретности энергии волн, играющую центральную роль в предложенном им решении. За исключением того, что это работает, ни у Планка, ни у кого-либо ещё не было никакого рационального объяснения, почему всё должно быть именно так. Как заметил однажды физик Георгий Гамов, это подобно тому, как если бы природа разрешала либо пить целый литр пива, либо не пить совсем, не допуская никаких промежуточных доз.{18} В 1905 г. Эйнштейн нашёл объяснение, за которое он получил Нобелевскую премию 1921 г. по физике.

Эйнштейн пришёл к своему объяснению, пытаясь решить проблему, известную под названием фотоэлектронной эмиссии (фотоэффекта). В 1887 г. немецкий физик Генрих Герц впервые обнаружил, что когда электромагнитное излучение (свет) падает на некоторые металлы, они испускают электроны. Само по себе это свойство не слишком удивительно. Известно, что некоторые из электронов металлов слабо связаны с ядрами атомов (именно поэтому металлы являются столь хорошими проводниками электричества). Когда свет сталкивается с поверхностью металла, он отдаёт энергию: при столкновении с вашей кожей это приводит к нагреву тела. Переданная энергия может возбуждать электроны в металлах, при этом некоторые из слабосвязанных электронов могут выбиваться с поверхности.

Странные свойства фотоэффекта становятся явными при более детальном изучении характеристик испускаемых электронов. На первый взгляд может показаться, что при увеличении интенсивности (яркости) света скорость вылетевших электронов также должна увеличиваться, поскольку падающее электромагнитное излучение будет нести больше энергии.

Однако этого не происходит. Вместо этого происходит увеличение числа вылетевших электронов, но их скорость остаётся постоянной. С другой стороны, было экспериментально установлено, что скорость вылетевших электронов увеличивается при увеличении частоты падающего света и, соответственно, уменьшается при её уменьшении. (Для электромагнитных волн в видимой части спектра увеличение частоты соответствует изменению цвета от красного к оранжевому, жёлтому, зелёному, голубому, синему и, наконец, к фиолетовому. Излучение, частота которого превышае частоту фиолетового света, невидимо: эта часть спектра начинается с ультрафиолетового излучения, за которым следует рентгеновское. Электромагнитные волны, частота которых ниже частоты красного света, также невидимы; они соответствуют инфракрасному излучению.) В действительности, при уменьшении частоты света наступает момент, когда скорость вылетевших электронов падает до нуля, и они перестают вылетать с поверхности независимо от интенсивности источника света. По какой-то неизвестной причине цвет падающего луча света, а не его полная энергия, определяет, испускаются ли электроны, и если испускаются, то какую энергию имеют.

Чтобы понять, как Эйнштейн объяснил эти загадочные факты, вернёмся к нашему арендуемому помещению, которое теперь нагревается до комфортной температуры 25 °C. Представим, что ненавидящий детей домовладелец потребовал, чтобы все, кому не исполнилось пятнадцати лет, жили в подвале, который взрослые могут видеть с балкона, опоясывающего здание. Более того, любой из огромного количества детей в подвале может выйти из здания, лишь заплатив привратнику плату за выход в 85 центов. (Этот домовладелец такой негодяй.) Взрослые, которые согласно вашему предложению распределили все деньги по номиналам в соответствии с описанной выше схемой, могут передать деньги детям, только бросая их с балкона. Давайте посмотрим, что при этом произойдёт.

Держатель одноцентовых монет бросает несколько из них вниз, но это слишком малая сумма, чтобы кто-то из детей мог заплатить за выход. И, поскольку внизу находится «бесконечное» море детей, с криками сражающихся за падающие монеты, то даже если обладатель центов бросит огромное количество монет, ни один ребёнок не сможет собрать 85 центов, которые он должен уплатить. То же самое получится у тех взрослых, которые владеют пятицентовыми, десятицентовыми и двадцатипятицентовыми монетами. Хотя каждый из них бросит вниз огромное количество денег, любой ребёнок сочтёт за счастье, если ему достанется хотя бы одна монета (большинство же не получит ни одной), и уж точно никто не сможет набрать сумму в 85 центов, необходимую для выхода из подвала. Но когда деньги начнёт бросать владелец однодолларовых купюр — даже небольшими суммами, доллар за долларом, — те счастливчики, кому удастся поймать одну единственную банкноту, смогут сразу же покинуть подвал. Обратите внимание, что даже когда этот человек наверху как следует расщедрится и начнёт бросать доллары бочками, количество выходящих детей увеличится во много раз, но у каждого останется ровно 15 центов после получения сдачи у привратника. Это будет справедливо независимо от числа брошенных долларов.

Рассмотрим теперь, как применить всё это к фотоэффекту. Основываясь на рассмотренных выше экспериментальных данных, Эйнштейн решил распространить планковскую дискретную модель энергии волны на новое определение света. Согласно Эйнштейну, световой луч должен рассматриваться как поток микроскопических частиц света, окрещённых химиком Гильбертом Льюисом фотонами (мы уже использовали этот термин в примере со световыми часами, приведённом в главе 2). Для того чтобы дать представление о масштабах в рамках корпускулярной модели света, скажем, что обычная электрическая лампочка мощностью 100 Вт излучает примерно сто миллиардов миллиардов (1020) фотонов в секунду. Эйнштейн использовал это новое положение для объяснения механизма, лежащего в основе фотоэффекта. Он предположил, что электрон вырывается с поверхности металла, если с ним столкнётся фотон, обладающий достаточным количеством энергии. А чем определяется энергия отдельного фотона? Для объяснения экспериментальных данных Эйнштейн вслед за Планком предположил, что энергия каждого фотона пропорциональна частоте световой волны (при этом коэффициент пропорциональности равен постоянной Планка).

Тогда, как и в случае минимальной суммы, необходимой для уплаты за выход ребёнка, чтобы вырваться с поверхности, электроны в металле должны испытать соударение с фотоном, обладающим определённым минимальным количеством энергии. (Как и в случае с детьми, сражающимися за деньги, вероятность того, что отдельно взятый электрон испытает соударение более чем с одним фотоном исчезающе мала — большинство электронов не испытает вообще ни одного соударения.) Однако если частота падающего света слишком мала, энергия составляющих его фотонов будет недостаточной, чтобы вырывать электроны. Точно так же, как никто из детей не сможет покинуть подвал, несмотря на огромное количество мелких монет, которые им бросят взрослые, ни один электрон не сможет выйти из металла, несмотря на огромное общее количество энергии, содержащейся в падающем свете, если его частота (и, следовательно, энергия отдельных фотонов) будет слишком низкой.

Но так же, как дети смогут начать покидать подвал, как только номинал бросаемых им денег станет достаточно большим, электроны начнут вырываться с поверхности металла, как только частота падающего на них света — его энергетический номинал — станет достаточно высокой. Далее, так же, как в случае, когда владелец однодолларовых купюр увеличил общую сумму сбрасываемых денег, увеличив число бросаемых банкнот, интенсивность луча света, имеющего заданную частоту, возрастёт при увеличении числа фотонов, которые он содержит. И точно так же, как большее число долларов приведёт к тому, что больше детей смогут покинуть подвал, увеличение числа фотонов приведёт к тому, что большее число электронов испытает соударение и покинет металл. Обратите внимание, что энергия каждого из этих электронов после выхода из металла зависит исключительно от частоты светового луча, а не от его суммарной интенсивности. Так же, как дети покидают подвал с 15 центами, независимо от того, сколько купюр было брошено им с балкона, каждый электрон покидает поверхность с одной и той же энергией и, следовательно, с одной и той же скоростью, независимо от общей интенсивности падающего света. Большее количество денег просто означает, что большее число детей смогут покинуть подвал; большая суммарная энергия светового луча означает, что больше электронов будет вырвано из металла. Если мы хотим, чтобы дети покидали подвал с большим количеством денег, мы должны увеличить номинал купюр, которые им бросаем; если мы хотим, чтобы электроны выходили из металла с большей скоростью, следует увеличить частоту падающего светового луча, т. е. увеличить энергетический номинал фотонов, которые падают на поверхность металла.

Сказанное полностью подтверждается экспериментальными данными. Частота света (его цвет) определяет скорость вылетающих электронов, суммарная интенсивность света — количество вылетевших электронов. Таким образом, Эйнштейн показал, что гипотеза Планка о дискретности энергии на самом деле отражает фундаментальное свойство электромагнитных волн: они состоят из частиц — фотонов, которые представляют собой маленькие порции или кванты света. Дискретность энергии, заключённой в таких волнах, связана с тем, что они состоят из дискретных объектов.

Прозрение Эйнштейна представляло собой большой шаг вперёд. Но, как мы увидим ниже, история была не такой гладкой, как может показаться.

Волна или частица?

Каждому известно, что вода (и, следовательно, волны на поверхности воды) состоит из огромного количества молекул. Поэтому так ли удивительно, что световые волны тоже состоят из огромного числа частиц — фотонов? Удивительно. Но главный сюрприз кроется в деталях. Дело в том, что более трёхсот лет назад Ньютон провозгласил, что свет представляет собой поток частиц, так что сама идея не нова. Однако ряд коллег Ньютона, среди которых наиболее выделялся голландский физик Христиан Гюйгенс, оспорили это мнение, утверждая, что свет представляет собой волну. Долгое время этот вопрос был предметом ожесточённых дебатов, пока эксперименты, выполненные в начале XIX в. английским физиком Томасом Юнгом, не показали, что Ньютон ошибался.

Вариант установки в эксперименте Юнга, известном под названием опыта с двумя щелями, схематически показан на рис. 4.3.

Рис. 4.3. В эксперименте с двумя щелями луч света падает на преграду, в которой проделаны две щели. Когда открыта одна или обе щели, луч света, проходящий через преграду, регистрируется с помощью фотопластинки

Фейнман любил говорить, что вся квантовая механика может быть выведена путём тщательного осмысливания следствий одного этого эксперимента, поэтому он заслуживает того, чтобы рассмотреть его поподробнее. Как видно из рис. 4.3, свет падает на сплошную преграду, в которой сделаны две щели. Свет, который прошёл через щели, регистрируется на фотопластинке — более светлые области на фотографии указывают на те места, куда попало больше света. Эксперимент состоит в сравнении картин, полученных на фотопластинках, когда открыты одна или обе щели и включён источник света.

Если левая щель закрыта, а правая открыта, фотография будет выглядеть, как показано на рис. 4.4.

Рис. 4.4. В этом опыте открыта правая щель, в результате изображение на фотопластинке будет выглядеть, как показано на рисунке

Картина вполне объяснима, поскольку свет, который попадает на фотопластинку, проходит только через одну щель и поэтому концентрируется в правой части фотографии. Аналогично, если мы закроем правую щель, а левую оставим открытой, фотография будет выглядеть, как показано на рис. 4.5.

Рис. 4.5. Те же условия, как и в опыте, показанном на рис. 4.4, за исключением того, что открыта левая щель

Если открыты обе щели, то картина, предсказываемая ньютоновской корпускулярной моделью света, должна выглядеть, как показано на рис. 4.6, представляющем собой комбинацию рис. 4.4 и 4.5. По существу, если представить ньютоновские световые корпускулы в виде маленьких дробинок, которыми вы обстреливаете преграду, то те из дробинок, которые пройдут сквозь неё, будут концентрироваться в двух полосах, положение которых соответствует положению щелей. Волновая же модель света, напротив, ведёт к совершенно иному предсказанию, если открыты обе щели. Посмотрим, что происходит в этом случае.

Рис. 4.6. Ньютоновская корпускулярная модель предсказывает, что когда будут открыты обе щели, картина на фотопластинке будет представлять собой объединение картин, показанных на рис. 4.4 и 4.5

Представим, что вместо световых волн мы рассматриваем волны на поверхности воды. Это не повлияет на результат, но такие волны более наглядны. Когда волна сталкивается с преградой, то, как показано на рис. 4.7, от каждой щели распространяется новая волна, похожая на ту, которая возникает, если бросить камешек в пруд. (Это легко проверить, используя картонный лист с двумя прорезями, помещённый в чашку с водой.)

Рис. 4.7. Круговые волны на воде, идущие от каждой щели, накладываются одна на другую; это приводит к тому, что в одних местах результирующая волна будет усиливаться, а в других ослабляться

Когда волны, идущие от каждой щели, накладываются друг на друга, происходит интересное явление. При наложении двух волновых максимумов высота волны в соответствующей точке увеличивается — она равна сумме высот максимумов двух наложившихся волн. Аналогично, при наложении двух минимумов глубина впадины, образовавшейся в этой точке, также увеличивается. Наконец, если максимум одной волны совпадает с минимумом другой, они взаимно гасят друг друга. (На этом основана конструкция фантастических шумопоглощающих наушников — они определяют форму пришедшей звуковой волны и генерируют другую, форма которой в точности «противоположна» первой, что приводит к подавлению нежелательного шума.) Между этими крайними случаями — максимум с максимумом, минимум с минимумом и максимум с минимумом — расположен весь спектр частичного усиления и частичного ослабления. Если вы с компанией друзей сядете в небольшие лодки, выстроите их в линию параллельно преграде и каждый из вас будет сообщать, насколько сильно его качает при прохождении волны, результат будет похож на тот, который изображён на рис. 4.7. Точки с сильной качкой будут расположены там, где накладываются максимумы (или минимумы) волн, приходящих от разных щелей. Участки с минимальной качкой или полным её отсутствием окажутся там, где максимумы волны, идущей от одной щели, будут совпадать с минимумами волны, идущей от другой щели.

Поскольку фотографическая пластинка регистрирует, насколько сильно она «раскачивается» под влиянием падающего света, из приведённых выше рассуждений, применённых к волновой картине, создаваемой лучом света, следует, что когда открыты обе щели, фотография будет иметь вид, показанный на рис. 4.8.

Рис. 4.8. Если свет представляет собой волну, то в тех случаях, когда открыты обе щели, будет происходить интерференция между волнами, прошедшими через разные щели

Самые яркие участки на рис. 4.8 представляют области, в которых максимумы (или минимумы) световых волн, пришедших от разных щелей, совпадают. Тёмными являются участки, в которых максимум одной волны складывается с минимумом другой, приводя к взаимному погашению. Такая последовательность светлых и тёмных полос известна под названием интерференционной картины. Эта фотография существенно отличается от рис. 4.6, и, следовательно, требуется эксперимент, который позволил бы установить, какая из теорий права — корпускулярная или волновая. Подобный эксперимент был выполнен Юнгом, и его результат совпал с картиной, показанной на рис. 4.8, тем самым подтвердив волновую природу света. Ньютоновская теория корпускулярной природы света была отвергнута (хотя потребовалось некоторое время, прежде чем все физики согласились с этим). Доминирующая волновая теория света впоследствии получила надёжное математическое обоснование в теории Максвелла.

Но Эйнштейн, низвергнувший заслуженную теорию гравитации Ньютона, похоже, возродил ньютоновскую корпускулярную модель света, введя понятие фотонов. Конечно, перед нами по-прежнему стоит вопрос: как объяснить интерференционную картину, показанную на рис. 4.8, с точки зрения корпускулярной теории? На первый взгляд можно предложить следующее объяснение. Вода состоит из молекул H2O — «частиц» воды. Однако когда огромные количества этих молекул движутся в одном потоке, они могут создавать волны на поверхности воды, с присущими этим волнам интерференционными свойствами, показанными на рис. 4.7. Можно предположить, что в корпускулярной модели света волновые эффекты, например, интерференционные картины, возникают благодаря взаимодействию огромного числа световых корпускул — фотонов.

В действительности, однако, микромир устроен гораздо более тонко. Даже если интенсивность источника света на рис. 4.8 начнёт уменьшаться вплоть до такого значения, когда в сторону преграды один за другим будут излучаться одиночные фотоны со скоростью, скажем, один фотон в десять секунд, результат на фотопластинке будет выглядеть точно так же, как показано на рис. 4.8. Если вы подождёте достаточно долго, чтобы огромное число этих отдельных частиц света прошло через щели и оставило свой след в виде точек на фотопластинках, эти точки образуют показанную на рис. 4.8 интерференционную картину. Это поразительно. Как могут отдельные фотоны, последовательно проходящие через экран и независимо сталкивающиеся с фотопластинкой, «сговориться» и воспроизвести яркие и тёмные полосы интерференционной картины? Здравый смысл говорит нам, что каждый фотон проходит либо через левую, либо через правую щель, и результирующая картина должна быть похожа на ту, которая показана на рис. 4.6. Но это не так.

Если этот факт не поразил вас, это значит, что либо вы уже сталкивались с ним и знаете ему объяснение, либо наше описание является недостаточно наглядным. Если дело в последнем, попробуем взглянуть на это явление ещё раз, но под несколько иным углом зрения. Итак, вы закрываете левую щель и пускаете фотоны на преграду, один за другим. Некоторые из них проходят через преграду, некоторые нет. Те, которые прошли, точка за точкой создают изображение на фотопластинке, которое выглядит, как показано на рис. 4.4.

Вслед за этим вы проводите эксперимент с новой фотопластинкой, но на этот раз открываете обе щели. Как и следовало ожидать, вы считаете, что это только увеличит число фотонов, прошедших через преграду и попавших на фотографическую пластинку, т. е. на пластинку попадёт больше света, чем в первом опыте. Но когда позднее вы изучаете полученную фотографию, вы видите, что наряду с участками, которые были тёмными в первом опыте и стали светлыми во втором, есть участки, которые были светлыми в первом опыте, а во втором стали тёмными, как на рис. 4.8. Увеличив число фотонов, попавших на фотопластинку, вы уменьшили яркость некоторых участков. Каким-то образом отдельные фотоны, разделённые во времени, смогли нейтрализовать друг друга. Подумайте о всей неординарности того, что произошло: фотоны, которые прошли через правую щель и попали на плёнку в одной из тёмных полос на рис. 4.8, не смогли сделать этого при открытой левой щели (поэтому плёнка и осталась тёмной). Но как могло повлиять на крошечную частицу света, прошедшую через одну щель, то обстоятельство, была ли открыта другая щель? Фейнман однажды заметил, что это так же странно, как если бы вы стреляли по экрану из пулемёта, и когда были открыты обе щели, то отдельные, независимо вылетевшие пули каким-то образом нейтрализовали друг друга, оставляя непоражённые участки на экране — участки, которые были поражены, когда открытой была только одна щель.

Эти эксперименты показали, что частицы света Эйнштейна довольно существенно отличаются от частиц Ньютона. Каким-то образом фотоны — хотя они и являются частицами — обладают также и волновыми свойствами света. Тот факт, что энергия этих частиц определяется параметром, используемым для описания волн, т. е. частотой, является первым признаком того, что это странное объединение действительно имеет место. Однако фотоэффект и эксперимент с двумя щелями ещё более озадачивают нас. Фотоэффект показывает, что свет имеет свойства частиц. Эксперимент с двумя щелями демонстрирует, что свет также проявляет интерференционные свойства, характерные для волн. Вместе они показывают, что свет обладает и волновыми, и корпускулярными свойствами. Микромир требует, чтобы при попытке его описания мы отказались от наших интуитивных представлений о том, что любой объект представляет собой либо волну, либо частицу, и чтобы мы учитывали возможность того, что он может быть волной и частицей одновременно. Это один из тех случаев, когда высказывание Фейнмана о том, что «никто не понимает квантовую механику», является особенно актуальным. Мы можем произносить слова типа «корпускулярно-волновой дуализм». Мы можем преобразовать эти слова в математическую модель, которая воспроизведёт экспериментальные данные с поразительной точностью. Но добиться глубокого, интуитивного понимания этой ошеломляющей особенности микромира необычайно трудно.

Частицы материи также являются волнами

В течение первых десятилетий XX в. многие крупнейшие физики-теоретики неустанно трудились над разработкой математически строгой и физически обоснованной теории, объясняющей остававшиеся доселе неведомыми свойства микромира. Так, под руководством Нильса Бора был достигнут значительный прогресс в объяснении свойств света, излучаемого атомами водорода при высокой температуре. Однако эта и другие работы, выполненные до середины 1920-х гг., представляли собой скорее временный союз идей XIX столетия с впервые полученными концепциями квантовой механики, а не гармоничную систему понимания мироздания. По сравнению с ясными и логичными системами ньютоновских законов движения или электромагнитной теории Максвелла, разработанная только частично квантовая механика находилась в хаотическом состоянии.

В 1923 г. молодой французский аристократ, князь Луи де Бройль, добавил новый элемент в квантовую мешанину, который вскоре помог разработать математический аппарат современной квантовой механики и принёс ему Нобелевскую премию 1929 г. по физике. Вдохновлённый цепочкой рассуждений, восходящих к специальной теории относительности Эйнштейна, де Бройль предположил, что корпускулярно-волновой дуализм применим не только к свету, но и к веществу. Его аргументы, если опустить детали, состоят в том, что эйнштейновское уравнение E = mc2 связывает массу с энергией; но с другой стороны, Планк и Эйнштейн связали энергию с частотой волн. Объединяя эти два факта, можно прийти к выводу, что масса должна иметь и волновое воплощение. После долгих размышлений де Бройль предположил, что так же, как свет является волновым явлением, которое, как показывает квантовая теория, имеет равно обоснованное корпускулярное описание, так и электрон, который мы обычно считаем частицей, может иметь равно обоснованное волновое описание. Эйнштейн сразу принял идею де Бройля, поскольку она была естественным развитием его собственного вклада в теорию относительности и теорию фотонов. Однако без экспериментального подтверждения всё равно нельзя было обойтись. Такое подтверждение было вскоре получено в работах Клинтона Дэвиссона и Лестера Джермера.

В середине 1920-х гг. Дэвиссон и Джермер, физики-экспериментаторы из лаборатории телефонной компании «Белл», исследовали рассеяние электронов на атомах никеля. Для нас их исследования интересны тем, что кристаллы никеля в этих экспериментах действовали во многом подобно щелям в опыте, описанном и проиллюстрированном в предыдущем разделе. На самом деле можно считать эксперименты практически идентичными, за исключением того, что вместо луча света использовался пучок электронов. Дэвиссон и Джермер исследовали электроны, пропуская их через две щели, сквозь которые они могли попадать на фосфоресцирующий экран, оставляя на нём светящиеся точки, точно так же, как на экране телевизора, и обнаружили поразительное явление. На экране появлялась картина, очень похожая на ту, которая показана на рис. 4.8. Эксперимент, таким образом, показывал, что электроны создают интерференционную картину, которая является неоспоримым признаком волн. В тёмных точках на фосфоресцирующем экране электроны каким-то образом «нейтрализовали» друг друга, совсем как при наложении гребней и впадин волн, распространяющихся по поверхности волны. Даже если «сжать» пучок электронов до такой степени, что один электрон будет излучаться один раз в десять секунд, отдельные электроны по-прежнему будут образовывать яркие и тёмные полосы — по одному пятну за один раз. Как и фотоны, отдельные электроны каким-то образом «интерферируют» сами с собой в том смысле, что с течением времени отдельные электроны воссоздают интерференционную картину, которая ассоциируется с волнами. Мы с неизбежностью вынуждены заключить, что наряду с более привычным описанием на языке частиц каждый электрон проявляет и волновые свойства.

Описанные выше эксперименты относятся к электронам, однако схожие эксперименты позволяют сделать вывод о том, что всё вещество имеет волновые свойства. Но как это согласуется с нашим повседневным опытом, говорящем о том, что вещество — это нечто сплошное и твёрдое, и уж никак не похожее на волны? Де Бройль предложил формулу для длины волны частиц вещества, которая показывает, что длина волны пропорциональна постоянной Планка . (Если говорить более точно, длина волны определяется как частное от деления на импульс материального тела.) Поскольку величина очень мала, длина волны также является очень малой по обычным масштабам. Именно по этой причине волновые характеристики материи становятся наблюдаемыми только в высокоточных микроскопических исследованиях. Точно так же, как большая величина скорости света c скрывает истинны свойства пространства и времени, малость маскирует волновые свойства материи в окружающем нас мире.

Волны чего?

Явление интерференции, открытое Дэвиссоном и Джермером, реально продемонстрировало, что электроны подобны волнам. Но при этом возникает естественный вопрос: волнам чего? Одно из первых предположений на эту тему, сделанное австрийским физиком Эрвином Шрёдингером, заключалось в том, что эти волны представляют собой «размазанные» электроны. Это предположение отчасти улавливало «сущность» электронной волны, но было слишком неточным. Когда вы размазываете что-нибудь, часть его находится здесь, а другая часть в другом месте. Однако никому и никогда не приходилось иметь дело с половиной или с третью, или с иной частью электрона. Это усложняло понимание того, что представляет собой размазанный электрон. В 1926 г. немецкий физик Макс Борн существенно уточнил предложенную Шрёдингером интерпретацию электронной волны, и именно этой интерпретацией, усиленной Бором и его коллегами, мы пользуемся и сегодня. Утверждение Борна касается одного из самых странных свойств квантовой теории, тем не менее, оно подтверждается огромным количеством экспериментальных данных. Согласно этому утверждению электронная волна должна интерпретироваться с точки зрения вероятности. В тех областях, где амплитуда (или, точнее, квадрат амплитуды) волны больше, обнаружение электрона более вероятно; в местах, где амплитуда мала, вероятность обнаружить электрон меньше. Пример показан на рис. 4.9.

Рис. 4.9. Волна, ассоциированная с электроном, имеет наибольшую амплитуду в тех местах, где обнаружение электрона наиболее вероятно; амплитуда волны убывает по мере уменьшения вероятности обнаружения электрона

Это действительно необычная идея. Какое отношение имеет вероятность к формулировке фундаментальных законов физики? Мы привыкли к тому, что вероятность присуща лошадиным бегам, подбрасыванию монеты или игре в рулетку, но в этих случаях она просто является отражением неполноты нашего знания. Если мы точно знаем скорость колеса рулетки, вес и твёрдость шарика, который бегает по нему, положение и скорость шарика в тот момент, когда он падает на колесо, свойства материала ячеек и т. п., и если мы используем для наших вычислений достаточно мощные компьютеры, мы можем, в соответствии с законами классической физики, совершенно точно предсказать, где остановится шарик. В казино полагаются на неспособность игрока получить всю эту информацию и провести необходимые вычисления перед тем, как сделать ставку. Однако ясно, что вероятность, с которой приходится сталкиваться во время игры в рулетку, не отражает никаких фундаментальных свойств Вселенной. Напротив, квантовая механика вводит понятие вероятности в устройство мироздания на гораздо более глубоком уровне. Согласно утверждению Борна, подкреплённому собранными более чем за полвека экспериментальными данными, наличие у материи волновых свойств подразумевает, что фундаментальное описание материи должно иметь вероятностный характер. Закон де Бройля показывает, что для макроскопических объектов, таких как кофейная чашка или рулеточное колесо, волновые свойства являются практически ненаблюдаемыми, и в обычных ситуациях связанная с ними квантово-механическая вероятность может полностью игнорироваться. Но этот же закон говорит, что на микроскопическом уровне мы, в лучшем случае, можем указать только вероятность того, что электрон будет обнаружен в любом заданном месте.

Допустим, что электронные волны обладают теми же свойствами, что и все другие волны, например, они могут сталкиваться с препятствиями и образовывать вторичные волны. Однако в рамках вероятностного описания из этого не следует, что сам электрон распадается на части. Это означает лишь, что имеются области, в которых электрон может появиться с ненулевой вероятностью. На практике это означает, что если мы будем снова и снова повторять совершенно одинаковым образом какой-либо эксперимент с электроном, касающийся, например, измерения его положения, мы не будем всегда получать одинаковый результат. Повторяющиеся эксперименты дадут набор различных результатов, в которых частота появления электрона в заданном месте будет функцией плотности вероятности электронной волны. Если функция плотности вероятности для волны (или, точнее, квадрат плотности вероятности) для точки A в два раза больше, чем для точки B, то при многократном повторении опыта мы увидим, что электрон будет обнаруживаться в точке A в два раза чаще, чем в точке B. Точный результат эксперимента не может быть предсказан; лучшее, что можно сделать — предсказать вероятность данного возможного исхода.

Однако если математическое выражение для функции плотности вероятности известно точно, то даже при такой неопределённости исходов вероятностный прогноз может быть проверен путём многократного повторения эксперимента, что позволяет экспериментально определить вероятность того или иного конкретного результата. Всего через несколько месяцев после появления гипотезы де Бройля Шрёдингер сделал важный шаг в этом направлении, предложив уравнение, которое определяет форму и эволюцию таких вероятностных волн, или, как они теперь называются, волновых функций. Вскоре уравнение Шрёдингера и вероятностная интерпретация были использованы для получения фантастически точных предсказаний. Таким образом, к 1927 г. классическая наивность была утрачена. Ушли те дни, когда Вселенная представлялась работавшим как часы механизмом, объекты которого, приведённые в движение в какой-то момент в прошлом, покорно следовали к неизбежному, единственным образом определяемому пункту назначения. Согласно квантовой механике Вселенная развивается в соответствии со строгими и точными математическими законами, но эти законы определяют только вероятность того, что может наступить то или иное конкретное будущее, и ничего не говорят о том, какое будущее наступит в действительности.

Многие сочтут этот вывод обескураживающим или даже совершенно неприемлемым. Одним из таких людей был Эйнштейн. В одном из наиболее известных в истории физики высказываний он предостерегал сторонников квантовой механики: «Бог не играет в кости со Вселенной». Он считал, что вероятность появляется в фундаментальной физике по той же причине, по которой она появляется в игре в рулетку: вследствие существенной неполноты нашего знания. С точки зрения Эйнштейна, во Вселенной нет места для будущего, точное содержание которого включает элементы вероятности. Физики должны предсказывать, как будет развиваться Вселенная, а не определять вероятность того, что события могут пойти каким-то путём. Но эксперимент за экспериментом (некоторые из наиболее впечатляющих были выполнены уже после его смерти) убедительно подтверждали, что Эйнштейн был не прав. Как заметил однажды по этому поводу британский физик-теоретик Стивен Хокинг: «Заблуждался Эйнштейн, а не квантовая теория».{19}

Тем не менее, споры о том, что же в действительности представляет собой квантовая механика, не утихают. Все согласны в том, как использовать уравнения квантовой механики для получения точных предсказаний. Нет согласия в вопросах о том, что в действительности представляют собой волновые функции, каким образом частица «выбирает», какому из многих вариантов будущего ей следовать. Нет согласия даже в вопросе о том, действительно ли она выбирает или вместо этого разделяется, подобно разветвляющемуся руслу реки, и живёт во всех возможных будущих, в вечно расширяющемся мире параллельных вселенных. Эти интерпретации сами по себе заслуживают отдельной книги, и, в действительности, есть немало превосходных книг, пропагандирующих тот или иной взгляд на квантовую теорию. Но совершенно определённым кажется тот факт, что независимо от интерпретации квантовой механики, она неопровержимо доказывает, что Вселенная основана на принципах, которые являются неестественными с точки зрения повседневного опыта./p>

Общий урок, который дают теория относительности и квантовая механика, состоит в том, что в ходе глубоких исследований основ мироздания можно столкнуться с фактами, которые очень сильно отличаются от наших ожиданий. Отвага при постановке новых вопросов может потребовать непредвиденной гибкости, когда нам придётся принимать неожиданные точки зрения.

Точка зрения Фейнмана

Ричард Фейнман был одним из величайших физиков-теоретиков со времён Эйнштейна. Он полностью принял вероятностную интерпретацию квантовой механики, но после Второй мировой войны предложил новый взгляд на эту теорию. С позиций численных предсказаний точка зрения Фейнмана полностью согласуется с тем, что было известно ранее. Но её формулировка существенно отличается от общепринятой. Рассмотрим её в контексте экспериментов с электронами и двумя щелями.

Проблема с интерпретацией рис. 4.8 возникает потому, что в нашем представлении электрон проходит либо через левую щель, либо через правую, и поэтому мы рассчитываем увидеть комбинацию картин рис. 4.4 и 4.5, показанную на рис. 4.6. Электрону, проходящему через правую щель, должно быть всё равно, существует ли левая щель, и наоборот. Но каким-то образом он её чувствует. Получаемая интерференционная картина требует взаимодействия и сообщения между чем-то, чувствительным к обеим щелям, даже если электроны выстреливаются поодиночке. Шрёдингер, де Бройль и Борн объясняли этот феномен, приписывая каждому электрону волновую функцию. Подобно волнам на поверхности воды, показанным на рис. 4.7, волны функции плотности вероятности электрона «видят» обе щели и испытывают своего рода интерференцию при наложении. На тех участках, где вероятностная волна усиливается при наложении, подобно участкам значительного усиления колебаний на рис. 4.7, обнаружение электрона вероятно, а там, где вероятностная волна ослабляется при наложении, подобно местам с минимальной амплитудой или отсутствием колебаний на рис. 4.7, обнаружение электрона маловероятно или невероятно. Электроны сталкиваются с фосфоресцирующим экраном один за другим, распределённые в соответствии с функцией плотности вероятности и, в конечном итоге, образуют интерференционную картину, схожую с той, которая показана на рис. 4.8.

Фейнман выбрал другой подход. Он усомнился в основном классическом предположении, согласно которому каждый электрон проходит либо через левую щель, либо через правую. На первый взгляд это предположение настолько фундаментально, что сомневаться в нём нелепо. В конце концов, разве вы не можете заглянуть в область, расположенную между щелями и фосфоресцирующим экраном, и посмотреть, сквозь какую щель проходит каждый электрон? Да, вы можете. Но тем самым вы измените эксперимент. Чтобы увидеть электрон, вы должны сделать с ним что-нибудь — например, осветить его, т. е. столкнуть с ним фотон. В повседневных масштабах фотон действует как исчезающе малый зонд, который отскакивает от деревьев, картин и людей, не оказывая практически никакого влияния на движение этих сравнительно больших материальных тел. Но электрон — это ничтожно малая частица материи. Независимо от того, насколько осторожно вы будете определять щель, через которую он прошёл, отражающиеся от электрона фотоны неизбежно повлияют на его последующее движение. А это изменение движения изменит результат нашего эксперимента. Если ваше вмешательство будет достаточно сильным для того, чтобы вы смогли определить щель, через которую прошёл электрон, результат эксперимента изменится, и вместо картины, показанной на рис. 4.8, вы получите картину, подобную той, которая изображена на рис. 4.6! Квантовый мир гарантирует, что как только вы установили, через какую щель, правую или левую, прошёл каждый электрон, интерференция между этими двумя щелями исчезнет.

Таким образом, Фейнман укрепился в своих сомнениях: хотя повседневный опыт говорит о том, что электрон должен проходить через одну из двух щелей, к концу 1920-х гг. физики поняли, что любая попытка проверить это якобы фундаментальное свойство неизбежно приведёт к искажению результатов эксперимента.

Фейнман провозгласил, что каждый электрон, который проходит через преграду и попадает на фосфоресцирующий экран, проходит через обе щели. Это звучит дико, но не торопитесь возмущаться, вас ждут ещё более сумасшедшие заявления. Фейнман высказал утверждение, что на отрезке от источника до некоторой точки на фосфоресцирующем экране каждый отдельно взятый электрон на самом деле перемещается по всем возможным траекториям одновременно; некоторые из этих траекторий показаны на рис. 4.10.

Рис. 4.10. Согласно формулировке квантовой механики, предложенной Фейнманом, частица, перемещающаяся из одной точки в другую, движется одновременно по всем возможным путям. Здесь показано несколько из бесконечного числа возможных траекторий для одного электрона, движущегося от источника к фосфоресцирующему экрану. Обратите внимание, что этот один электрон на самом деле проходит через обе щели

Электрон вполне упорядоченным образом проходит через левую щель. Одновременно он столь же упорядоченно проходит через правую щель. Он направляется к левой щели, но вдруг меняет направление и устремляется к правой. Он петляет вперёд и назад и, наконец, проходит через левую щель. Он отправляется в долгое путешествие к туманности Андромеды, там он разворачивается, возвращается назад и проходит через левую щель на пути к экрану. Он движется и так и этак — согласно Фейнману, электрон одновременно «рыщет» по всем возможным путям, соединяющим пункт отправления и пункт назначения.

Фейнман показал, что каждому из этих путей можно поставить в соответствие некоторое число, и общее среднее этих чисел даст ту же вероятность, что и расчёт с использованием волновой функции. Итак, с точки зрения Фейнмана, с электроном не нужно связывать никакой вероятностной волны. Вместо этого мы должны представить себе нечто столь же, если не более, странное. Вероятность того, что электрон, — который во всех отношениях проявляет себя частицей, — появится в некоторой заданной точке экрана, определяется суммарным эффектом от всех возможных путей, ведущих в эту точку. Этот подход к квантовой механике известен как фейнмановское «суммирование по путям».[16]

Здесь начинает протестовать наше классическое образование: как может один электрон одновременно перемещаться по различным путям, да ещё и по бесконечному числу путей? Это возражение кажется неоспоримым, но квантовая механика — реальная физика нашего мира — требует, чтобы вы держали столь тривиальные возражения при себе. Результаты расчётов с использованием фейнмановского подхода согласуются с результатами, полученными с применением метода волновых функций, которые, в свою очередь, согласуются с экспериментальными данными. Вы должны позволить природе самой определять, что является разумным, а что — неразумным. Как написал в одной из своих работ Фейнман: «[Квантовая механика] даёт совершенно абсурдное с точки зрения здравого смысла описание Природы. И оно полностью соответствует эксперименту. Так что я надеюсь, что вы сможете принять Природу такой, как Она есть — абсурдной».{20}

Однако независимо от того, насколько абсурдной является природа на уровне микромира, при переходе к нашим обычным масштабам любая теория должна приводить к привычным прозаичным событиям. Как показал Фейнман, для движения больших тел, таких как бейсбольные мячи, аэропланы или планеты, каждое из которых является огромным по сравнению с субатомными частицами, его правило определения весов различных траекторий гарантирует, что все траектории, кроме одной, взаимно сократятся при суммировании их вкладов. В действительности, когда дело касается движения классического тела, значение имеет только одна траектория из бесконечного их количества. И это именно та траектория, которая следует из ньютоновских законов движения. Вот почему в нашем повседневном мире нам кажется, что тела (такие, как брошенный в воздух мяч) следуют вдоль единственной, уникальной и предсказуемой траектории из начальной точки в пункт назначения. Но для объектов микромира фейнмановское правило назначения весов траекториям показывает, что свой вклад в движение объекта могут вносить (и часто вносят) многочисленные возможные траектории. Например, в эксперименте с двумя щелями некоторые из траекторий проходят через разные щели, приводя к образованию интерференционной картины. В микромире мы не можем гарантировать, что электрон пройдёт только через одну щель или только через другую. Интерференционная картина и фейнмановская альтернативная формулировка квантовой механики недвусмысленно поддерживают друг друга.

Как разные мнения о книге или фильме могут оказаться полезными для понимания различных моментов этого произведения, так и различные подходы к квантовой механике помогают углубить понимание этой теории. Хотя предсказания метода волновых функций и фейнмановского суммирования по траекториям полностью согласуются друг с другом, в их основе лежат совершенно различные представления. Как мы увидим позднее, для разных приложений тот или иной подход может стать неоценимым средством объяснения.

Квантовые чудеса

К настоящему моменту у вас должно было появиться некоторое представление о волнующем новом образе мироздания согласно квантовой механике. Если вы ещё не впечатлились от поразительных высказываний Бора, квантовые чудеса, о которых пойдёт речь ниже, заставят вас, по крайней мере, испытать головокружение.

Квантовую механику трудно понять на интуитивном уровне, ещё труднее, чем теорию относительности — для этого нужно начать мыслить подобно миниатюрному человечку, родившемуся и выросшему в микромире. Существует, однако, одно положение этой теории, которое может служить путеводителем для интуиции, своего рода пробным камнем, который отличает квантовую логику от классической. Это соотношение неопределённостей, открытое немецким физиком Вернером Гейзенбергом в 1927 г.

Это соотношение выросло из проблемы, с которой мы уже сталкивались выше. Мы установили, что процедура определения щели, через которую проходит каждый из электронов (т. е. определение положения электронов), неизбежно вносит возмущения в их последующее движение. Однако вспомним, что убедиться в присутствии другого человека можно разными способами — можно дать ему увесистый шлепок по спине, а можно нежно коснуться его. Тогда что мешает нам определить положение электрона с помощью «более нежного» источника света, который бы оказывал меньшее влияние на его дальнейшее движение? С точки зрения физики XIX в. это вполне возможно. Используя всё более слабую лампу (и всё более чувствительный датчик светового излучения), мы можем оказывать исчезающе малое влияние на движение электрона. Но квантовая механика демонстрирует изъян в наших рассуждениях. Известно, что уменьшая интенсивность источника света, мы уменьшаем количество испускаемых фотонов. Когда мы дойдём до излучения отдельных фотонов, мы уже не сможем далее уменьшать интенсивность света без того, чтобы не выключить его совсем. Это фундаментальный квантово-механический предел «нежности» нашего исследования. Таким образом, всегда существует минимальное возмущение, которое мы вносим в движение электрона путём измерения его положения.

Что ж, всё это верно. Однако закон Планка говорит, что энергия единичного фотона пропорциональна его частоте (и обратно пропорциональна длине волны). Следовательно, используя свет всё меньшей и меньшей частоты (и, соответственно, всё большей длины волны), мы можем делать отдельные фотоны всё более «нежными». Однако и здесь есть загвоздка. Когда волна направляется на объект, получаемая информация будет достаточной для того, чтобы определить положение объекта с некоторой неустранимой погрешностью, равной длине волны. Для того чтобы получить интуитивное представление об этом важном факте, представим, что мы пытаемся определить положение большой скалы, находящейся немного ниже уровня моря, по влиянию, которое она оказывает на проходящие морские волны. Приближаясь к скале, волны образуют замечательно упорядоченную последовательность следующих одни за другими гребней и впадин. После прохождения над скалой форма волн искажается — верный признак наличия подводной скалы. Но подобно самым мелким делениям на линейке, отдельный цикл волны, образованный гребнем и впадиной, является мельчайшей единицей в последовательности волн, поэтому, если мы наблюдаем только возмущение в движении волн, мы можем определить положение скалы лишь с точностью, равной одному волновому циклу, или длине волны. В случае света составляющие его фотоны представляют собой, грубо говоря, отдельные волновые циклы (при этом высота циклов определяется числом фотонов); следовательно, при определении положения объекта фотон даёт точность, равную длине волны.

Таким образом, мы сталкиваемся со своего рода квантово-механической компенсацией. Если мы используем высокочастотный свет (малой длины волны), мы можем с высокой точностью определить положение электрона. Но высокочастотные фотоны несут очень большое количество энергии и поэтому вносят большие возмущения в скорость движения электронов. Если мы используем низкочастотный свет (большой длины волны), мы минимизируем его влияние на движение электрона, поскольку фотоны, составляющие этот свет, имеют относительно низкую энергию, но в этом случае мы вынуждены пожертвовать точностью определения положения электрона. Гейзенберг выразил всё это в виде математического соотношения между точностью измерения положения электрона и точностью определения его скорости. Он установил, что эти величины обратно пропорциональны друг другу: большая точность в определении положения неизбежно ведёт к большей погрешности в определении скорости, и наоборот. Что ещё более важно, хотя мы и ограничили наше обсуждение одним конкретным способом определения местоположения электрона, согласно Гейзенбергу компромисс между точностью определения положения и скорости является фундаментальным фактом, который остаётся справедливым независимо от используемого оборудования и метода измерения. В отличие от теорий Ньютона и даже Эйнштейна, в которых движущаяся частица описывается её положением и скоростью, согласно квантовой механике на микроскопическом уровне вы не можете знать оба этих параметра с одинаковой точностью. Более того, чем точнее вы знаете один параметр, тем больше погрешность другого. Хотя мы ограничили наше описание электронами, то же самое относится ко всем составным элементам мироздания.

Эйнштейн пытался минимизировать этот отход от позиций классической физики, утверждая, что хотя квантовая механика определённо ставит предел нашему знанию положения и скорости, электрон, тем не менее, имеет определённое положение и скорость в том смысле, который мы привыкли вкладывать в эти слова. Однако в течение последних двух десятилетий прогресс в теоретической физике, достигнутый группой исследователей, возглавляемых ирландским физиком Джоном Беллом, и экспериментальные данные Алана Аспекта и его коллег убедительно продемонстрировали, что Эйнштейн был не прав. Про электроны, как и про любые другие частицы, нельзя одновременно сказать, что они находятся в таком-то месте и имеют такую-то скорость. Квантовая механика показывает, что это утверждение не только не может быть проверено экспериментально (по причинам, объяснённым выше), но оно, кроме того, прямо противоречит другим, совсем недавно полученным экспериментальным данным.

В действительности происходит так: если вы поместите электрон в большую коробку и затем начнёте медленно сдвигать её стенки, чтобы определить его положение с увеличивающейся точностью, вы обнаружите, что движение электрона будет становиться всё более и более неистовым. Электрон, будто охваченный своего рода клаустрофобией, будет возбуждаться всё сильнее — отскакивая от стенок коробки со всё возрастающей и непредсказуемой скоростью. Природа не позволяет загнать в угол свои компоненты. Как вы помните, в H-баре, где мы сделали значение гораздо большим, чем оно есть в реальном мире, чтобы квантовые эффекты могли непосредственно влиять на объекты реального мира, кубики льда в напитках Джорджа и Грейс находились в неистовом движении, как будто тоже страдали от квантовой клаустрофобии. Хотя H-бар является фантазией — в действительности значение исчезающе мало — точно такая же квантовая клаустрофобия является неотъемлемым свойством микромира. Движение микрочастиц становится всё более хаотическим, по мере того как их положение ограничивается при исследовании всё меньшими областями в пространстве.

Соотношение неопределённостей лежит в основе ещё одного потрясающего явления, известного под названием квантового туннелирования. Если вы выстрелите пластиковой пулей в бетонную стенку толщиной в десять футов, то результат будет полностью соответствовать и вашим интуитивным представлениям, и классической физике: пуля отскочит назад. Причина состоит в том, что у пули просто недостаточно энергии, чтобы пробить такое прочное препятствие. Однако если перейти на уровень фундаментальных частиц, то, как совершенно определённо показывает квантовая механика, в волновую функцию (или, иначе, вероятностную волну) каждой составляющей пулю частицы заложена небольшая вероятность того, что эта частица может пройти сквозь стену. Это означает, что существует маленькая, но ненулевая, вероятность того, что пуля на самом деле сможет пройти сквозь стену и оказаться на другой стороне. Как такое может случиться? Причина снова содержится в соотношении неопределённостей Гейзенберга.

Чтобы понять это, представьте, что вы живёте в полной нищете и вдруг узнаёте, что ваш дальний родственник отошёл в лучший мир, оставив вам огромное состояние. Единственная проблема состоит в том, что у вас нет денег для покупки билета на самолёт. Вы объясняете ситуацию своим друзьям: если они помогут вам преодолеть барьер между вами и наследством, ссудив деньги на билет, вы вернёте им долг с процентами после возвращения. Но ни у кого нет денег, чтобы дать вам в долг. Тут вы вспоминаете про вашего старого друга, который работает в авиакомпании, и обращаетесь к нему с той же просьбой. Он тоже не может дать вам денег взаймы, но предлагает другое решение. Система учёта в авиакомпании такова, что если вы вышлете деньги в уплату за билет телеграфным переводом в течение 24 часов с момента прибытия в пункт назначения, никто не узнает, что вы не уплатили их до вылета.

Система учёта в квантовой механике довольно схожа с этой. Показав, что существует компромисс между точностью измерения местоположения и скорости, Гейзенберг, кроме того, продемонстрировал существование компромисса между точностью измерения энергии и тем, сколько времени занимают эти измерения. Согласно квантовой механике вы не можете утверждать, что частица имеет в точности такую-то энергию в точно такой-то момент времени. За возрастающую точность измерения энергии приходится платить возрастающей продолжительностью проведения измерений. Грубо говоря, это означает, что энергия частицы может флуктуировать в очень широких пределах, если измерения проводятся в течение достаточно короткого периода времени. Поэтому точно так же как система учёта в авиакомпании «позволяет» вам занять «деньги» на билет при условии, что вы вернёте их достаточно быстро, квантовая механика «позволяет» частице «занять» энергию при условии, что она может вернуть её в течение промежутка времени, определяемого соотношением неопределённостей Гейзенберга.

Математический аппарат квантовой механики показывает, что чем выше энергетический барьер, тем меньше вероятность того, что такой созидательный микроскопический переучёт произойдёт. Однако если говорить о микроскопических частицах, находящихся перед бетонной плитой, они имеют возможность занять достаточное количество энергии и иногда делают то, что с точки зрения классической физики является невозможным: они мгновенно проходят через область, для проникновения в которую у них раньше не хватало энергии. При переходе к более сложным объектам, состоящим из большего числа частиц, возможность квантового туннелирования сохраняется, но становится очень маловероятной, поскольку требует, чтобы все частицы совершили переход одновременно. Однако шокирующие эпизоды, подобные исчезновению сигары Джорджа, перемещению кубика льда сквозь стенку бокала и проход Джорджа и Грейс сквозь стенку бара, могут происходить. В фантастическом месте, подобном H-бару, в котором значения велики, квантовое туннелирование является обычным делом. Однако квантовой механикой правят законы вероятности. В частности, малость значения в реальном мире означает, что если вы будете каждую секунду атаковать бетонную стену, вам придётся потратить время, превышающее возраст Вселенной, прежде чем у вас появится сколько-нибудь заметный шанс пройти сквозь стену в одной из попыток. Однако, имея бесконечное терпение (и такую же продолжительность жизни), рано или поздно вы можете оказаться с другой стороны.

Соотношение неопределённостей является сердцевиной квантовой механики. Свойства, которые кажутся нам обычно столь фундаментальными, что не вызывают никаких сомнений, — что объекты имеют определённое положение и скорость, и что в определённые моменты времени они имеют определённую энергию, — теперь представляются всего лишь следствием того, что постоянная Планка так мала в масштабах нашего повседневного мира. Первостепенное значение имеет то, что применение этих квантовых принципов к структуре пространства-времени демонстрирует фатальное несовершенство «основ гравитации» и приводит нас к третьему и наиболее серьёзному противоречию, с которым столкнулись физики в течение последнего столетия.

Глава 5. Необходимость новой теории: общая теория относительности versus квантовая механика

За последнее столетие наше понимание физического мира чрезвычайно углубилось. Теоретический аппарат квантовой механики и общей теории относительности позволил понять и предсказать доступные экспериментальной проверке физические явления, происходящие как на масштабах атомного и субатомного мира, так и на масштабах галактик, скоплений галактик и самой Вселенной в целом. Это фундаментальное достижение. Поистине вдохновляет то, что существа, обитающие на одной из планет, обращающейся вокруг заурядной звезды на окраине ничем не примечательной галактики, сумели путём размышлений и эксперимента выяснить и постичь ряд самых загадочных свойств физического мира. Тем не менее физики так устроены, что они никогда не будут удовлетворены до тех пор, пока не почувствуют, что достигли глубочайшего и наиболее фундаментального понимания Вселенной. Это то, что Стивен Хокинг назвал первым шагом к познанию «замысла Бога».{21}

Существует много свидетельств того, что квантовая механика и общая теория относительности не позволяют достичь этого глубочайшего уровня понимания. Поскольку их обычные области применения столь сильно различаются, в большинстве случаев требуется использование либо квантовой механики, либо общей теории относительности, но не обеих теорий одновременно. Но в некоторых экстремальных условиях, когда тела очень массивны и одновременно чрезвычайно малы по размерам (например, вещество вблизи центра чёрных дыр или Вселенная в целом в момент Большого взрыва), для полного понимания требуется как общая теория относительности, так и квантовая механика. Однако, подобно встрече огня и пороха, попытка объединения квантовой механики и общей теории относительности приводит к разрушительной катастрофе. При объединении уравнений этих теорий правильно поставленные физические задачи дают бессмысленные ответы. Бессмыслица часто принимает форму прогноза, что квантово-механическая вероятность некоторых процессов равна не 20, 73 или 91 %, а бесконечности. Но что же может означать вероятность, превышающая единицу, не говоря уже о бесконечности? Мы вынуждены заключит, что здесь есть какой-то серьёзный порок. Внимательно анализируя основные понятия общей теории относительности и квантовой механики, можно выяснить, что же это за порок.

Суть квантовой механики

Когда Гейзенберг открыл соотношение неопределённостей, в физике произошёл резкий поворот, и назад пути нет. Вероятности, волновые функции, интерференция и кванты — всё это требует радикально новых способов видения мира. Однако не исключено, что какой-нибудь твердолобый физик-«классик» продолжает держаться за тонкую нить надежды, что когда всё уляжется, эти отклонения от «классики» удастся встроить в систему понятий, не слишком сильно отличающуюся от прежних представлений. Однако соотношение неопределённостей ясно и недвусмысленно отрицает любую возможность возврата к прошлому.

Соотношение неопределённостей утверждает, что при переходе к меньшим расстояниям и меньшим промежуткам времени жизнь Вселенной становится всё более неистовой. Мы столкнулись с некоторыми свидетельствами этого при описании в предыдущей главе попыток точного определения положения элементарных частиц, таких как электроны. Освещая электроны светом всё возрастающей частоты, мы измеряем их положение со всё большей точностью, но за это приходится платить тем, что сами измерения вносят всё большие возмущения. Высокочастотные фотоны обладают большой энергией и, следовательно, дают электронам резкий «толчок», значительно изменяющий их скорости. Подобно беспорядку в комнате, полной детей, мгновенное положение которых вам известно с большой точностью, но скорость которых, точнее, величину скорости и направление перемещения, вы почти не можете контролировать, эта неспособность определить одновременно положение и скорость элементарных частиц свидетельствует об изначальной хаотичности микромира.

Хотя этот пример выражает фундаментальную связь между неопределённостью и хаосом, на самом деле он раскрывает только часть общей картины. Например, можно было бы думать, что неопределённость возникает только тогда, когда мы — бестактные наблюдатели — вмешиваемся в происходящее на сцене мироздания. Это не верно. Пример попытки удержать электрон в небольшой коробке и его бурная реакция на это — увеличение скорости и хаотичности движения — подводит нас немного ближе к истине. Даже без «прямых столкновений» с вносящими возмущение «экспериментаторскими» фотонами скорость электрона резко и непредсказуемо изменяется от одного момента времени к другому. Но и этот пример не раскрывает все ошеломляющие свойства микромира, следующие из открытия Гейзенберга. Даже в самой спокойной ситуации, которую только можно себе представить, например, в пустой области пространства, согласно соотношению неопределённостей в микромире имеет место невероятная активность. И эта активность возрастает по мере уменьшения масштабов расстояния и времени.

В понимании этого ключевую роль играет принцип квантово-механического баланса. Мы видели в предыдущей главе, что точно так же, как вы можете занять денег, чтобы решить важные финансовые проблемы, частица (например, электрон) может временно занять энергию, чтобы преодолеть реальный физический барьер. Это так. Но квантовая механика заставляет нас углубить эту аналогию. Представьте себе маниакального заёмщика, который ходит от одного приятеля к другому, прося денег взаймы. Чем короче период времени, на который приятель может дать ему деньги, тем большую сумму он просит. Занимает и отдаёт, занимает и отдаёт — снова и снова он берёт деньги в долг только для того, чтобы вскоре вернуть их. Как цены на акции в те дни, когда биржа ведёт себя подобно американским горкам, количество денег, которые есть у маниакального заёмщика в любой заданный момент времени, испытывает чрезвычайно сильные колебания, но по завершении всех этих операций его финансовый баланс находится в том же состоянии, в котором он был в начале.

Из соотношения неопределённостей Гейзенберга следует, что подобный хаотический перенос энергии и импульса непрерывно происходит во Вселенной на микроскопических расстояниях и в микроскопическом временном масштабе. Согласно соотношению неопределённостей, даже в пустых областях пространства (например, в пустой коробке) энергия и импульс являются неопределёнными: они флуктуируют между крайними значениями, которые возрастают по мере уменьшения размеров коробки и временного масштаба, на котором проводятся измерения. Это выглядит так, как если бы область пространства внутри коробки являлась маниакальным «заёмщиком» энергии и импульса, непрерывно беря «в долг» у Вселенной и неизменно «возвращая долг». Но что участвует в этих обменах, например, в пустой области пространства? Всё. В буквальном смысле слова. Энергия (как и импульс) являются универсальной конвертируемой валютой. Формула E = mc2 говорит нам, что энергия может превращаться в материю и наоборот. Например, если флуктуации энергии достаточно велики, они могут привести к мгновенному возникновению электрона и соответствующей ему античастицы — позитрона, даже в области, которая первоначально была пустой! Поскольку энергия должна быть быстро возвращена, данные частицы должны спустя мгновение аннигилировать, высвободив энергию, заимствованную при их создании. То же самое справедливо для всех других форм, которые могут принимать энергия и импульс — при рождении и аннигиляции других частиц, сильных колебаниях интенсивности электромагнитного поля, флуктуациях полей сильного и слабого взаимодействий. Квантово-механическая неопределённость говорит нам, что в микроскопическом масштабе Вселенная является ареной, изобилующей бурными и хаотическими событиями. Как заметил однажды Фейнман, «возникать и аннигилировать, возникать и аннигилировать — какая пустая трата времени».{22} Поскольку заём и возврат в среднем компенсируют друг друга, пустая область в пространстве продолжает выглядеть тихой и спокойной, если исследовать её в любом масштабе, кроме микроскопического. Однако соотношение неопределённостей указывает, что макроскопическое усреднение скрывает интенсивную микроскопическую активность.{23} Как мы увидим вскоре, этот хаос и является препятствием к слиянию общей теории относительности и квантовой механики.

Квантовая теория поля

На протяжении 1930-х и 1940-х гг. физики-теоретики во главе с такими личностями, как Поль Дирак, Вольфганг Паули, Юлиан Швингер, Фриман Дайсон, Син-Итиро Томонага и Фейнман, не покладая рук пытались разработать математический аппарат, который помог бы справиться с буйством микромира. Они установили, что квантовое волновое уравнение Шрёдингера (упомянутое в главе 4) на самом деле даёт только приближённое описание физики микромира. Это приближённое описание работает очень хорошо, пока вы не пытаетесь (экспериментально или теоретически) слишком глубоко залезть в микроскопический хаос, но определённо отказывается работать, если кто-то делает такую попытку.

Основным разделом физики, которым Шрёдингер пренебрёг в своей формулировке квантовой механики, была специальная теория относительности. На самом деле Шрёдингер сначала сделал попытку включить специальную теорию относительности, но полученное в результате квантовое уравнение давало предсказания, находившиеся в противоречии с экспериментальными данными для атома водорода. Это побудило Шрёдингера воспользоваться широко применяемым в физике подходом «разделяй и властвуй»: вместо того, чтобы пытаться одним махом объединить в новой теории всё, что известно о физическом мире, часто гораздо выгоднее бывает делать небольшие шаги, которые последовательно включают новейшие открытия, сделанные на переднем крае исследований. Шрёдингер искал и нашёл математический аппарат, который позволил учесть экспериментально подтверждённый корпускулярно-волновой дуализм, но он не смог на этой стадии включить в рассмотрение специальную теорию относительности.[17]

Однако вскоре физики осознали, что специальная теория отностельности крайне важна для корректной формулировки законов квантовой механики. Хаос микромира требует признания, что энергия может проявлять себя самыми различными способами. Впервые это было осознано в формуле специальной теории относительности E = mc2. Игнорируя специальную теорию относительности, подход Шрёдингера не учитывал взаимопревращаемость материи, энергии и движения.

Прежде всего физики сконцентрировали свои усилия на попытках объединить специальную теорию относительности с принципами квантовой механики при описании электромагнитного поля и его взаимодействия с веществом. В результате серии вдохновляющих достижений они создали квантовую электродинамику. Это был пример теории, впоследствии получившей название релятивистской квантовой теории поля или, кратко, квантовой теории поля. Такая теория является квантовой, поскольку она с самого начала строилась с использованием понятий вероятности и неопределённости; она является теорией поля, поскольку объединяет понятия квантовой механики и ранее существовавшее классическое представление о силовом поле, в данном случае, максвелловском электромагнитном поле. Наконец, эта теория является релятивистской, поскольку с самого начала учитывает специальную теорию относительности. (Если вам нужен визуальный образ квантового поля, вы можете использовать образ классического поля, скажем, океан невидимых силовых линий, пронизывающих пространство, дополнив его в двух отношениях. Во-первых, вы должны представить квантовое поле образованным из частиц-составляющих, таких как фотоны в случае электромагнитного поля. Во-вторых, вы должны представить, что энергия, сосредоточенная в массах частиц и их движении, бесконечно много раз переходит от одного квантового поля к другому в процессе их непрерывных осцилляций в пространстве и времени.)

Квантовая электродинамика, бесспорно, является наиболее точной из когда-либо созданных теорий, описывающих природные явления. Иллюстрацию её точности можно найти в работах Тойхиро Киношиты, специалиста по физике элементарных частиц из Корнелльского университета, который в течение последних 30 лет неутомимо использовал квантовую электродинамику для расчёта некоторых тонких свойств электронов. Расчёты Киношиты заполняют тысячи страниц, и в конце концов потребовали для завершения самых мощных из когда-либо созданных компьютеров. Но затраченные им усилия принесли свои плоды, позволив рассчитать характеристики электронов, которые подтвердились экспериментально с точностью, превышающей одну миллиардную. Это согласие между результатами абстрактных теоретических вычислений и данными реального мира совершенно поразительно. С помощью квантовой электродинамики физики смогли подтвердить роль фотонов как «наименьших возможных сгустков света» и описать их взаимодействие с электрически заряженными частицами в рамках математически законченной модели, позволяющей получать убедительные предсказания.

Успех квантовой электродинамики побудил других физиков в 1960-х и 1970-х гг. попытаться использовать аналогичный подход для квантово-механического описания слабого, сильного и гравитационного взаимодействий. Для слабого и сильного взаимодействий этот подход оказался чрезвычайно плодотворным. Физики сумели, по аналогии с квантовой электродинамикой, разработать квантово-полевые теории сильного и слабого взаимодействий, получившие название квантовой хромодинамики и квантовой теории электрослабых взаимодействий. Название «квантовая хромодинамика» выбрано из-за колорита, более логичным было бы «квантовая динамика сильных взаимодействий», но это всего лишь название без глубокого смысла. С другой стороны, название «электрослабое» указывает на важную веху в нашем понимании взаимодействий в природе.

В работе, за которую Шелдон Глэшоу, Абдус Салам и Стивен Вайнберг получили Нобелевскую премию, они показали, что слабое и электромагнитное взаимодействия естественным образом объединяются в квантово-полевом описании, несмотря на то, что их проявления в окружающем нас мире столь разительно различаются. Слабое взаимодействие имеет исчезающе малую величину во всех масштабах, кроме субатомного, тогда как электромагнитные поля — видимый свет, радио- и телевизионные сигналы, рентгеновское излучение — неоспоримо присутствуют в нашем макроскопическом мире. Тем не менее, Глэшоу, Салам и Вайнберг показали, что при достаточно высоких энергиях и температурах, которые существовали спустя долю секунды после Большого взрыва, электромагнитное и слабое взаимодействия были слиты одно с другим, их характеристики были неразличимы. Поэтому им дали более точное название электрослабых взаимодействий. Вследствие не прекращающегося со времён Большого взрыва снижения температуры из единого высокотемпературного состояния разными путями выкристаллизовались электромагнитное и слабое взаимодействия в ходе процесса, известного под названием нарушение симметрии, который мы опишем ниже. В результате эти взаимодействия приобрели различный облик в той холодной Вселенной, в которой мы обитаем в настоящее время.

Итак, если вы следите за хронологией, к 1970-м гг. физики разработали успешное квантово-механическое описание трёх из четырёх взаимодействий (сильного, слабого и электромагнитного), а также показали, что два из трёх последних (слабое и электромагнитное взаимодействия) фактически имеют общее происхождение (электрослабое взаимодействие). В течение последних десятилетий физики подвергли это квантово-механическое описание трёх негравитационных сил (как они взаимодействуют между собой и с введёнными в главе 1 частицами материи) самой разнообразной экспериментальной проверке. Теория с успехом выдержала все проверки. Когда экспериментаторы измерили значения 19 параметров (масс частиц, приведённых в табл. 1.1, констант взаимодействия для этих частиц, показанных в таблице в примечании {1}, интенсивностей трёх негравитационных взаимодействий в табл. 1.2, а также ряда других величин, обсуждать которые нет необходимости), а теоретики подставили полученные значения в формулы квантово-полевых теорий для сильного, слабого и электромагнитного взаимодействий частиц материи, предсказания этих теорий с поразительной точностью совпали с экспериментальными данными. Совпадение наблюдается вплоть до энергий, способных расщепить материю на частицы, размер которых составляет одну миллиардную от одной миллиардной метра, что является пределом для современного уровня развития техники. По этой причине физики называют теорию трёх негравитационных взаимодействий и три семейства частиц материи стандартной теорией, или (чаще) стандартной моделью физики элементарных частиц.

Частицы-посланники

Так же, как для электромагнитного поля, наименьшим элементом которого является фотон, для полей сильного и слабого взаимодействий согласно стандартной модели имеются свои наименьшие элементы. Как упоминалось в главе 1, мельчайшие сгустки сильного взаимодействия известны под названием глюонов, а соответствующие сгустки слабого взаимодействия — под названием калибровочных бозонов слабого взаимодействия (точнее, W-бозонов и Z-бозонов). Стандартная модель предписывает нам рассматривать эти сгустки как не имеющие внутренней структуры — в рамках данной модели они столь же элементарны, как частицы, входящие в состав трёх семейств частиц материи.

Фотоны, глюоны и калибровочные бозоны слабого взаимодействия обеспечивают микроскопический механизм передачи взаимодействий, которые они представляют. Например, чтобы представить себе, как одна электрически заряженная частица отталкивает другую частицу с одноимённым зарядом, можно вообразить, что каждая частица окружена электрическим полем — «облаком» или «туманом», являющимся носителем «электрических свойств», — а воздействие, воспринимаемое каждой частицей, обусловлено взаимодействием их силовых полей. Более точное описание отталкивания частиц на микроскопическом уровне выглядит несколько иначе. Электромагнитное поле состоит из полчищ фотонов; взаимодействие между двумя заряженными частицами на самом деле является результатом взаимного «обстрела» фотонами. Если использовать грубую аналогию, это похоже на изменение траекторий двух конькобежцев, обстреливающих друг друга градом шаров для боулинга. Подобным же образом и две электрически заряженные частицы влияют друг на друга, обмениваясь мельчайшими частицами света.

Существенным недостатком аналогии с конькобежцами является то, что обмен шарами для боулинга всегда приводит к «отталкиванию»: он увеличивает расстояние между конькобежцами. С другой стороны, две частицы, несущие противоположный заряд, также взаимодействуют между собой, обмениваясь фотонами, но результирующая электромагнитная сила является притягивающей. Это выглядит так, как если бы фотон был переносчиком не взаимодействия как такового, а скорее послания о том, как получатель должен реагировать на соответствующее взаимодействие. Частицам, несущим одноимённый заряд, фотон передаёт сообщение «отдаляйтесь», а частицам с разноимённым зарядом — «сближайтесь». По этой причине фотон иногда называют частицей-посланником электромагнитного взаимодействия. Аналогичным образом глюоны и слабые калибровочные бозоны являются частицами-посланниками сильного и слабого атомного взаимодействия. Сильное взаимодействие, которое удерживает кварки внутри протонов и нейтронов, возникает за счёт обмена глюонами между кварками. Можно сказать, что глюоны создают «клей», удерживающий эти субатомные частицы вместе. Слабое взаимодействие, отвечающее за некоторые виды превращений частиц при радиоактивном распаде, передаётся посредством калибровочных бозонов слабого взаимодействия.

Калибровочная симметрия

Вы, наверное, уже заметили, что в нашем обсуждении квантовой теории взаимодействий в природе не упоминается гравитация. Зная, что у физиков имеется подход, который они успешно использовали для трёх других взаимодействий, вы можете ожидать, что они пытались разработать квантово-полевую теорию гравитационного взаимодействия, в которой частицей, передающей гравитационное взаимодействие, будет наименьший сгусток гравитационного поля, гравитон. На первый взгляд это предположение кажется особенно уместным в силу того, что квантовая теория трёх негравитационных взаимодействий выявила волнующее сходство между ними и свойством гравитационного поля, с которыми мы столкнулись в главе 3.

Вспомним, что гравитационное взаимодействие позволяет объявить, что все наблюдатели — независимо от состояния движения — являются абсолютно равноправными. Даже те, движение которых кажется нам ускоренным, могут заявить, что находятся в состоянии покоя, поскольку могут приписать испытываемую ими силу действию гравитационного поля. В этом смысле гравитация налагает симметрию: она гарантирует равноправие всех возможных точек зрения и всех возможных систем отсчёта. Сходство с сильным, слабым и электромагнитным взаимодействиями состоит в том, что они тоже связаны с симметриями, хотя эти виды симметрии значительно более абстрактны по сравнению с той, которая связана с гравитацией.

Для того чтобы получить общее представление об этих достаточно тонких принципах симметрии, рассмотрим один важный пример. Как указано в таблице, содержащейся в примечании {1}, каждый кварк может быть окрашен в один из трёх «цветов» (вычурно названных красным, зелёным и синим, хотя это не более чем условность и не имеет никакого отношения к цвету в обычном понимании этого слова). Эти цвета определяют его реакцию на сильное взаимодействие точно так же, как электрический заряд определяет реакцию на электромагнитное взаимодействие. Все полученные к настоящему времени данные свидетельствуют о том, что между кварками наблюдается симметрия: все взаимодействия между одноцветными кварками (красного с красным, зелёного с зелёным или синего с синим) являются идентичными, как и идентичными являются взаимодействия между разноцветными кварками (красного с зелёным, зелёного с синим или синего с красным). На самом деле факты ещё более поразительны. Если три цвета, т. е. три различных сильных заряда, сдвинуть определённым образом (грубо говоря, если на нашем вычурном цветовом языке красный, зелёный и синий изменятся и станут, например, жёлтым, индиго и фиолетовым), то даже если параметры сдвига будут меняться от одного момента времени к другому и от точки к точке, взаимодействие между кварками останется совершенно неизменным. Рассмотрим сферу: она является примером тела, обладающего вращательной симметрией, поскольку выглядит одинаково независимо от того, как мы вращаем её в руках и под каким углом на неё смотрим. Аналогично можно сказать, что наша Вселенная обладает симметрией сильного взаимодействия: физические явления не изменятся при сдвигах зарядов этого взаимодействия — Вселенная совершенно не чувствительна к ним. По историческим причинам физики говорят, что симметрия сильного взаимодействия является примером калибровочной симметрии.{24}

Здесь следует подчеркнуть один существенный момент. Как показали работы Германа Вейля 1920-х гг., а также работы Чень-Нин Янга и Роберта Миллса 1950-х гг., аналогично тому, что симметрия между всеми возможными точками наблюдения в общей теории относительности требует существования гравитационной силы, калибровочная симметрия требует существования других видов сил. Подобно тому, как чувствительная система контроля параметров окружающей среды поддерживает на постоянном уровне температуру, давление и влажность воздуха путём компенсации внешних воздействий, некоторые типы силовых полей, согласно Янгу и Миллсу, обеспечивают компенсацию сдвигов зарядов сил, сохраняя неизменность физических взаимодействий между частицами. В случае калибровочной симметрии, связанной со сдвигом цветовых зарядов кварков, требуемая сила представляет собой не что иное, как само сильное взаимодействие. Иными словами, если бы не было сильного взаимодействия, физика могла бы измениться при упомянутом выше сдвиге цветовых зарядов. Это показывает, что хотя гравитационное и сильное взаимодействия имеют совершенно различные свойства (вспомним, например, что гравитация гораздо слабее сильного взаимодействия и действует на гораздо больших расстояниях), они, в определённом смысле, имеют общее происхождение: каждое из них необходимо для того, чтобы Вселенная обладала какой-то конкретной симметрией. Более того, аналогичные рассуждения, применённые к слабому и электромагнитному взаимодействиям, показывают, что их существование также связано с некоторыми видами калибровочной симметрии — так называемой слабой и электромагнитной калибровочной симметриями. Таким образом, все четыре взаимодействия непосредственно связаны с принципами симметрии.

Эта общая характеристика всех четырёх взаимодействий, казалось бы, говорит в пользу предположения, сделанного в начале настоящего раздела. А именно, в наших попытках объединить квантовую механику и общую теорию относительности мы должны вести поиск в направлении квантово-полевой теории гравитационного взаимодействия, следуя примеру успешной разработки квантово-полевых теорий трёх других видов взаимодействия. На протяжении многих лет эта логика вдохновляла группу выдающихся физиков на разработку такой теории, однако путь к ней оказался усеян препятствиями, и никому не удалось пройти его полностью. Попытаемся понять почему.

Общая теория относительности и квантовая механика

Обычной областью применения общей теории относительности являются огромные, астрономические масштабы расстояний. Согласно теории Эйнштейна, на этих масштабах отсутствие масс означает, что пространство является плоским, как показано на рис. 3.3. Пытаясь объединить общую теорию относительности и квантовую механику, мы должны резко изменить фокусировку и исследовать свойства пространства в микроскопическом масштабе. Мы продемонстрировали это на рис. 5.1 путём последовательного увеличения масштаба и перехода к уменьшающимся областям пространств.

Рис. 5.1. Рассматривая область пространства при всё большем увеличении, можно исследовать свойства пространства на ультрамикроскопическом уровне. Попытки объединить общую теорию относительности и квантовую механику наталкиваются на кипящую квантовую пену, проявляющуюся при самом большом увеличении

По мере того, как мы увеличиваем масштаб, на первых порах не происходит ничего особенного; можно видеть, что на первых трёх уровнях увеличения на рис. 5.1 структура пространства сохраняет свои основные свойства. Если подходить с сугубо классической точки зрения, мы могли бы рассчитывать на то, что такая спокойная и плоская структура пространства будет сохраняться всё время, вплоть до любого, произвольно малого масштаба расстояний. Однако квантовая механика радикально меняет эту картину. Объектом квантовых флуктуаций, управляемых соотношением неопределённостей, является всё — даже гравитационное поле. Хотя классическая теория говорит, что гравитационное поле в пустом пространстве равно нулю, квантовая механика показывает, что оно будет нулевым в среднем, а его текущее значение будет изменяться за счёт квантовых флуктуаций. Более того, соотношение неопределённостей говорит нам, что размер флуктуаций гравитационного поля будет возрастать при переходе ко всё меньшим областям пространства. Квантовая механика показывает, что никому не нравится, когда его загоняют в угол; уменьшение пространственной фокусировки ведёт к росту флуктуаций.

Поскольку гравитационное поле проявляется в кривизне пространства, эти квантовые флуктуации выражаются в его чудовищных деформациях. Мы можем наблюдать проявление таких деформаций на четвёртом уровне увеличения на рис. 5.1. При переходе к ещё меньшему масштабу расстояний, такому, как на пятом уровне рис. 5.1, мы видим, что случайные квантово-механические флуктуации гравитационного поля соответствуют такому сильному искривлению пространства, что оно совсем перестаёт напоминать мягко искривлённые геометрические объекты типа резиновой плёнки, которую мы использовали в качестве аналогии в главе 3. Скорее оно принимает вспененную, турбулентную и скрученную форму, показанную в верхней части рисунка. Джон Уилер предложил для описания такого хаоса, обнаруживаемого при изучении ультрамикроскопической структуры пространства (и времени), термин квантовая пена — описывающий незнакомую нам область Вселенной, в которой обычные понятия «налево и направо», «вперёд и назад», «вверх и вниз» (и даже «до и после») теряют свой смысл. Именно на таких малых расстояниях мы сталкиваемся с фундаментальной несовместимостью общей теории относительности и квантовой механики. Понятие гладкости геометрии пространства, являющееся основным принципом общей теории относительности, рушится под напором неистовых флуктуаций квантового мира, существующих в масштабе ультрамикроскопических расстояний. В ультрамикроскопическом масштабе основное свойство квантовой механики — соотношение неопределённостей — вступает в прямое противоречие с центральным принципом общей теории относительности — гладкой геометрической моделью пространства (и пространства-времени).

На практике этот конфликт проявляется в весьма конкретном виде. Расчёты, основанные на совместном использовании уравнений общей теории относительности и квантовой механики, обычно дают один и тот же нелепый ответ: бесконечность. Подобно подзатыльнику, полученному от школьного учителя старых времён, бесконечность в ответе — это способ, с помощью которого природа сообщает, что мы делаем что-то не так, как надо.[18] Уравнения общей теории относительности не могут справиться с безумным хаосом квантовой пены.

Заметим, однако, что по мере того, как мы возвращаемся к обычным масштабам расстояний (проходя последовательность на рис. 5.1 в обратном порядке), неистовые случайные колебания, свойственные микроскопическим расстояниям, начинают гасить друг друга. В результате (точно так же, как среднее по банковскому счёту нашего маниакального заёмщика не обнаруживает никаких признаков его мании) понятие гладкости геометрии нашего пространства вновь становится точным. Это похоже на растровый рисунок в книге или газете: при взгляде издалека точки, образующие рисунок, сливаются и создают впечатление гладкого изображения, в котором вариации яркости плавно и незаметно изменяются от участка к участку. Однако если вы посмотрите на этот рисунок с более близкого расстояния, вы увидите, что он совсем не так гладок, как выглядит издалека. На самом деле он представляет собой набор дискретных точек, каждая из которых чётко отделяется от других. Однако обратите внимание, что вы смогли узнать о дискретности рисунка, только рассмотрев его вблизи: издалека он выглядит гладким. Точно так же и структура пространства-времени кажется нам гладкой, за исключением тех случаев, когда мы исследуем её с ультрамикроскопическим разрешением. Это объясняет, почему общая теория относительности работает на достаточно крупных масштабах расстояний (и времён), которые свойственны многим типичным астрономическим явлениям, но оказывается непригодной на микроскопических масштабах пространства (и времени). Центральный принцип гладкой и слабо искривлённой геометрии соблюдается в большом масштабе, но нарушается под действием квантовых флуктуаций при переходе к микроскопическим масштабам.

Основные принципы общей теории относительности и квантовой механики позволяют рассчитать примерный масштаб расстояний, при переходе к которому становятся очевидными разрушительные явления, показанные на рис. 5.1. Малость постоянной Планка, которая управляет интенсивностью квантовых эффектов, и слабость константы гравитационного взаимодействия приводят к тому, что планковская длина, куда входят обе этих величины, имеет малость, которая превосходит всякое воображение: одна миллионная от одной миллиардной от миллиардной от миллиардной доли сантиметра (1033).{25} Таким образом, пятый уровень на рис. 5.1 схематически изображает структуру Вселенной в ультрамикроскопическом, субпланковском масштабе расстояний. Чтобы дать представление о масштабах, приведём такую иллюстрацию: если мы увеличим атом до размеров Вселенной, то планковская длина станет равной высоте среднего дерева.

Итак, мы видим, что несовместимость общей теории относительности и квантовой механики проявляется только в очень глубоко запрятанном королевстве Вселенной. У читателя может возникнуть вопрос, стоит ли вообще беспокоиться по этому поводу. Мнение физического сообщества по этому вопросу отнюдь не является единым. Есть физики, которые признают существование проблемы, но предпочитают применять квантовую механику и общую теорию относительности для решения таких задач, в которых типичные расстояния намного превосходят планковскую длину. Есть, однако, и другие учёные, которые глубоко обеспокоены тем фактом, что два фундаментальных столпа, на которых держится здание современной физики, в своей основе принципиально несовместимы, и неважно, что эта несовместимость проявляется только на ультрамикроскопическом масштабе расстояний. Несовместимость, говорят они, указывает на существенный изъян в нашем понимании физического мира. Это мнение основывается на недоказуемой, но глубоко прочувствованной точке зрения, согласно которой понимание Вселенной на её самом глубоком и наиболее элементарном уровне может дать нам её логически непротиворечивое описание, все детали которого будут находиться в гармоничном единстве. И уж точно большинство физиков, независимо от того, какое значение это противоречие имеет для их собственных исследований, согласятся с тем, что основа наших самых глубоких теоретических представлений о Вселенной не должна представлять собой математически противоречивое лоскутное одеяло, скроенное из двух мощных, но конфликтующих теорий.

Физики неоднократно предпринимали попытки модифицировать общую теорию относительности и квантовую механику, чтобы разрешить это противоречие, однако эти попытки, среди которых были очень дерзке и остроумные, терпели провал за провалом.

Так продолжалось до создания теории суперструн.[19]

Часть III. Космическая симфония

Глава 6. Только музыка, или Суть теории суперструн

Страницы: «« 12345678 »»

Читать бесплатно другие книги:

Это книга рассказов из психиатрической практики. Настоящих, без купюр и врачебного канцелярита. Може...
Задумываетесь о запуске франшизы или хотите масштабировать уже существующую франчайзинговую сеть? Се...
Елена Вайс – неопсихолог, основательница системы трансформации реальности PWS.Десятки тысяч последов...
«Смерти. net» – новый роман Татьяны Замировской, писателя и журналиста, автора книг «Земля случайных...
Срочно к прочтению. Всем женщинам и всем мужчинам. Руководство о том, как стать лучше в сексе и не о...
Есть ли у вас мечта? А насколько большая и несбыточная? Вот у моей подруги Полины есть не просто меч...