Вселенная. Емкие ответы на непостижимые вопросы Хокинг Стивен
С давних времён музыка является источником метафорических образов для тех, кто пытается разгадать тайны Вселенной. Начиная с «музыки сфер» древних пифагорейцев и до «гармонии мира», на протяжении столетий направляющих наши научные поиски, мы пытаемся понять песнь природы в величественных хороводах небесных тел и неистовой пляске субатомных частиц. С открытием теории суперструн музыкальные метафоры приобрели удивительную реальность, поскольку согласно этой теории микромир заполнен крошечными струнами, звучание которых оркеструет эволюцию мироздания. Согласно теории суперструн ветры перемен дуют через эолову арфу Вселенной.
В противоположность этому стандартная модель представляет элементарные компоненты мироздания в виде точечных образований, лишённых какой-либо внутренней структуры. Несмотря на необыкновенную мощь (как мы уже упоминали, практически все предсказания стандартной модели о свойствах микромира подтвердились с точностью до одной миллиардной от одной миллиардной доли метра, что представляет собой предел разрешающей способности современной техники), стандартная модель не смогла стать полной или «окончательной теорией», поскольку она не включает гравитационного взаимодействия. Более того, все попытки включить гравитацию в квантово-механическую формулировку этой модели закончились неудачей из-за неистовых флуктуаций структуры пространства, проявляющихся на ультрамикроскопических расстояниях, т. е. на расстояниях, меньших планковской длины. Это неразрешённое противоречие явилось побудительным мотивом для поиска более глубокого понимания природы. В 1984 г. физик Майкл Грин, работавший в то время в колледже Королевы Марии, и Джон Шварц из Калифорнийского технологического института впервые представили убедительные доказательства того, что теория суперструн (или, кратко, теория струн) может дать такое понимание.
Теория струн предлагает оригинальное и глубокое изменение теоретического описания свойств Вселенной на ультрамикроскопическом уровне — изменение, которое, как постепенно осознают физики, модифицирует эйнштейновскую общую теорию относительности, делая её полностью совместимой с законами квантовой механики. Согласно теории струн элементарные компоненты Вселенной не являются точечными частицами, а представляют собой крошечные одномерные волокна, подобные бесконечно тонким, непрерывно вибрирующим резиновым лентам. Здесь важно не дать названию ввести нас в заблуждение. В отличие от обычных струн, состоящих из молекул и атомов, струны, о которых говорит теория струн, лежат глубоко в самом сердце материи. Теория струн утверждает, что именно они представляют собой ультрамикроскопические компоненты, из которых состоят частицы, образующие атомы. Струны, являющиеся объектом теории струн, столь малы — в среднем их размер сопоставим с планковской длиной, — что даже при изучении с помощью самого мощного оборудования они выглядят точечными.
Однако уже простая замена точечных частиц струнами в качестве фундаментальных компонентов мироздания ведёт к далеко идущим последствиям. Первое и самое главное состоит в том, что теория струн, по-видимому, разрешает противоречие между общей теорией относительности и квантовой механикой. Как мы увидим ниже, пространственная протяжённость струн является новым ключевым звеном, позволяющим создать единую гармоничную систему, объединяющую обе теории. Во-вторых, теория струн действительно представляет объединённую теорию, поскольку в ней всё вещество и все взаимодействия обязаны своим происхождением одной фундаментальной величине — колеблющейся струне. Наконец, как будет показано более подробно в последующих главах, помимо этих блестящих достижений, теория струн ещё раз радикально изменяет наши представления о пространстве-времени.[20]
Краткая история теории струн
В 1968 г. молодой физик-теоретик Габриэле Венециано корпел над осмыслением многочисленных экспериментально наблюдаемых характеристик сильного ядерного взаимодействия. Венециано, который в то время работал в ЦЕРНе, Европейской ускорительной лаборатории, находящейся в Женеве (Швейцария), трудился над этой проблемой в течение нескольких лет, пока однажды его не осенила блестящая догадка. К большому своему удивлению он понял, что экзотическая математическая формула, придуманная примерно за двести лет до этого знаменитым швейцарским математиком Леонардом Эйлером в чисто математических целях — так называемая бета-функция Эйлера, — похоже, способна описать одним махом все многочисленные свойства частиц, участвующих в сильном ядерном взаимодействии. Подмеченное Венециано свойство давало мощное математическое описание многим особенностям сильного взаимодействия; оно вызвало шквал работ, в которых бета-функция и её различные обобщения использовались для описания огромных массивов данных, накопленных при изучении столкновений частиц по всему миру. Однако в определённом смысле наблюдение Венециано было неполным. Подобно зазубренной наизусть формуле, используемой студентом, который не понимает её смысла или значения, бета-функция Эйлера работала, но никто не понимал почему. Это была формула, которая требовала объяснения. Положение дел изменилось в 1970 г., когда Йохиро Намбу из Чикагского университета, Хольгер Нильсен из института Нильса Бора и Леонард Сасскинд из Станфордского университета смогли выявить физический смысл, скрывавшийся за формулой Эйлера. Эти физики показали, что при представлении элементарных частиц маленькими колеблющимися одномерными струнами сильное взаимодействие этих частиц в точности описывается с помощью функции Эйлера. Если отрезки струн являются достаточно малыми, рассуждали эти исследователи, они по-прежнему будут выглядеть как точечные частицы, и, следовательно, не будут противоречить результатам экспериментальных наблюдений.
Хотя эта теория была простой и интуитивно привлекательной, вскоре было показано, что описание сильного взаимодействия с помощью струн содержит изъяны. В начале 1970-х гг. специалисты по физике высоких энергий смогли глубже заглянуть в субатомный мир и показали, что ряд предсказаний модели, основанной на использовании струн, находится в прямом противоречии с результатами наблюдений. В то же время параллельно шло развитие квантово-полевой теории — квантовой хромодинамики, — в которой использовалась точечная модель частиц. Успехи этой теории в описании сильного взаимодействия привели к отказу от теории струн.
Большинство специалистов по физике элементарных частиц полагали, что теория струн навсегда отправлена в мусорный ящик, однако ряд исследователей сохранили ей верность. Шварц, например, ощущал, что «математическая структура теории струн столь прекрасна и имеет столько поразительных свойств, что, несомненно, должна указывать на что-то более глубокое».{26} Одна из проблем, с которыми физики сталкивались в теории струн, состояла в том, что она, как казалось, предоставляла слишком богатый выбор, что сбивало с толку. Некоторые конфигурации колеблющихся струн в этой теории имели свойства, которые напоминали свойства глюонов, что давало основание действительно считать её теорией сильного взаимодействия. Однако помимо этого в ней содержались дополнительные частицы-переносчики взаимодействия, не имевшие никакого отношения к экспериментальным проявлениям сильного взаимодействия. В 1974 г. Шварц и Джоэль Шерк из французской Высшей технической школы сделали смелое предположение, которое превратило этот кажущийся недостаток в достоинство. Изучив странные моды колебаний струн, напоминающие частицы-переносчики, они поняли, что эти свойства удивительно точно совпадают с предполагаемыми свойствами гипотетической частицы-переносчика гравитационного взаимодействия — гравитона. Хотя эти «мельчайшие частицы» гравитационного взаимодействия до сих пор так и не удалось обнаружить, теоретики могут уверенно предсказать некоторые фундаментальные свойства, которыми должны обладать эти частицы. Шерк и Шварц обнаружили, что эти характеристики в точности реализуются для некоторых мод колебаний. Основываясь на этом, они предположили, что первое пришествие теории струн закончилось неудачей из-за того, что физики чрезмерно сузили область её применения. Шерк и Шварц объявили, что теория струн — это не просто теория сильного взаимодействия, это квантовая теория, которая, помимо всего прочего, включает гравитацию.{27}
Физическое сообщество отреагировало на это предположение весьма сдержанно. В действительности, по воспоминаниям Шварца, «наша работа была проигнорирована всеми».{28} Пути прогресса уже были основательно захламлены многочисленными провалившимися попытками объединить гравитацию и квантовую механику. Теория струн потерпела неудачу в своей первоначальной попытке описать сильное взаимодействие, и многим казалось бессмысленным пытаться использовать её для достижения ещё более великих целей. Последующие, более детальные исследования конца 1970-х и начала 1980-х гг. показали, что между теорией струн и квантовой механикой возникают свои, хотя и меньшие по масштабам, противоречия. Создавалось впечатление, что гравитационная сила вновь смогла устоять перед попыткой встроить её в описание мироздания на микроскопическом уровне.
Так было до 1984 г. В своей статье, сыгравшей поворотную роль и подытожившей более чем десятилетние интенсивные исследования, которые по большей части были проигнорированы или отвергнуты большинством физиков, Грин и Шварц установили, что незначительное противоречие с квантовой теорией, которым страдала теория струн, может быть разрешено. Более того, они показали, что полученная в результате теория обладает достаточной широтой, чтобы охватить все четыре вида взаимодействий и все виды материи. Весть об этом результате распространилась по всему физическому сообществу: сотни специалистов по физике элементарных частиц прекращали работу над своими проектами, чтобы принять участие в штурме, который казался последней теоретической битвой в многовековом наступлении на глубочайшие основы мироздания.
Я начал работу в аспирантуре Оксфордского университета в октябре 1984 г. Хотя я был восхищён раскрывавшимися передо мной достижениями квантовой теории поля, калибровочной теории и общей теории относительности, среди моих старших коллег-аспирантов было распространено скептическое убеждение, что большая часть открытий физики элементарных частиц уже сделана. Была разработана стандартная модель, и замечательный успех, с которым она предсказывала результаты экспериментов, оставлял мало сомнений в том, что её полное подтверждение является делом не слишком отдалённого будущего. Выход за её пределы для включения гравитации и возможного объяснения экспериментальных данных, на которых базируется эта модель (т. е. 19 чисел, характеризующих массы элементарных частиц, их константы взаимодействия и относительную интенсивность взаимодействий, известных из результатов экспериментов, но не объяснённых теоретически), казался такой непосильной задачей, что лишь самые бесстрашные исследователи отваживались принять этот вызов. Однако спустя всего шесть месяцев настроения радикально изменились. Весть об успехе Грина и Шварца, в конце концов, дошла даже до аспирантов первого года обучения, и на смену прежнему унынию пришло возбуждающее ощущение причастности к поворотному моменту в истории физики. Многие из нас засиживались глубоко за полночь, штудируя увесистые фолианты по теоретической физике и абстрактной математике, знание которых необходимо для понимания теории струн.
Период с 1984 по 1986 гг. теперь известен как «первая революция в теории суперструн». В течение этого периода физиками всего мира было написано более тысячи статей по теории струн. Эти работы окончательно продемонстрировали, что многочисленные свойства стандартной модели, открытые в течение десятилетий кропотливых исследований, естественным образом вытекают из величественной системы теории струн. Как заметил Майкл Грин, «момент, когда вы знакомитесь с теорией струн и осознаёте, что почти все основные достижения физики последнего столетия следуют — и следуют с такой элегантностью — из столь простой отправной точки, ясно демонстрирует вам всю невероятную мощь этой теории».{29} Более того, для многих из этих свойств, как мы увидим ниже, теория струн даёт гораздо более полное и удовлетворительное описание, чем стандартная модель. Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией.
Однако на этом пути занимавшиеся теорией струн физики снова и снова натыкались на серьёзные препятствия. В теоретической физике часто приходится иметь дело с уравнениями, которые либо слишком сложны для понимания, либо с трудом поддаются решению. Обычно в такой ситуации физики не пасуют и пытаются получить приближённое решение этих уравнений. Положение дел в теории струн намного сложнее. Даже сам вывод уравнений оказался столь сложным, что до сих пор удалось получить лишь их приближённый вид. Таким образом, физики, работающие в теории струн, оказались в ситуации, когда им приходится искать приближённые решения приближённых уравнений. После нескольких лет поражающего воображение прогресса, достигнутого в течение первой революции теории суперструн, физики столкнулись с тем, что используемые приближённые уравнения оказались неспособными дать правильный ответ на ряд важных вопросов, тормозя тем самым дальнейшее развитие исследований. Не имея конкретных идей по выходу за рамки этих приближённых методов, многие физики, работавшие в области теории струн, испытали растущее чувство разочарования и вернулись к своим прежним исследованиям. Для тех, кто остался, конец 1980-х и начало 1990-х гг. были периодом испытаний. Красота и потенциальная мощь теории струн манили исследователей подобно золотому сокровищу, надёжно запертому в сейфе, видеть которое можно лишь через крошечный глазок, но ни у кого не было ключа, который выпустил бы эти дремлющие силы на свободу. Долгий период «засухи» время от времени прерывался важными открытиями, но всем было ясно, что требуются новые методы, которые позволили бы выйти за рамки уже известных приближённых решений.
Конец застою положил захватывающий дух доклад, сделанным Эдвардом Виттеном в 1995 г. на конференции по теории струн в университете Южной Калифорнии — доклад, который ошеломил аудиторию, до отказа заполненную ведущими физиками мира. В нём он обнародовал план следующего этапа исследований, положив тем самым начало «второй революции в теории суперструн». Сейчас специалисты по теории струн энергично работают над новыми методами, которые обещают преодолеть встреченные препятствия. Трудности, которые лежат впереди, будут серьёзным испытанием для учёных, работающих в этой области, но в результате свет в конце тоннеля, хотя ещё и отдалённый, может стать видимым.
В этой и в нескольких последующих главах мы опишем открытия теории струн, явившиеся результатом первой революции и поздних исследований, выполненных до начала второй революции. Время от времени мы будем упоминать достижения, сделанные в ходе второй революции; подробное описание этих новейших достижений будет приведено в главах 12 и 13.
Снова атомы в духе древних греков?
Как мы говорили в начале данной главы, и как показано на рис. 1.1, теория струн утверждает, что если бы мы могли исследовать точечные частицы, существование которых предполагает стандартная модель, с точностью, выходящей далеко за пределы наших современных возможностей, мы бы увидели, что каждая из этих частиц представляет собой крошечную колеблющуюся струну, имеющую форму петли.
По причинам, которые станут ясны в дальнейшем, длина типичной петли, оразованной струной, близка к планковской длине, которая примерно в сто миллиардов миллиардов раз (1020) меньше размера атомного ядра. Неудивительно, что современные эксперименты не могут подтвердить струнную природу материи: размеры струн бесконечно малы даже в масштабе субатомных частиц. Для получения прямого подтверждения того, что струна не является точечной частицей, нам потребовался бы ускоритель, способный сталкивать частицы с энергией, в несколько миллионов миллиардов раз превышающей максимальный уровень, достигнутый на сегодняшний день.
Вскоре мы опишем ошеломляющие выводы, следующие из замены точечных частиц струнами, но сначала давайте рассмотрим более фундаментальный вопрос: из чего состоят струны?
Есть два возможных ответа на этот вопрос. Во-первых, струны действительно являются фундаментальными объектами — они представляют собой «атомы», неделимые компоненты в самом истинном смысле этого понятия, предложенного древними греками. Как наименьшие составные части материи, они представляют собой конец пути — последнюю матрёшку — в многочисленных слоях, образующих структуру микромира. С этой точки зрения, даже если струны имеют определённые пространственные размеры, вопрос об их составе лишён какого-либо смысла. Если струны состоят из каких-то более мелких компонентов, они не могут быть фундаментальными. Напротив, из чего бы ни состояли струны, эти элементы немедленно займут место струн в притязании на роль наиболее фундаментальных компонентов мироздания. Используя нашу лингвистическую аналогию, можно сказать, что параграфы состоят из предложений, предложения — из слов, слова — из букв. А из чего состоит буква? С лингвистической точки зрения это конец пути. Буквы есть буквы — они представляют собой фундаментальные строительные блоки письменного языка; они не имеют внутренней структуры. Вопрос об их составе не имеет смысла. Аналогично струна представляет собой просто струну — поскольку нет ничего более фундаментального, нельзя описать струну как нечто, состоящее из каких-то других компонентов.
Это первый ответ. Второй ответ основывается на том простом факте, что сегодня мы не знаем, верна ли теория струн и является ли она окончательной теорией мироздания. Если теория струн неверна — ну что же, мы можем забыть струны и неуместный вопрос об их структуре. Хотя такая возможность существует, исследования, проводившиеся с середины 1980-х гг., показывают, что её вероятность крайне мала. Однако история определённо научила нас, что каждый раз, когда мы углубляем наше понимание Вселенной, мы находим всё меньшие компоненты микромира, составляющие более тонкий уровень организации материи. Итак, ещё одна возможность, в случае если теория струн не окажется окончательной теорией, состоит в том, что струны образуют ещё один слой в луковице мироздания, слой, который становится видимым в масштабах планковской длины, но который не является последним слоем. В этом случае струны могут состоять из ещё более мелких структур. Специалисты по теории струн осознают такую возможность и ведут теоретические исследования в этом направлении. На сегодняшний день эти исследования привели к некоторым интригующим догадкам о более глубоких уровнях структуры, но они ещё не получили окончательного подтверждения. Только время и дальнейшие исследования дадут окончательный ответ на этот вопрос.
За исключением некоторых гипотез, рассматриваемых в главах 12 и 15, мы будем рассматривать струны в том смысле, который следует из первого ответа, т. е. будем считать их наиболее фундаментальными компонентами мироздания.
Объединение через теорию струн
Помимо неспособности включить в себя гравитационное взаимодействие, стандартная модель обладает ещё одним недостатком — она не даёт описания устройства объектов, с которыми работает. Почему природа выбрала именно те частицы и взаимодействия, которые были описаны в предыдущих главах и перечислены в табл. 1.1 и 1.2? Почему 19 параметров, которые описывают количественные характеристики этих компонентов, имеют именно те значения, которые имеют? Учёным не удавалось отделаться от чувства, что количество и свойства этих объектов являются совершенно случайными. Скрывается ли за этими, на первый взгляд абсолютно произвольными компонентами, какой-то более глубокий смысл, или физические свойства мироздания являются просто «игрой случая»?
Стандартная модель сама по себе не способна дать объяснения всем этим фактам, поскольку она принимает список частиц и их свойств как полученные экспериментально входные данные. Как показатели фондового рынка не могут быть использованы для определения ценности портфеля акций, которым вы владеете, без входных данных о ваших начальных капиталовложениях, так и стандартная модель не может быть использована для получения предсказаний без входных данных, содержащих фундаментальные свойства частиц.{41} После того как экспериментаторы проведут тщательное измерение этих данных, теоретики смогут использовать стандартную модель для поддающихся проверке предсказаний, например, что произойдёт, если столкнуть какие-то определённые частицы в ускорителе. Но стандартная модель в той же мере не способна объяснить фундаментальные свойства частиц, перечисленные в табл. 1.1 и 1.2, в какой среднее значение индекса Доу-Джонса не способно ответить на вопрос о начальных капиталовложениях, сделанных десять лет тому назад.
На самом деле, если эксперименты покажут, что в микромире существуют какие-то иные частицы или какие-то дополнительные взаимодействия, то в стандартной модели изменения могут быть легко учтены путём замены списка входных параметров. В этом смысле структура стандартной модели обладает слишком большой гибкостью, чтобы дать объяснение свойствам элементарных частиц: она охватывает целый диапазон различных возможностей.
Теория струн имеет совершенно иной характер. Это теоретическое здание единой и жёсткой конструкции. Все входные данные, которые ей необходимы, ограничиваются описываемым ниже единственным параметром, который устанавливает шкалу для проведения измерений. Теория струн способна объяснить все свойства микромира. Чтобы понять это, обратимся сперва к более привычным струнам скрипки. Каждая струна может совершать огромное (на самом деле бесконечное) число различных колебаний, известных под названием резонансных колебаний. Пример таких колебаний показан на рис. 6.1.
Рис. 6.1. У скрипичных струн существуют резонансные моды колебаний, на которых между концами струны укладывается целое число максимумов и минимумов
Это колебания, у которых расстояние между максимумами и минимумами одинаково, и между закреплёнными концами струны укладывается в точности целое число максимумов и минимумов. Человеческое ухо воспринимает резонансные колебания как различные музыкальные ноты. Схожие свойства имеют струны в теории струн. Они могут осуществлять резонансные колебания, в которых вдоль длины струн укладывается в точности целое число равномерно распределённых максимумов и минимумов. Некоторые примеры таких колебаний показаны на рис. 6.2.
Рис. 6.2. Петли теории струн имеют резонансные моды колебаний, похожие на моды резонансных колебаний скрипичных струн. При этом вдоль длины струны укладывается в точности целое число максимумов и минимумов
Основное утверждение теории струн таково. Точно так же, как различные моды резонансных колебаний скрипичных струн рождают различные музыкальные ноты, различные моды колебаний фундаментальных струн порождают различные массы и константы взаимодействия. Поскольку это очень важное утверждение, давайте повторим его ещё раз. Согласно теории струн свойства элементарных «частиц» — их массы и константы различных взаимодействий — в точности определяются резонансными модами колебаний, реализуемыми внутренними струнами этих частиц.
Легче всего понять эту ассоциацию для массы частицы. Энергия конкретной моды колебания струны зависит от её амплитуды — максимального расстояния между максимумами и минимумами, и от длины волны — расстояния между двумя соседними пиками. Чем больше амплитуда и чем короче длина волны, тем больше энергия. Это совпадает с нашими интуитивными представлениями — более интенсивные колебания несут больше энергии, менее интенсивные — меньше. Пара примеров показана на рис. 6.3.
Рис. 6.3. Более интенсивные колебания несут большее количество энергии, менее интенсивные — меньшее
Такая картина, опять же, привычна для нас: если коснуться струны скрипки сильнее, звук будет более сильным, слабое прикосновение даст более нежный звук. Согласно специальной теории относительности энергия и масса представляют собой две стороны одной медали: чем больше энергия, тем больше масса и наоборот. Таким образом, в соответствии с теорией струн, масса элементарной частицы определяется энергией колебания внутренней струны этой частицы. Внутренние струны более тяжёлых частиц совершают более интенсивные колебания, струны лёгких частиц колеблются менее интенсивно.
Поскольку масса частицы определяет её гравитационные характеристики, существует прямая связь между модой колебания струны и откликом частицы на действие гравитационной силы. Используя несколько более абстрактные рассуждения, физики установили, что существует аналогичное соответствие между иными характеристиками колебания струны и реакцией на другие взаимодействия. Например, электрический заряд, константы слабого и сильного взаимодействия, которые несёт частица, в точности определяются типом её колебания. Более того, тот же самый принцип справедлив и для самих частиц, переносящих взаимодействия. Фотоны, калибровочные бозоны слабого взаимодействия и глюоны представляют собой всего лишь иные моды колебаний струн. Что особенно важно, характеристики одной из мод колебаний струн в точности совпадают с характеристиками гравитона, гарантируя, что гравитация является неотъемлемой частью теории струн.[21]
Таким образом, согласно теории струн наблюдаемые характеристики всех элементарных частиц определяются конкретной модой резонансного колебания внутренних струн. Этот взгляд радикально отличается от точки зрения, которой придерживались физики до открытия теории струн, когда считалось, что различия между фундаментальными частицами обусловлены тем, что они «отрезаны от разных кусков ткани». Хотя частицы считались элементарными, предполагалось, что они состоят из различного «материала». Так, например, «материал» электрона имел отрицательный электрический заряд, а «материал» нейтрино был электрически нейтральными. Теория струн радикально изменила эту картину, объявив, что «материал» всего вещества и всех взаимодействий является одним и тем же. Каждая элементарная частица состоит из отдельной струны, — точнее, каждая частица представляет собой отдельную струну — и все струны являются абсолютно идентичными. Различия между частицами обусловлены различными модами резонансных колебаний этих струн. То, что представлялось различными частицами, на самом деле является различными «нотами», исполняемыми на фундаментальной струне. Вселенная, состоящая из бесчисленного количества этих колеблющихся струн, подобна космической симфонии.
Этот краткий обзор показал, каким образом теория струн даёт поистине поразительную объединяющую систему. Каждая частица вещества и каждая частица, переносящая взаимодействие, состоит из струны, мода колебания которой даёт «дактилоскопический отпечаток» этой частицы. Поскольку каждое физическое событие, процесс или явление на своём наиболее элементарном уровне может быть описано на языке взаимодействия между этими элементарными компонентами материи, теория струн обещает предоставить в наше распоряжение единое, всеобъемлющее, унифицированное описание физического мира — универсальную теорию мироздания.
Музыка теории струн
Хотя теория струн покончила с предшествующей концепцией элементарных частиц, лишённых внутренней структуры, расставание со старым языком происходит тяжело, особенно когда он даёт точное описание действительности вплоть до наименьших доступных масштабов расстояний. Поэтому, следуя сложившимся традициям, мы будем продолжать говорить об «элементарных частицах», но при этом всегда будем помнить, что в действительности это «то, что выглядит элементарной частицей, но на самом деле представляет собой крошечную колеблющуюся струну». В предшествующем разделе мы предположили, что массы и константы взаимодействия таких элементарных частиц связаны с модами колебаний соответствующих струн. Это приводит нас к следующему выводу: если бы мы смогли точно определить все допустимые резонансные моды колебаний фундаментальных струн, — так сказать, «ноты», которые они могут исполнять, мы смогли бы объяснить наблюдаемые свойства элементарных частиц. Таким образом, теория струн впервые предлагает систему, позволяющую объяснить свойства существующих в природе элементарных частиц.
На данной стадии нужно «взять» струну и «притронуться» к ней всеми возможными способами, чтобы определить возможные моды резонансных колебаний. Если теория струн права, возможные резонансные моды точно воспроизведут наблюдаемые свойства перечисленных в табл. 1.1 и 1.2 частиц вещества и частиц, передающих взаимодействия. Конечно, струны слишком малы, чтобы можно было осуществить такой эксперимент в буквальном смысле слова. Вместо этого мы будем «притрагиваться» к струнам теоретически, используя математические модели. В середине 1980-х гг. многие приверженцы теории струн верили, что соответствующие математические методы способны объяснить все тончайшие детали строения мироздания на самом микроскопическом уровне. Некоторые энтузиасты провозгласили, что, наконец-то, найдена теория всего. Оглядываясь на прошедшее десятилетие, мы видим, что эйфория, порождённая этой верой, была преждевременна. Теория струн имеет задатки стать «теорией всего», но на её пути остаётся ещё ряд препятствий, не позволяющих определить спектр колебаний струн с точностью, достаточной для сравнения с экспериментальными данными. Поэтому в настоящее время мы не знаем, может ли теория струн объяснить фундаментальные характеристики мироздания, приведённые в табл. 1.1 и 1.2. Как будет показано в главе 9, при определённых обстоятельствах, которые будут чётко сформулированы, теория струн приводит к Вселенной, свойства которой находятся в качественном согласии с данными для известных частиц и взаимодействий. Но предоставить детальные количественные характеристики эта теория сегодня ещё не в состоянии. Таким образом, хотя в отличие от стандартной модели с её точечными частицами теория струн способна дать объяснение, почему частицы и взаимодействия имеют те свойства, которые они имеют, мы пока не способны их «выудить». Однако удивительно то, насколько богата теория струн и сколь далеко она простирается. Хотя мы пока не можем детально определить её свойства, она позволяет проникнуть в суть целого ряда новых вытекающих из неё физических явлений. Мы увидим это ниже.
В следующих главах мы более подробно обсудим имеющиеся проблемы, однако полезно сначала ознакомиться с ними в самых общих чертах. Окружающие нас струны могут иметь самое разное натяжение. Например, шнурки на ботинках обычно натянуты намного слабее, чем струны на скрипке. И те и другие, в свою очередь, имеют гораздо меньшее натяжение, чем струны рояля. Единственным параметром, который требуется для калибровки теории струн, является их натяжение. Как определить это натяжение? Если бы мы могли коснуться фундаментальной струны, мы узнали бы её жёсткость и могли бы определить её натяжение тем же способом, который используется для других, более привычных струн. Но поскольку фундаментальные струны так малы, мы не можем использовать этот подход, и возникает необходимость в разработке косвенного метода. В 1974 г., когда Шерк и Шварц предположили, что одна из мод колебания струн представляет собой гравитон, они смогли использовать такой косвенный метод и определить натяжение, с которыми оперирует теория струн. Их расчёты показали, что интенсивность взаимодействия, передаваемого колебанием струны, соответствующем гравитону, обратно пропорциональна натяжению струны. А поскольку гравитон передаёт гравитационное взаимодействие, которое является очень слабым, полученное ими значение натяжения оказалось колоссальным: тысяча миллиардов миллиардов миллиардов миллиардов (1039) тонн, так называемое планковское натяжение. Таким образом, фундаментальные струны являются чрезвычайно жёсткими по сравнению с обычными. Этот результат имеет три важных следствия.
Три следствия жёстких струн
Во-первых, в то время, как струны рояля закреплены, что гарантирует постоянство их длины, для фундаментальных струн подобного закрепления, ограничивающего их размер, нет. Вместо этого чудовищное натяжение струн заставляет петли, которые рассматриваются в теории струн, сжиматься до микроскопических размеров. Детальные расчёты показывают, что под действием планковского натяжения типичная струна сжимается до планковской длины, т. е. до 1033 см, как отмечалось выше.[22]
Во-вторых, вследствие такого огромного натяжения типичная энергия колеблющейся петли в теории струн становится чрезвычайно большой. Чтобы понять это, вспомним, что чем больше натяжение струны, тем труднее заставить её колебаться. Например, заставить колебаться струну скрипки гораздо легче, чем струну рояля. Поэтому две струны, колеблющиеся совершенно одинаковым образом, но натянутые по-разному, будут иметь различную энергию. Струна с большим натяжением будет иметь большую энергию, чем струна с низким натяжением, поскольку для того, чтобы привести её в движение, потребуется большее количество энергии.
Это говорит о том, что энергия колеблющейся струны зависит от двух вещей: от точного вида колебаний (более интенсивные колебания соответствуют более высокой энергии) и от натяжения струны (более сильное натяжение, опять же, соответствует более высокой энергии). На первый взгляд это описание может привести вас к мысли, что при переходе к более слабым колебаниям, с меньшей амплитудой и с меньшим числом максимумов и минимумов, струна будет обладать всё меньшей энергией. Однако, как будет показано в главе 4 (в другом контексте), квантовая механика утверждает, что это рассуждение неверно. Согласно квантовой механике колебания струн, подобно всем другим колебаниям и волноподобным возмущениям, могут иметь только дискретные значения энергии. Грубо говоря, подобно компаньонам из ангара, у которых доверенные им деньги равны произведению целого числа на номинал денежных купюр, энергия, которую несёт та или иная мода колебания струны, представляет собой произведение целого числа на минимальный энергетический номинал. Конкретней, этот минимальный энергетический номинал пропорционален натяжению струны (а также числу максимумов и минимумов конкретной моды колебаний), а целочисленный множитель определяется амплитудой моды колебаний.
Ключевым моментом здесь является следующее. Поскольку минимальный энергетический номинал пропорционален огромному натяжению струны, минимальная фундаментальная энергия также будет огромна по сравнению с обычными масштабами физики элементарных частиц. Она будет кратна величине, известной под названием планковская энергия. Чтобы дать представление об этой величине, скажем, что если мы пересчитаем планковскую энергию в массу, используя знаменитую формулу Эйнштейна E = mc2, полученное значение будет примерно в десять миллиардов миллиардов (1019) раз превышать массу протона. Эта чудовищная по стандартам физики элементарных частиц масса известна под названием планковской массы; она примерно равна массе пылинки или массе колонии из миллиона средних по размерам бактерий. Итак, типичная эквивалентная масса колеблющейся петли в теории струн обычно равна произведению целого числа (1, 2, 3, и т. д.) на планковскую массу. Физики говорят, что в теории струн «естественной» или «характерной» шкалой энергий (или масс) является планковская шкала.
Здесь возникает важный вопрос, имеющий прямое отношение к задаче воспроизведения характеристик частиц в табл. 1.1 и 1.2. Если «естественная» энергетическая шкала теории струн примерно в десять миллиардов миллиардов раз превышает значения энергии и массы протона, как она может использоваться для намного более лёгких частиц — электронов, кварков, протонов и т. п., — образующих окружающий нас мир?
Ответ снова приходит из квантовой механики. Соотношение неопределённостей гарантирует, что не существует состояния абсолютного покоя. Все объекты испытывают квантовые флуктуации, поскольку в противном случае мы могли бы, в нарушение соотношения Гейзенберга, с абсолютной точностью узнать их местоположение и скорость. Это справедливо и для петель теории струн: независимо от того, насколько спокойной выглядит струна, она всегда в той или иной мере испытывает действие квантовых осцилляций. Замечательный факт, впервые установленный в 1970-х гг., состоит в том, что квантовые осцилляции и обычные колебания струны, которые обсуждались выше и были показаны на рис. 6.2 и 6.3, с энергетической точки зрения взаимно сокращают друг друга. Действительно, согласно квантовой механике энергия квантовых флуктуаций струны является отрицательной и уменьшает общую энергию колеблющейся струны на величину, примерно равную планковской энергии. Это означает, что струнные колебания с наинизшей энергией (которая, как мы наивно полагали, должна была равняться планковской энергии) в большинстве своём сокращаются, и в результате остаются колебания с относительной низкой суммарной энергией, массовый эквивалент которой близок к массам перечисленных в табл. 1.1 и 1.2 частиц вещества и частиц, переносящих взаимодействия. Следовательно, именно моды колебаний с наименьшей энергией обеспечивают контакт между теоретическим описанием струн и экспериментом в мире физики элементарных частиц. Например, Шерк и Шварц обнаружили, что мода колебаний, являющаяся кандидатом на роль гравитона, характеризуется полным сокращением энергии частицы, являющейся переносчиком гравитационного взаимодействия, приводя к нулевой массе. Это именно то, что ожидалось для гравитона: сила тяготения распространяется со скоростью света, и только частицы, не имеющие массы, могут двигаться с этой максимальной скоростью. Однако низкоэнергетические моды колебаний в гораздо большей степени являются исключением, чем правилом. Более типичное колебание фундаментальной струны соответствует частице, масса которой в миллиарды миллиардов раз превосходит массу протона.
Из этого следует, что сравнительно лёгкие фундаментальные частицы табл. 1.1 и 1.2 образуются, в некотором смысле, из тумана, расстилающегося над ревущим океаном высокоэнергетических струн. Даже такая тяжёлая частица, как t-кварк, масса которой примерно в 189 раз превосходит массу протона, может возникнуть в результате колебания струны только в том случае, если гигантская собственная энергия струны, равная по порядку планковской энергии, будет сокращена квантовыми флуктуациями с точностью, превышающей один на сто миллионов миллиардов. Выходит так, как если бы вы были участником телеигры «Верная цена»[23] и Боб Баркер дал бы вам десять миллиардов миллиардов долларов и потребовал, чтобы вы купили продукты («сократили» деньги) на всю сумму, оставив только 189 долларов, ни долларом больше или меньше. Потратить такую огромную сумму, да ещё с такой точностью, не зная при этом точных цен покупаемых товаров, — эта задача была бы очень тяжела даже для самых ловких из самых квалифицированных покупателей в мире. В теории струн, где средством обращения является энергия, а не деньги, приближённые вычисления с определённостью показали, что подобное сокращение энергии может происходить; однако по причинам, котрые будут становиться всё более ясными в последующих главах, подтверждение сокращения со столь высоким уровнем точности обычно лежит за пределами возможности современной теоретической физики. Несмотря на это, как было отмечено выше, мы увидим, что многие другие явления теории струн, которые менее чувствительны к таким тонким деталям, могут быть установлены и объяснены с достаточной достоверностью.
Это ведёт нас к третьему следствию, имеющему огромное значение в теории струн. Существует бесконечное число мод колебаний струны. Для примера на рис. 6.2 мы показали начало бесконечной последовательности вариантов, характеризующих вероятности колебаний с увеличивающимся числом максимумов и минимумов. Не означает ли это существование бесконечной последовательности элементарных частиц, что находилось бы в явном противоречии с современной ситуацией в экспериментальных исследованиях, показанной на табл. 1.1 и 1.2?
Ответом является «да». Если теория струн верна, каждой из бесконечного множества резонансных мод колебаний струн должна соответствовать элементарная частица. Здесь, однако, есть один важный момент. Высокое натяжение струн гарантирует, что за редким исключением эти моды колебаний соответствуют чрезвычайно тяжёлым частицам (исключение составляют колебания с минимальной энергией, которые отличаются почти полным сокращением массы ввиду квантовых флуктуаций). Слово «тяжёлый» здесь опять же означает «во много раз тяжелее планковской массы». Поскольку самые мощные из существующих ускорителей способны достичь энергий порядка тысячи масс протона, что составляет менее одной миллионной от одной миллиардной планковской энергии, возможность лабораторного изучения этих новых частиц, предсказываемых теорией струн, появится ещё нескоро.
Существуют, однако, другие, менее прямые способы поиска таких частиц. Например, энергии при возникновении Вселенной были достаточно высокими, чтобы такие частицы появлялись в изобилии. Вообще говоря, вряд ли можно ожидать, что эти частицы дожили до наших дней, поскольку сверхтяжёлые частицы обычно нестабильны и высвобождают свои огромные массы путём последовательного распада на всё более лёгкие частицы, превращаясь, в конце концов, в обычные, относительно лёгкие частицы окружающего нас мира. Однако существует вероятность того, что такое сверхтяжёлое состояние колебаний струны, являющееся реликтом эпохи Большого взрыва, могло дожить до наших дней. Открытие таких частиц, которое будет обсуждаться подробнее в главе 9, стало бы эпохальным событием.
Гравитация и квантовая механика в теории струн
Единая схема, которую даёт теория струн, очень привлекательна. Но истинную неотразимость придаёт ей возможность избавиться от вражды между гравитационным взаимодействием и квантовой механикой. Вспомним, что проблема при объединении общей теории относительности и квантовой механики возникает, когда основное понятие первой из них — плавно искривлённая геометрическая структура пространства и времени — сталкивается с главной особенностью второй, что всё во Вселенной, включая структуру пространства и времени, испытывает квантовые флуктуации, интенсивность которых растёт при уменьшении масштаба исследований. На субпланковском масштабе расстояний квантовые флуктуации становятся столь сильными, что приводят к разрушению понятия гладкого искривлённого геометрического пространства, и это означает нарушение принципов общей теории относительности.
Теория струн смягчает неистовые квантовые флуктуации путём «размазывания» микроскопических характеристик пространства. На вопрос о том, что это значит в действительности и как это разрешает противоречие, есть два ответа: грубый и более точный. Мы поочерёдно рассмотрим каждый из них.
Хотя это звучит довольно наивно, один из способов, которым мы можем изучить структуру какого-либо объекта, состоит в том, чтобы бросать в него другие предметы и наблюдать за тем, как они отражаются от него. В качестве примера укажем, что мы способны видеть предметы потому, что наши глаза собирают, а наш мозг расшифровывает информацию, которую несут фотоны, отражающиеся от объектов, на которые мы смотрим. На этом же принципе основаны ускорители частиц: в них частицы материи, например, электроны и протоны, сталкиваются между собой и с другими объектами; затем специальные детекторы анализируют разлетающиеся осколки для получения информации, позволяющей определить структуру объектов, участвующих в столкновениях.
Общее правило при таких исследованиях состоит в том, что размер частиц, используемых для исследования, определяет нижний предел разрешающей способности измерительной установки. Чтобы лучше понять смысл этого важного утверждения, представим, что Слим и Джим решили приобщиться к культуре и записались в кружок по рисованию. По ходу занятий Джима начинают всё более раздражать растущие художественные способности Слима, и он вызывает его на необычное состязание. Он предлагает, чтобы каждый взял косточку от персика, закрепил её в тисках и изобразил наиболее точным образом. Необычность предложения Джима состоит в том, что ни ему, ни Слиму не разрешается смотреть на косточку. Вместо этого каждый из них может бросать в неё разные предметы (но не фотоны!), наблюдать за тем, как они отскакивают от косточки, и на этой основе определять размеры, форму и детали строения косточки (см. рис. 6.4). Тайком от Слима Джим заряжает его «стрелялку» крупными шариками (как на рис. 6.4а), а свою — пятимиллиметровыми пластиковыми пульками гораздо меньшего размера (как на рис. 6.4б). Оба заводят свои орудия, и состязание начинается.
Рис. 6.4. Персиковая косточка закреплена в тисках. Для создания её изображения используются только наблюдения за тем, как отскакивают предметы — «зонды», — брошенные в неё. Используя зонды всё меньшего размера — шарики (а), пятимиллиметровые пульки (б), полумиллиметровые пульки (в), можно получать всё более детальное изображение
Лучшее, что удалось изобразить Слиму, показано на рис. 6.4а. Наблюдая за траекторией отскакивающих шариков, он смог установить, что размер косточки мал, и что она имеет твёрдую поверхность. Но это всё, что ему удалось узнать. Шарики были слишком велики, чтобы на них оказывали влияние более мелкие детали строения персиковой косточки. Когда Слим бросил взгляд на рисунок Джима (рис. 6.4б), он был поражён тем, что увидел. Однако быстрый взгляд на стрелялку Джима позволил ему понять, в чём дело: небольшие пульки, используемые Джимом, были достаточно малы, чтобы на угол, под которым они отражались, оказывали влияние некоторые крупные детали строения косточки. Таким образом, выстрелив в косточку большим количеством пятимиллиметровых пулек и наблюдая за их траекториями после отскока, Джим смог нарисовать более подробный рисунок. Чтобы не проиграть, Слим взял свою стрелялку, заполнил её снарядами ещё меньшего размера — полумиллиметровыми пульками, — которые так малы, что на характер их отражения будут оказывать влияние мельчайшие морщинки на поверхности косточки. Наблюдая за отскоком этих пулек, он смог нарисовать рисунок, который принёс ему победу (рис. 6.4в).
Урок, который можно извлечь из этого маленького состязания, ясен: размер частиц-зондов не может существенно превышать размер изучаемых физических особенностей; в противном случае разрешающая способность исследования окажется недостаточной для изучения интересующих нас структур.
Те же самые выводы относятся, конечно, и к случаю, когда мы захотим провести более глубокое исследование персиковой косточки, чтобы определить её структуру на атомном и субатомном уровне. Полумиллиметровые пульки не дадут никакой полезной информации по этому вопросу; они явно слишком велики, чтобы исследовать структуру на атомном уровне. Именно по этой причине в ускорителях в качестве зондов используются протоны или электроны: маленький размер этих частиц делает их гораздо более подходящими для этой цели. На субатомном уровне, где на смену классической логике приходят квантовые понятия, наиболее подходящей мерой разрешающей способности частиц является квантовая длина волны, которая определяет диапазон неопределённости местонахождения частиц. Этот факт является следствием приведённого в главе 4 обсуждения соотношения неопределённостей Гейзенберга. Там мы установили, что минимальная погрешность при использовании в качестве зонда точечных частиц (мы говорили о фотонных зондах, но сказанное применимо и ко всем другим частицам) примерно равна квантовой длине волны частицы, используемой в качестве зонда. Грубо говоря, разрешающая способность точечной частицы размазывается в результате действия квантовых флуктуаций подобно тому, как точность скальпеля хирурга уменьшается, когда его руки дрожат. Вспомним, однако, что в главе 4 мы также отметили один важный факт, состоящий в том, что квантовая длина волны частицы обратно пропорциональна моменту количества движения, который, грубо говоря, определяется её энергией. Таким образом, увеличивая энергию точечной частицы, можно делать её квантовую длину волны всё меньше и меньше, квантовое размазывание будет всё более уменьшаться и, следовательно, мы сможем использовать эту частицу для изучения всё более тонких структур. Интуитивно понятно, что частицы высокой энергии имеют большую проникающую способность и могут использоваться для изучения более мелких деталей строения.
В этом смысле становится очевидным различие между точечными частицами и нитями струн. Как в примере с пластиковыми пульками для изучения структуры поверхности персиковой косточки, присущая струне пространственная протяжённость не позволяет использовать её для исследования объектов, размер которых существенно меньше размера струны, в нашем случае — объектов, характерные размеры которых меньше планковской длины. Если перейти к более точным формулировкам, в 1988 г. Дэвид Гросс, работавший в то время в Принстонском университете, и его студент Пол Менде показали, что если учитывать квантовую механику, то непрерывное увеличение энергии струны не приводит к непрерывному увеличению её способности исследовать всё более тонкие структуры, в отличие от того, что имело бы место для точечной частицы. Они установили, что при увеличении энергии струны сначала её разрешающая способность растёт так же, как у точечной частицы высокой энергии. Однако, когда энергия струны превышает значение, необходимое для изучения структур в масштабе планковской длины, дополнительная энергия перестаёт вызывать увеличение разрешающей способности. Вместо этого дополнительная энергия приводит к увеличению размера струны, тем самым уменьшая её разрешающую способность. Типичный размер струны близок к планковской длине, но если накачать струну достаточной энергией, которую мы не можем даже представить, но которая могла существовать во время Большого взрыва, то можно было бы заставить струну вырасти до макроскопических размеров. Это был бы довольно топорный инструмент для изучения микромира! Всё выглядит так, как будто струна, в отличие от точечной частицы, имеет два источника размазывания: квантовые флуктуации, как для точечной частицы, а также собственные пространственные размеры. Увеличение энергии струны уменьшает размазывание, связанное с первым источником, но, в конечном счёте, увеличивает размазывание, обусловленное вторым. В результате, как бы вы ни старались, физические размеры струны не позволят вам использовать её на субпланковском масштабе расстояний.
Но ведь конфликт между общей теорией относительности и квантовой механикой возникает благодаря свойствам структуры пространства, проявляющимся в субпланковском масштабе расстояний. Если элементарные компоненты Вселенной непригодны для исследований на субпланковских масштабах расстояний, это значит, что ни они, ни какие-либо объекты, состоящие из таких компонентов, не могут испытывать влияния этих кажущихся гибельных квантовых флуктуаций на малых масштабах. Это похоже на то, что произойдёт, если мы проведём рукой по полированной гранитной поверхности. Хотя на микроскопическом уровне гранит является дискретным, зернистым и неровным, наши пальцы не смогут обнаружить эти микроскопические неровности, и поверхность покажется нам абсолютно гладкой. Наши толстые, длинные пальцы «смажут» микроскопическую дискретность. Подобно этому, поскольку струна имеет конечные пространственные размеры, существует нижний предел её разрешающей способности. Струна не способна обнаружить изменения на субпланковском масштабе расстояний. Подобно нашим пальцам на граните, струна смажет ультрамикроскопические флуктуации гравитационного поля. И хотя результирующие флуктуации по-прежнему остаются значительными, это смазывание сгладит их в степени, достаточной для преодоления несовместимости общей теории относительности и квантовой механики. В частности, теория струн ликвидирует обсуждавшиеся в предыдущей главе фатальные бесконечности, возникающие при попытке построить квантовую теорию гравитации на основе модели точечных частиц.
Существенное различие между аналогией с гранитом и нашей реальной проблемой структуры пространства состоит в том, что существуют способы обнаружить микроскопическую дискретность поверхности гранита. Для этого могут использоваться более точные зонды, чем наши пальцы. Электронный микроскоп способен обнаружить поверхностные структуры, размер которых составляет менее одной миллионной доли сантиметра; этого достаточно, чтобы увидеть многочисленные неровности на поверхности. В противоположность этому, в теории струн нет способа обнаружить «неровности» в структуре пространства на субпланковском уровне. Во Вселенной, управляемой законами теории струн, уже не является истинной обычная точка зрения, согласно которой мы можем без ограничения делить объекты на всё более и более мелкие части. Предел существует, он вступает в игру, когда мы сталкиваемся с разрушительной квантовой пеной, показанной на рис. 5.1. Следовательно, в определённом смысле, который станет яснее в последующих главах, можно утверждать, что бурные квантовые флуктуации на субпланковских расстояниях не существуют. Как выразился бы позитивист, объект или явление существует, только если мы можем — хотя бы в принципе — исследовать и измерить его. Поскольку предполагается, что струны являются наиболее фундаментальным объектом мироздания и имеют слишком большой размер, чтобы на них оказывали влияние флуктуации структуры пространства, происходящие на субпланковских расстояниях, эти флуктуации не могут быть измерены, и, следовательно, согласно теории струн они не существуют.
Обсуждение, приведённое выше, может оставить у вас чувство неудовлетворённости. Вместо того чтобы показать, что теория струн укрощает субпланковские флуктуации структуры пространства, мы, похоже, использовали ненулевой размер струн для того, чтобы обойти всю проблему стороной. Решили ли мы вообще хоть что-нибудь? Решили. Следующие два соображения позволят нам лучше понять это.
Прежде всего вывод, который можно сделать из предыдущего обсуждения, состоит в том, что предполагаемые флуктуации структуры пространства в масштабе субпланковских расстояний связаны исключительно с формулировкой общей теории относительности и квантовой механики в рамках модели, основанной на точечных частицах. Это означает, что центральное противоречие современной теоретической физики в определённом смысле является проблемой, которую породили мы сами. Поскольку мы ранее предположили, что все частицы вещества и все частицы, передающие взаимодействие, должны быть точечными объектами, практически не имеющими пространственной протяжённости, мы были обязаны рассматривать свойства Вселенной на произвольно малых масштабах. И на самых малых расстояниях мы столкнулись с проблемой, выглядящей неразрешимой. Теория струн утверждает, что мы столкнулись с этой проблемой только потому, что не поняли истинных правил игры: новые правила гласят, что существует предел тому, насколько глубоко можно исследовать Вселенную, — предел, определяющий, до какого уровня наше обычное поняти расстояния может применяться к ультрамикроскопической структуре мироздания. Становится понятно, что фатальные флуктуации структуры пространства возникают в наших теориях из-за неосведомлённости об этих пределах: модель с точечными частицами далеко выходит за рамки физической реальности.
Видя кажущуюся простоту этого решения, позволяющего разрешить конфликт, возникающий между общей теорией относительности и квантовой механикой, вы можете удивиться, почему прошло столько времени, пока учёные не осознали, что точечная модель частиц всего лишь идеализация, и что в реальном мире элементарные частицы имеют некоторые конечные размеры. Это второй момент, на который мы хотели бы обратить внимание. Уже давно некоторые из величайших умов теоретической физики, такие как Паули, Гейзенберг, Дирак и Фейнман, предполагали, что компоненты природы в действительности могут быть не точками, а маленькими, колеблющимися «капельками» или «ядрышками». Однако они, как и другие учёные, столкнулись с тем, что очень трудно построить теорию, фундаментальные компоненты которой не являются точечными частицами, и которая, в то же время, совместима с основополагающими физическими принципами, такими, как сохранение квантово-механической вероятности (согласно которому физические объекты не могут внезапно исчезать из Вселенной без всякого следа) и невозможность передачи информации со скоростью, превышающей скорость света. Снова и снова их исследования с разных точек зрения показывали, что отказ от парадигмы точечных частиц приводит к несоблюдению одного из этих принципов или их обоих. Поэтому в течение долгого времени казалось невозможным построить разумную квантовую теорию, основанную на чём либо ином, кроме точечных частиц. За двадцать с лишним лет глубоких исследований выяснилась поистине впечатляющая особенность теории струн: при всей непривычности некоторых понятий теория струн обладает всеми свойствами, которые должна иметь каждая разумная физическая теория. И, более того, благодаря наличию мод колебаний, реализующих гравитон, теория струн представляет собой квантовую теорию, включающую гравитацию.
Более точный ответ
Грубый ответ ухватывает сущность того, почему теория струн смогла добиться успеха там, где предшествующие теории, основанные на точечной модели частиц, потерпели неудачу. Поэтому без ущерба для понимания дальнейшего можно сразу перейти к следующему разделу. Однако, рассмотрев в главе 2 основные идеи специальной теории относительности, мы получили в своё распоряжение средства, позволяющие более точно описать, как теория струн борется с разрушительными квантовыми флуктуациями.
В более точном ответе мы будем использовать те же основные идеи, которые содержались в приближённом ответе, но выразим их непосредственно на языке струн. Мы увидим, как конечность размера струн «размазывает» информацию, которую можно было бы получить при зондировании с использованием точечных частиц, и тем самым, к нашему счастью, снимает проблему поведения пространства на ультрамикроскопических расстояниях, ответственную за центральную дилемму современной физики.
Сначала рассмотрим, как происходило бы взаимодействие между точечными частицами, если бы они действительно существовали, и, соответственно, как можно было бы использовать их в качестве физических зондов. Наиболее важным является показанный на рис. 6.5 случай взаимодействия между частицами, движущимися по пересекающимся путям, приводящим к столкновению.
Рис. 6.5. Две частицы взаимодействуют: они «сталкиваются между собой», и это приводит к изменению траектории каждой из них
Если бы эти частицы были бильярдными шарами, они могли бы столкнуться, после чего каждая из них начала бы двигаться по новой траектории. Квантовая теория поля с точечными частицами показывает, что то же самое происходит при столкновении элементарных частиц — они отскакивают друг от друга и продолжают свой путь по новым траекториям, — однако детали этого процесса отличаются.
Для большей определённости и простоты представим себе, что одна из двух частиц является электроном, а другая — её античастицей, позитроном. При столкновении частицы и античастицы они аннигилируют с выделением энергии в чистом виде, приводящим к образованию, например, фотона.[24] Чтобы отличать выходящую траекторию фотона от входящих траекторий электрона и позитрона, мы будем, следуя принятому в физике соглашению, изображать её волнистой линией. Обычно фотон проходит небольшое расстояние, после чего высвобождает энергию, полученную от первоначальной электрон-позитронной пары, путём образования другой электрон-позитронной пары, показанной на рис. 6.6.
Рис. 6.6. В квантовой теории поля частица и её античастица могут мгновенно аннигилировать с образованием фотона. Затем этот фотон порождает другую частицу и античастицу, которые движутся по расходящимся траекториям
Эти две частицы испытывают электромагнитное взаимодействие и, в конце концов, разлетаются по расходящимся траекториям. Такая последовательность событий имеет определённое сходство с описанием бильярдных шаров.
Нас интересуют детали взаимодействия, в частности, точка, где начальные электрон и позитрон аннигилируют с образованием фотона. Как станет ясно далее, главным является тот факт, что время и место этого события могут быть установлены однозначно и точно, как показано на рис. 6.6.
Как изменится описание, приведённое выше, если после тщательного исследования объектов, которые мы считали нульмерными точками, они окажутся одномерными струнами? Основной процесс взаимодействия будет тем же самым, но теперь движущиеся по пути к столкновению объекты представляют собой осциллирующие петли, показанные на рис. 6.7. Для определённых колебаний струны её моды будут как раз соответствовать позитрону и электрону, движущихся курсом на столкновение, как показано на рис. 6.6. Истинный струнный характер становится очевидным только при исследовании в ультрамикроскопическом масштабе, выходящем далеко за пределы современных экспериментальных возможностей. Как и в случае с точечными частицами, две струны сталкиваются и аннигилируют, превращаясь во вспышку, которая представляет собой фотон и сама по себе является струной, колеблющейся в определённой моде. Таким образом, две исходные струны взаимодействуют между собой, сливаясь и образуя третью струну, как показано на рис. 6.7.
Рис. 6.7. а) Две струны, движущиеся курсом на столкновение, могут слиться и образовать третью струну, которая вслед за этим может разделиться на две струны, движущиеся по расходящимся траекториям. б) Тот же процесс, что и на рис. а), но более явно прослеживающий движение струн. в) «Замедленная киносъёмка» двух взаимодействующих струн даёт мировую поверхность
Как и в случае точечных частиц, эта струна проходит некоторое расстояние, после чего выделяет энергию, полученную от двух исходных струн, разделяясь на две новые струны, которые продолжают движение. Опять же, со всех точек зрения, кроме той, которая относится к микроскопическим масштабам, это будет выглядеть идентично взаимодействию между точечными частицами на рис. 6.6.
Существует, однако, радикальное различие между этими двумя описаниями. Мы подчеркнули, что взаимодействие между точечными частицами происходит в однозначно идентифицируемой точке пространства и времени, в точке, с положением которой согласятся все наблюдатели. Как мы сейчас увидим, для взаимодействия между струнами это неверно. Мы продемонстрируем это, сравнив, как Джордж и Грейс, два наблюдателя, находящихся в относительном движении, могли бы описать это взаимодействие. Мы увидим, что они не придут к единому мнению по вопросу о том, где и когда две струны впервые пришли в соприкосновение.
Представим, что мы наблюдаем за взаимодействием двух струн с помощью фотокамеры, затвор которой остаётся открытым, и вся хронология процесса регистрируется на одном фрагменте плёнки.[25]{31} На рис. 6.7в показан результат: его называют мировой поверхностью. Путём «разрезания» мировой поверхности на параллельные части (примерно так же, как мы разрезаем на куски батон хлеба) можно восстановить, момент за моментом, историю взаимодействия струн. Пример такого разрезания показан на рис. 6.8.
Рис. 6.8. Две исходные струны (с точки зрения Джорджа) в три последовательных момента времени. В моменты а) и б) струны сближаются, в момент в), с его точки зрения, они впервые соприкоснулись
В частности, на рис. 6.8а мы показали Джорджа, пристально наблюдающего за двумя сближающимися частицами, а также плоскость, которая вычленяет все события в пространстве, происходящие одновременно с его точки зрения. Как часто делалось в предыдущих главах, для наглядности мы отбросили на диаграмме одно пространственное измерение. На самом деле, конечно, существует трёхмерный массив событий, которые происходили одновременно для любого наблюдателя. На рис. 6.8б и 6.8в приведены два последовательных моментальных снимка — два последовательных «среза» мировой поверхности, — показывающих, как Джордж видит две струны, приближающиеся друг к другу. Особую важность имеет отмеченный на рис. 6.8в момент, когда, с точки зрения Джорджа, две струны войдут в соприкосновение и сольются, образовав третью струну.
А теперь повторим всё то же самое для Грейс. Как мы указывали в главе 2, относительное движение Джорджа и Грейс приведёт к тому, что они не согласятся по вопросу о том, какие события являются одновременными. С точки зрения Грейс события в пространстве, являющиеся одновременными, лежат в другой плоскости, показанной на рис. 6.9.
Рис. 6.9. Две исходные струны (с точки зрения Грейс) в три последовательных момента времени. В моменты а) и б) струны сближаются, в момент в), с её точки зрения, они впервые соприкоснулись
Иными словами, по мнению Грейс, для того чтобы момент за моментом восстановить процесс взаимодействия, мировая поверхность на рис. 6.7в должна быть «нарезана» на куски под другим углом.
На рис. 6.9б и 6.9в мы снова показали последовательные моменты времени, но теперь уже с точки зрения Грейс, включая момент, когда две начальные струны по её наблюдениям войдут в соприкосновение и образуют третью струну.
Сравнивая рис. 6.8в и 6.9в (результат показан на рис. 6.10), мы видим, что мнения Джорджа и Грейс разделятся относительно того, где и когда две исходные струны впервые соприкоснулись, т. е. где они взаимодействовали.
Рис. 6.10. Мнения Джорджа и Грейс по вопросу о месте, в котором произошло взаимодействие, разойдутся
Поскольку струна является протяжённым объектом, это означает, что не существует однозначного места в пространстве или момента во времени, когда струны начали взаимодействовать — эти характеристики зависят от того, как движется наблюдатель.
Если применить те же самые рассуждения к взаимодействию точечных частиц, как показано на рис. 6.11, мы вновь придём к выводам, которые уже получили ранее: существуют определённая точка в пространстве и момент во времени, когда произошло взаимодействие частиц.
Рис. 6.11. Наблюдатели, находящиеся в относительном движении, придут к согласию о месте и времени взаимодействия между двумя частицами
Всё взаимодействие точечных частиц происходит в одной определённой точке. Когда сила, связанная со взаимодействием, представляет собой гравитационную силу, т. е. когда частица, передающая взаимодействие, является гравитоном, а не фотоном, такая упаковка всей энергии взаимодействия в одну точку ведёт к катастрофическим результатам, вроде упоминавшихся ранее бесконечных ответов. В противоположность этому струны «размазывают» место, в котором происходит взаимодействие. Поскольку разные наблюдатели регистрируют взаимодействие происходящим в разных точках левой части поверхности на рис. 6.10, это означает, что точка взаимодействия в действительности размазана по всей этой области. Это увеличивает область, в которой происходит взаимодействие, и в случае гравитационной силы такое размазывание существенно смягчает ультрамикроскопические свойства, настолько, что вычисления дают нормальные конечные результаты вместо получавшихся ранее бесконечностей. Это более точная версия того размазывания, о котором шла речь в грубом ответе в предыдущем разделе. Подчеркнём ещё раз, что это размазывание приводит к сглаживанию ультрамикроскопических флуктуаций структуры пространства, когда субпланковские расстояния сливаются друг с другом.
Субпланковские детали, которые были бы доступны для изучения с помощью точечных частиц, в теории струн смазываются и предстают в безобидном виде. Это подобно тому, что происходит, если смотреть на мир через слишком слабые или слишком сильные очки. Однако, если теория струн представляет собой окончательное описание мироздания, то в отличие от случая плохого зрения здесь уже не существует никаких «корректирующих линз», через которые смогли бы отчётливо проявиться предполагаемые субпланковские флуктуации. Несовместимости общей теории относительности и квантовой механики, проявляющейся только в масштабе субпланковских расстояний, можно избежать во Вселенной, где есть нижний предел для расстояний, которые доступны для исследований или которые существуют в обычном смысле этого слова. Такова Вселенная, описываемая теорией струн: в ней законы макромира и микромира могут быть без ущерба объединены, после того как мы покончили с воображаемой катастрофой, возникающей на ультрамикроскопических расстояниях.
Не только струны?
Струны имеют две важных особенности. Во-первых, несмотря на конечность пространственных размеров, они могут быть непротиворечиво описаны в рамках квантовой механики. Во-вторых, среди резонансных мод колебаний имеется мода, свойства которой в точности совпадают со свойствами гравитона: тем самым гарантируется, что гравитационное взаимодействие представляет собой неотъемлемую часть этой теории. Однако, как мы помним, теория струн показала, что принятое понятие нульмерной точечной частицы оказалось не более чем математической идеализацией, не имеющей отношения к действительности. Не может ли быть так, что бесконечно тонкая одномерная струна представляет собой такую же математическую идеализацию? Может быть, одномерная струна на самом деле имеет какую-то толщину, подобно внутренней поверхности двумерной велосипедной шины или, если быть более реалистичными, подобно тонкой трёхмерной баранке? Но трудности, с которыми столкнулись Гейзенберг, Дирак и другие в попытках построить квантовую теорию трёхмерных фундаментальных комочков, выглядели непреодолимыми и вновь и вновь ставили в тупик исследователей, старавшихся пойти столь естественным путём.
Однако в середине 1990-х гг. специалисты по теории струн, используя косвенные и довольно сложные рассуждения, несколько неожиданно установили, что подобные фундаментальные объекты действительно играют важную и нетривиальную роль в самой теории струн. Исследователи постепенно осознали, что теория струн содержит не только струны. Важнейшее наблюдение, играющее центральную роль во второй революции в теории суперструн, начатой Виттеном и его коллегами в 1995 г., состоит в том, что теория суперструн в действительности включает в себя компоненты различной размерности: элементы, похожие на двумерные фрисби-диски, на трёхмерные капли, и даже ещё более экзотические конструкции. Эти новейшие достижения будут рассмотрены в главах 12 и 13. А пока будем следовать хронологии открытий и обсудим новые поразительные свойства Вселенной, состоящей не из нульмерных точечных частиц, а из одномерных струн.
Глава 7. «Супер» в суперструнах
Когда в ходе экспедиции Эддингтона 1919 г., организованной для проверки предсказаний Эйнштейна об отклонении света звёзд Солнцем, был получен положительный результат, голландский физик Хендрик Лоренц известил об этом Эйнштейна телеграммой. Когда содержание телеграммы, подтверждающей общую теорию относительности, распространилось по всему миру, один студент задал Эйнштейну вопрос, о чём бы он подумал, если бы эксперимент Эддингтона не обнаружил предсказанного отклонения лучей света звёзд. Эйнштейн ответил: «Мне было бы жаль Всевышнего, поскольку теория верна».{32} Конечно же, если бы эксперименты действительно не подтвердили предсказаний Эйнштейна, его теория была бы признана неверной, и общая теория относительности не стала бы одним из столпов, на которых покоится современная физика. На самом деле Эйнштейн имел в виду, что общая теория относительности описывает гравитацию с таким изяществом, используя такие простые и в то же время мощные идеи, что он не мог себе представить, как природа могла пройти мимо этой возможности. С точки зрения Эйнштейна общая теория относительности была слишком красивой, чтобы оказаться неверной.
Однако эстетические аргументы не решают научных споров. В конечном счёте, истинность физических теорий проверяется тем, насколько успешно они объясняют бесстрастные и упрямые экспериментальные данные. Однако к этому последнему утверждению есть одна очень важная оговорка. Когда теория находится в стадии разработки, её неполнота часто не позволяет детально установить все её экспериментальные следствия. Тем не менее, физики должны определить свой выбор и указать направления, в которых будут развиваться исследования такой незавершённой теории. Некоторые из этих решений диктуются внутренней логической непротиворечивостью; мы определённо требуем, чтобы любая разумная теория не содержала логически абсурдных положений. Другие решения обусловлены преимуществами одних теоретических конструкций над другими с точки зрения их следствий для экспериментальных исследований; обычно нас мало интересуют теории, содержимое которых не имеет отношения ни к чему, с чем мы сталкиваемся в окружающем нас мире. Однако, несомненно, бывают случаи, когда решения, принимаемые физиками-теоретиками, основываются на эстетических соображениях, на ощущении того, что красота и элегантность той или иной теории соответствует красоте и элегантности окружающего нас мира. Конечно, нет никаких гарантий, что такие соображения приведут нас к истине. Может быть, глубоко в своей основе структура мироздания менее элегантна, чем та, которую подсказывает наш опыт. Или, возможно, мы обнаружим, что современные эстетические критерии потребуют существенного пересмотра для применения в менее привычных условиях. Тем не менее, всегда и особенно сегодня, когда мы вступаем в эру, где наши теории описывают такие сферы мироздания, которые всё труднее поддаются экспериментальному изучению, физики будут рассчитывать на то, что подобные эстетические соображения помогут избежать тупиковых направлений. До настоящего времени такой подход не раз демонстрировал свою мощь и предсказательную силу.
В физике, как и в искусстве, одну из ключевых ролей в эстетических принципах играет симметрия. Однако в отличие от искусства, в физике понятие симметрии имеет очень конкретный и точный смысл. На самом деле, аккуратно облекая это точное понятие симметрии в математическую форму, в течение последних нескольких десятилетий физики смогли разработать теории, в которых частицы вещества и частицы, передающие взаимодействие, переплетены более тесно, чем это считалось возможным когда-либо ранее. Подобные теории, объединяющие не только существующие в природе взаимодействия, но и материальные компоненты, имеют максимально возможную степень симметрии. По этой причине такие теории получили название суперсимметричных. Как мы увидим ниже, теория суперструн является одновременно предтечей и кульминацией суперсимметричных моделей.
Характер физических законов
Вообразим себе Вселенную, в которой законы физики являются такими же недолговечными, как и течения в моде, меняясь от года к году, день ото дня или даже от мгновения к мгновению. Можно утверждать наверняка, что если эти изменения не нарушат основных жизненных процессов, в таком мире вам некогда будет скучать. Простейшие действия превратятся в захватывающие приключения, поскольку случайные изменения законов природы не позволят вам или кому-либо ещё использовать прошлый опыт для предсказания будущего.
Такая Вселенная была бы кошмаром для физика. Физики, как и большинство остальных людей, полагаются на стабильность мироздания: законы, которые истинны сегодня, были истинны вчера и останутся истинными завтра (даже если мы не настолько умны, чтобы понимать все эти законы). В конце концов, какой смысл следует вкладывать в слово «закон», если он может меняться столь незакономерно? Сказанное не означает, что Вселенная статична; Вселенная, несомненно, изменяется самым разнообразным образом от одного момента времени к другому. Скорее, это означает, что законы, управляющие подобной эволюцией, постоянны и неизменны. Возникает вопрос: действительно ли мы знаем, что это верно? На самом деле, не знаем. Однако наши успехи в описании многочисленных особенностей устройства мироздания, начиная от первого момента после Большого взрыва и по сегодняшний день, дают уверенность в том, что если законы природы и изменяются, то они должны делать это очень медленно. Простейшее предположение, согласующееся с тем, что нам известно на сегодняшний день, состоит в том, что законы природы неизменны.
Теперь представим себе Вселенную, в разных частях которой свои законы физики, и эти законы, как местные обычаи, изменяются непредсказуемым образом от места к месту и отчаянно сопротивляются любому внешнему влиянию. Путешествие в таком мире, подобно приключениям Гулливера, заставит вас столкнуться с огромным разнообразием непредвиденных ситуаций. Однако с точки зрения физика это опять будет кошмаром. Очень трудно, например, примириться с фактом, что законы, которые действуют в одной стране — или даже в одном штате, — могут не действовать в другом. Но попробуйте представить, что произойдёт, если таким же образом будут меняться законы природы. В таком мире эксперименты, проведённые в одном месте, не дадут никакой информации о физических законах, действующих в других местах. Физики должны будут снова и снова повторять свои эксперименты в разных местах, чтобы установить характер действующих там физических законов. К счастью, всё, что мы знаем на сегодняшний день, говорит о том, что повсеместно действуют одни и те же законы физики. Эксперименты, проводимые по всему миру, могут быть объяснены на основе одних и тех же физических принципов. Более того, наша способность объяснить многочисленные астрофизические наблюдения, относящиеся к самым удалённым уголкам Вселенной, используя один и тот же неизменный набор физических принципов, заставляет нас верить в то, что действительно повсюду правят одни и те же физические законы. Поскольку мы никогда не бывали на противоположном краю Вселенной, мы не можем исключить возможность того, что где-то физика имеет совершенно иной характер, но все известные нам данные заставляют отвергнуть такой вариант.
Опять же, сказанное не означает, что Вселенная выглядит одинаково или что детали её устройства одинаковы в разных местах. Космонавт, скачущий по Луне на «кузнечике» (палке с пружиной), способен проделать массу вещей, которые невозможно себе представить на Земле. Но мы понимаем, что это различие связано с тем, что Луна имеет гораздо меньшую массу, чем Земля; это вовсе не означает, что закон гравитации изменяется от одного места к другому. Ньютоновский или, точнее, эйнштейновский закон гравитации является одинаковым и для Земли, и для Луны. Различия в опыте космонавтов связаны с изменением обстановки, а не с изменением физических законов.
Физики называют эти два свойства физических законов, а именно то, что они не зависят от того, когда или где мы их применяем, симметриями природы. Используя этот термин, физики имеют в виду, что природа трактует каждый момент во времени и каждую точку в пространстве идентично, симметрично, гарантируя, что будут действовать одни и те же фундаментальные законы. Подобно их действию в живописи и в музыке, такие виды симметрии вызывают глубокое удовлетворение: они подчёркивают порядок и согласие в функционировании мироздания. Элегантность, с которой богатые, сложные и разнообразные явления вытекают из простого набора универсальных законов, составляет немалую часть того, что имеют в виду физики, используя слово «прекрасный».
В нашем обсуждении, посвящённом специальной и общей теории относительности, мы столкнулись и с другими видами симметрии в природе. Вспомним, что принцип относительности, который лежит в основе специальной теории относительности, гласит, что законы физики будут одинаковы для наблюдателей, движущихся равномерно относительно друг друга. Этот принцип представляет собой разновидность симметрии, поскольку он означает, что природа относится к наблюдателям совершенно одинаково, симметрично. Каждый такой наблюдатель имеет право считать, что он находится в состоянии покоя. Подчеркнём ещё раз, что это не означает идентичности картины, которую будут видеть разные наблюдатели; как мы показали ранее, их наблюдения могут существенно расходиться. Дело не в этом. Подобно различиям в ощущениях энтузиастов прыжков на палках с пружиной на Земле и на Луне, различия в наблюдениях отражают особенности обстановки, в которой проводились наблюдения, ведь наблюдатели находились в относительном движении. Но то, что они наблюдали, управлялось одними и теми же законами.
Открыв принцип эквивалентности, основу общей теории относительности, Эйнштейн значительно расширил этот тип симметрии. Он показал, что законы физики в действительности идентичны для всех наблюдателей, даже для тех, которые находятся в состоянии сложного ускоренного движения. Вспомним, что Эйнштейн придал этой идее законченный вид, осознав, что ускоряющийся наблюдатель имеет полное право считать, что он находится в состоянии покоя, утверждая, что сила, действующая на него, обусловлена гравитационным полем. После включения в данную систему гравитации все возможные точки зрения становятся абсолютно равноправными. Помимо несомненной эстетической привлекательности такой равноправной трактовки всех видов движения, эти принципы симметрии, как мы видели выше, играют ключевую роль в поразительных выводах о характере гравитации, к которым пришёл Эйнштейн.
Есть ли ещё принципы симметрии, имеющие дело с пространством, временем и движением, которым должны удовлетворять законы физики? Если вы основательно поразмыслите об этом, то сможете указать ещё один принцип. Законы физики не должны зависеть от того, под каким углом вы проводите свои наблюдения. Например, если вы проводите какой-то эксперимент и после этого решаете повернуть вашу установку и повторить опыт, должны действовать те же самые законы. Этот принцип известен под названием вращательной симметрии, он означает, что законы физики трактуют все возможные направления как равноправные. Данный принцип симметрии имеет такое же значение, как и рассмотренные выше.
Существуют ли какие-либо ещё принципы симметрии? Не пропустили ли мы какой-нибудь из них? Вы можете предложить калибровочные симметрии, связанные с негравитационными силами, обсуждавшиеся в главе 5. Да, это несомненные симметрии в природе, но они являются более абстрактными по своему характеру; в данный момент мы хотим сконцентрировать наше внимание на тех видах симметрии, которые имеют непосредственное отношение к пространству, времени или движению. Если добавить это условие, по всей вероятности, вам не удастся предложить чего-либо нового. На самом деле в 1967 г. физики Сидни Коулмен и Джеффри Мандула сумели доказать, что никакие другие виды симметрии, связанные с пространством, временем или движением, не могут сочетаться с принципами симметрии, рассмотренными выше, и приводить к теории, имеющей какое-либо отношение к нашему миру.
Однако впоследствии более тщательное изучение этой теоремы, основанное на догадках ряда физиков, позволило обнаружить одну небольшую лазейку: результат Коулмена — Мандулы не охватывает симметрии, связанные с понятием, известным как спин.
Спин
Элементарные частицы, например электрон, могут вращаться вокруг атомных ядер подобно тому, как Земля вращается вокруг Солнца. Однако может показаться, что в традиционной точечной модели электрона нет аналога вращению Земли вокруг своей оси. Когда объект вращается, точки, расположенные на оси вращения, подобно центральной точке фрисби-диска, остаются неподвижными. Но если какой-нибудь объект является действительно точечным, у него нет «других точек», которые не находились бы на оси вращения. В результате может показаться, что такого понятия, как вращение точечного объекта, попросту не существует. Много лет назад исследование этого вопроса привело к открытию ещё одного поразительного квантового эффекта.
В 1925 г. голландские физики Джордж Уленбек и Сэмюэль Гоудсмит осознали, что многие удивительные результаты, относящиеся к свойствам излучаемого и поглощаемого атомами света могут быть объяснены, если предположить, что электроны обладают некоторыми весьма специфичными магнитными свойствами. Примерно за сто лет до этого французский физик Андре-Мари Ампер показал, что магнетизм обязан своим происхождением движению электрических зарядов. Уленбек и Гоудсмит исследовали этот факт и установили, что только один конкретный вид движения электрона может привести к появлению магнитных свойств, на которые указывали экспериментальные данные: это было вращательное движение — спин электрона. Вопреки канонам классической физики, Уленбек и Гоудсмит провозгласили, что электрон, подобно Земле, может кружить по орбите и одновременно вращаться вокруг собственной оси.
Считали ли Уленбек и Гоудсмит, что электрон действительно вращается вокруг своей оси? И да, и нет. На самом деле их работа показала, что существует квантово-механическое понятие спина, которое в определённой степени напоминает вращение объекта вокруг собственной оси, но которое, по сути, представляет квантово-механическое явление. Это одно из тех свойств микромира, которое не имеет аналога в классической физике, а является экспериментально подтверждаемой квантовой особенностью. Представьте себе, например, вращающегося фигуриста. Когда он прижимает руки к телу, его вращение ускоряется, когда разводит руки в стороны — вращение замедляется. Однако рано или поздно, в зависимости от того, с какой энергией он начал своё вращение, его движение замедлится, и он остановится. Не так обстоят дела со спином, открытым Уленбеком и Гоудсмитом. Согласно их работе и данным последующих исследований, каждый электрон во Вселенной всегда вращается с постоянной и никогда не меняющейся скоростью. Спин электрона не является промежуточным состоянием движения, которое мы наблюдаем в случае более привычных объектов, по тем или иным причинам пришедших во вращение. Напротив, спин электрона является внутренним, присущим электрону свойством, похожим в этом отношении на массу или электрический заряд. Если бы электрон не вращался, он не был бы электроном.
Хотя первые работы были посвящены электронам, впоследствии физики показали, что понятие спина применимо ко всем частицам вещества, образующим три семейства из табл. 1.1. Это утверждение истинно вплоть до мельчайших деталей: все частицы вещества (а также их античастицы) имеют спин, равный спину электрона. На своём специальном языке физики говорят, что все частицы вещества имеют «спин 1/2», где значение 1/2 представляет собой, грубо говоря, квантово-механическую меру скорости вращения частиц.{33} Более того, физики показали, что частицы, передающие негравитационные взаимодействия, — фотоны, слабые калибровочные бозоны и глюоны — также обладают спином, который оказался в два раза больше, чем спин частиц вещества. Все эти частицы имеют «спин 1».
А как насчёт гравитации? Ещё до появления теории струн физики смогли установить, какой спин должен иметь гипотетический гравитон, чтобы он мог переносить гравитационное взаимодействие. Полученный ими ответ гласил: удвоенный спин фотонов, слабых калибровочных бозонов и глюонов — т. е. «спин 2».
В теории струн спин, так же как масса и константы других взаимодействий, связан с модой колебания струны. Как и в случае с точечными частицами, было бы не совсем правильно думать, что спин, который несёт струна, возникает из-за того, что она действительно вращается в пространстве, однако эта картина даёт хороший образ для представления. Кстати, теперь можно уточнить одно важное обстоятельство, с которым мы столкнулись ранее. В 1974 г. Шерк и Шварц провозгласили, что теория струн должна рассматриваться как квантовая теория, включающая гравитационное взаимодействие. Такой вывод стал возможен потому, что они обнаружили: в спектре колебаний струн обязательно должна присутствовать мода, которая соответствует безмассовой частице со спином 2. Но именно эти характеристики являются отличительными признаками гравитона. А где гравитон, там и гравитация.
Получив основные представления о спине, вернёмся к той роли, которую он играет в качестве упомянутой в предыдущем разделе лазейки в обход теоремы Коулмена — Мандулы, касающейся возможных видов симметрии в природе.
Суперсимметрия и суперпартнёры
Как мы уже подчёркивали, хотя понятие спина имеет поверхностное сходство с образом вращающегося волчка, оно имеет и значительные отличия, связанные с его квантовой природой. Открытие спина в 1925 г. показало, что имеется ещё один вид вращательного движения, который попросту не существует в чисто классической Вселенной.
Это позволяет задать следующий вопрос: если обычное вращательное движение приводит к принципу симметрии, носящему название инвариантности относительно вращений («физика рассматривает все возможные направления в пространстве как равноправные»), не ведёт ли это более специфическое вращательное движение ещё к одному принципу симметрии законов природы? Примерно к 1971 г. физики показали, что ответ на этот вопрос положителен. Хотя полное доказательство достаточно сложно, основная идея состоит в том, что если рассматривать спин с математической точки зрения, возможна ровно одна дополнительная симметрия законов природы. Она получила название суперсимметрии.{34}
Суперсимметрии не может быть поставлено в соответствие простое и интуитивно понятное изменение точки зрения наблюдателя: сдвиги во времени, пространственном положении, угловой ориентации и скорости движения уже исчерпали эти возможности. Однако поскольку спин представляет собой «подобие вращательного движения, имеющее квантово-механическую природу», суперсимметрия связана с изменением точки зрения наблюдателя в «квантово-механическом расширении пространства и времени». Кавычки здесь очень важны, поскольку последняя фраза даёт только общее представление о месте суперсимметрии в общей системе принципов симметрии природы.{35} Однако понимание принципа суперсимметрии является довольно сложной задачей, и мы сконцентрируем внимание на его основных следствиях, на том, согласуются ли законы природы с этим принципом. Этот вопрос гораздо легче поддаётся объяснению.
В начале 1970-х гг. физики пришли к выводу, что если Вселенная является суперсимметричной, частицы природы должны входить в набор наблюдаемых частиц парами, при этом спин частиц, образующих пару, должен отличаться на 1/2. Такие пары частиц — независимо от того, считаются ли они точечными (как в стандартной модели) или крошечными колеблющимися петлями — называются суперпартнёрами. Поскольку частицы вещества имеют спин 1/2, а некоторые из частиц, передающих взаимодействие — спин 1, суперсимметрия приводит к выводу о наличии пар, о партнёрстве частиц вещества и частиц, передающих взаимодействие. Сам по себе этот вывод выглядит весьма привлекательно с точки зрения объединения частиц в одну теорию. Проблема кроется в деталях.
К середине 1970-х гг., когда физики искали способ, который позволил бы включить суперсимметрию в стандартную модель, они обнаружили, что ни одна из известных частиц, перечисленных в табл. 1.1 и 1.2, не может быть суперпартнёром для другой. Как показал тщательный теоретический анализ, если Вселенная включает принцип суперсимметрии, то каждой известной частице должна соответствовать ещё не открытая частица-суперпартнёр, спин которой на половину меньше, чем спин её известного партнёра. Так, партнёр электрона должен иметь спин 0; эта гипотетическая частица получила название сэлектрона (сокращение от термина суперсимметричный электрон). То же самое справедливо и для других частиц вещества. Например, имеющие спин 0 гипотетические суперпартнёры нейтрино и кварков получили название снейтрино и скварков. Аналогично частицы, передающие взаимодействия, должны иметь суперпартнёров со спином 1/2. Для фотонов это будут фотино, для глюонов — глюино, для W-бозонов и Z-бозонов — вино и зино.
Таким образом, при более внимательном изучении суперсимметрия оказалась чрезвычайно неэкономичным понятием: она требовала большого количества дополнительных частиц, дублировавших список фундаментальных компонентов. Поскольку ни одна из частиц-суперпартнёров не была обнаружена, вы можете довольствоваться приведённым в главе 1 замечанием Раби по поводу открытия мюона, немного усилив его звучание: «Никто не заказывал суперсимметрию», и, без долгих рассуждений, отказаться от этого принципа симметрии. Существуют, однако, три причины, по которым многие физики твёрдо убеждены, что такой скоропалительный отказ от суперсимметрии был бы преждевременным. Обсудим эти причины.
Доводы в пользу суперсимметрии — до появления теории струн
Во-первых, с чисто эстетических позиций, физики не могли примириться с тем, что природа реализовала почти все, но не все математически возможные виды симметрии. Конечно, нельзя исключать возможность того, что симметрия реализуется не полностью, но это было бы так обидно. Это было бы похоже на то, как если бы Бах, написав многоголосные переплетающиеся партии, встроенные в гениальную картину музыкальной симметрии, забыл про финал, расставляющий всё по своим местам.
Во-вторых, даже в стандартной модели, в теории, которая игнорирует гравитацию, многочисленные технические трудности, связанные с квантовыми эффектами, безболезненно разрешаются при использовании суперсимметрии. Основная проблема состоит в том, что каждый отдельный вид частиц вносит свой собственный вклад в микроскопический квантовый хаос. Исследуя глубины этого хаоса, физики обнаружили, что некоторые процессы, связанные со взаимодействием частиц, можно описать непротиворечивым образом только при очень точной настройке параметров стандартной модели, с точностью, превышающей 1015, для нейтрализации наиболее разрушительных квантовых эффектов. Для сравнения: такая точность необходима для того, чтобы пуля, выпущенная из воображаемого сверхмощного ружья, попала в цель на Луне с отклонением, не превышающим размеры амёбы. Хотя стандартная модель допускает регулировку параметров с такой точностью, многие физики испытывают сильное недоверие к теории, которая устроена настолько деликатно, что разваливается, если параметр, от которого она зависит, изменяется на единицу в пятнадцатом разряде после запятой.{36}
Суперсимметрия радикальным обраом изменяет эту ситуацию, поскольку бозоны — частицы, имеющие целочисленный спин (получившие своё название в честь индийского физика Сатьендры Бозе), и фермионы — частицы, спин которых равен половине целого (нечётного) числа (названные в честь итальянского физика Энрико Ферми), имеют тенденцию вносить такие вклады в квантовый хаос, которые взаимно сокращаются. Вклады как будто находятся на противоположных концах коромысла: когда вклад бозонов в квантовые флуктуации положителен, вклад фермионов отрицателен, и наоборот. Поскольку суперсимметрия гарантирует, что бозоны и фермионы существуют парами, происходит изначальное сокращение, которое существенно уменьшает самые интенсивные квантовые флуктуации. В результате непротиворечивость суперсимметричной стандартной модели, в которую включены все частицы-суперпартнёры, перестаёт зависеть от подозрительно тонкой регулировки значений параметров обычной стандартной модели. Хотя этот момент кажется сугубо техническим, он делает суперсимметрию очень привлекательной в глазах многих специалистов по физике элементарных частиц.
Третье косвенное доказательство в пользу суперсимметрии связано с понятием великого объединения. Одно из самых загадочных свойств четырёх фундаментальных взаимодействий природы состоит в огромных различиях интенсивности этих взаимодействий. Интенсивность электромагнитных сил не превышает одного процента от интенсивности сильного взаимодействия. Слабое взаимодействие примерно в тысячу раз слабее электромагнитного, а интенсивность гравитационных сил слабее ещё в несколько сотен миллионов миллиардов миллиардов миллиардов (1035) раз. Следуя удостоенной Нобелевской премии пионерской работе Глэшоу, Салама и Вайнберга, установившей глубокую связь между электромагнитным и слабым взаимодействием (см. главу 5), Глэшоу и его коллега по Гарвардскому университету Говард Джорджи предположили, что подобную связь можно протянуть и к сильному взаимодействию. Их работа, предлагавшая «великое объединение» трёх из четырёх взаимодействий, имела одно существенное отличие от электрослабой теории. Электромагнитное и слабое взаимодействия выкристаллизовались из более симметричного состояния, когда температура Вселенной упала примерно до миллиона миллиардов градусов выше абсолютного нуля (1015 K). Джорджи и Глэшоу показали, что объединение с сильным взаимодействием становится очевидным только при температуре, которая ещё в десять триллионов раз выше, примерно при десяти миллиардах миллиардов миллиардов миллиардов градусов выше абсолютного нуля (при 1028 K). С точки зрения энергии это примерно в миллион миллиардов раз больше массы протона, или примерно на четыре порядка меньше планковской массы. Джорджи и Глэшоу дерзко направили теоретическую физику в область энергий, на много порядков превышающих те, с которыми исследователи отваживались иметь дело раньше.
Следующая работа, выполненная Джорджи, Хелен Куинн и Вайнбергом в 1974 г. в Гарварде, с ещё большей очевидностью показала возможность объединения негравитационных взаимодействий в рамках теории великого объединения. Поскольку их вклад продолжает играть важную роль в объединении взаимодействий и исследовании суперсимметрии природы, потратим немного времени на то, чтобы объяснить его более подробно.
Мы знаем, что электромагнитное притяжение между двумя противоположно заряженными частицами и гравитационное притяжение между двумя массивными телами увеличивается при уменьшении расстояния между объектами. Это простые и хорошо известные факты из классической физики. Сюрпризы начинаются, когда мы исследуем влияние квантовой физики на интенсивность взаимодействий. Почему вообще квантовая механика оказывает какое-либо влияние на эти явления? Ответ опять же связан с квантовыми флуктуациями. Когда мы исследуем электрическое поле электрона, на самом деле мы исследуем его сквозь «туман» электрон-позитронных пар, непрерывно рождающихся и аннигилирующих в окружающей его области пространства. Некоторое время назад физики осознали, что этот кипящий туман микроскопических флуктуаций маскирует истинную напряжённость поля, создаваемого электроном, подобно тому, как туман в природе ослабляет луч маяка. По мере того, как мы приближаемся к электрону, мы проникаем всё глубже в обволакивающий его туман, состоящий из частиц и античастиц, и поэтому такой туман будет оказывать меньшее влияние на наши наблюдения. Из этого следует, что по мере приближения к электрону напряжённость создаваемого им электрического поля будет возрастать.
Физики отличают это возрастание напряжённости при приближении к электрону, связанное с квантовыми эффектами, от собственной напряжённости электромагнитного взаимодействия, возрастающей с уменьшением расстояния. Таким образом, напряжённость возрастает не просто потому, что мы приближаемся к электрону, но также вследствие того, что становится видимым собственное электрическое поле электрона. Хотя мы рассматривали электрон, на самом деле эти выводы применимы к любым частицам, несущим электрический заряд. Их можно суммировать утверждением, что квантовые эффекты ведут к росту электромагнитных сил при уменьшении расстояния.
А что можно сказать о других взаимодействиях, описываемых стандартной моделью? Как изменяется их интенсивность с изменением расстояния? В 1973 г. Гросс и Фрэнк Вильчек из Принстона и независимо от них Дэвид Политцер из Гарварда исследовали этот вопрос и получили удивительный результат. Квантовое облако, состоящее из рождающихся и аннигилирующих частиц, увеличивает интенсивность сильного и слабого взаимодействия. Это означает, что когда мы исследуем эти взаимодействия на более близких расстояниях, мы проникаем глубже в кипящее облако квантовых флуктуаций, и, следовательно, увеличение интенсивности ощущается менее заметно. Таким образом, интенсивность этих видов взаимодействия уменьшается при уменьшении расстояния, на котором мы их исследуем.
Джорджи, Куинн и Вайнберг использовали эти идеи и довели их до замечательного финала. Они показали, что если аккуратно учесть влияние всех этих квантовых флуктуаций, то мы увидим, что интенсивности всех трёх негравитационных взаимодействий станут сближаться. Хотя интенсивности этих трёх видов взаимодействий очень сильно различаются на масштабах расстояний, доступных современной технике, согласно выводам Джорджи, Куинн и Вайнберга, это различие связано с различным влиянием, которое оказывает на них «туман» квантовых флуктуаций. Их расчёты показали, что если проникнуть сквозь этот туман и исследовать взаимодействия не в обычных для нас масштабах, а на расстояниях, составляющих примерно одну сотую от миллиардной миллиардной миллиардной (1029) доли сантиметра (приблизительно в десять тысяч раз превышающем планковскую длину), интенсивности всех трёх негравитационных взаимодействий окажутся одинаковыми.
Высокие энергии, которые исследуются на таких малых расстояниях, значительно превышают те, с которыми мы обычно имеем дело, однако такие энергии были характерными для бурной и раскалённой Вселенной в момент, когда её возраст составлял примерно одну тысячную от одной триллионной триллионной триллионной (1039) доли секунды, а её температура, как упоминалось выше — около 1028 K. Эти теоретические работы показали, что примерно так же, как набор самых различных ингредиентов — кусков металла, дерева, горных пород, минералов и т. п. — сплавляется в единое целое и образует однородную, гомогенную плазму при нагреве до достаточно высокой температуры, сильное, слабое и электромагнитное взаимодействия при такой огромной температуре сливаются в одно величественное взаимодействие. Схематически это показано на рис. 7.1.[26]
Рис. 7.1. Интенсивность трёх негравитационных взаимодействий при уменьшении расстояния или (что эквивалентно) при увеличении энергии
Хотя у нас нет устройств, с помощью которых можно было бы производить измерения на столь малых рсстояниях или воспроизводить столь высокие температуры, за время, прошедшее с 1974 г., экспериментаторам удалось существенно уточнить значения интенсивности трёх негравитационных взаимодействий в обычных условиях. Эти данные, являющиеся начальными точками на трёх кривых изменения интенсивности взаимодействий, показанных на рис. 7.1, представляют собой исходные данные для квантово-механических расчётов, выполненных Джорджи, Куинн и Вайнбергом. В 1991 г. Уго Амальди из ЦЕРНа, Вим де Боер и Герман Фюрстенау из университета Карлсруэ в Германии пересчитали результаты Джорджи, Куинн и Вайнберга с использованием новых экспериментальных данных и продемонстрировали два замечательных факта. Во-первых, интенсивность трёх негравитационных взаимодействий почти (но не абсолютно) одинакова в масштабе малых расстояний (соответственно, высоких энергий и высоких температур), как показано на рис. 7.2.
Рис. 7.2. Уточнение расчёта интенсивностей взаимодействий показало, что без суперсимметрии они очень близки, но не совпадают
Во-вторых, это незначительное, но несомненное различие в интенсивности исчезает при включении суперсимметрии. Причина состоит в том, что новые частицы-суперпартнёры, существования которых требует суперсимметрия, дают дополнительные квантовые флуктуации достаточной величины, чтобы интенсивности взаимодействий стали одинаковыми.
Для большинства физиков чрезвычайно трудно поверить в то, что природа могла выбрать взаимодействия таким образом, чтобы на микроскопическом уровне они были почти, но не в точности равны. Это всё равно, как если бы вы собирали головоломку и увидели, что последний фрагмент имеет немного не ту форму, которая позволила бы ему занять последнее остающееся свободным место. Суперсимметрия искусно изменяет форму этого фрагмента, и все части головоломки встают на свои места.
Другой аспект этих последних достижений связан с тем, что они дают возможный ответ на вопрос, почему до сих пор не открыта ни одна частица-суперпартнёр. Расчёты, подтвердившие равенство интенсивности взаимодействий, а также ряд других исследований, выполненных физиками, показали, что частицы-суперпартнёры должны быть намного тяжелее, чем все открытые до сих пор частицы. Хотя точный прогноз дать пока невозможно, проведённые исследования показывают, что частицы-суперпартнёры должны быть как минимум в тысячу раз тяжелее протона. Это объясняет, почему такие частицы до сих пор не обнаружены: даже самые современные ускорители не способны развивать такие энергии. В главе 9 мы вернёмся к вопросу о перспективах экспериментальной проверки того, является ли суперсимметрия реальным свойством нашего мира.
Конечно, приведённые доводы в пользу того, чтобы принять суперсимметрию или, по крайней мере, не отвергать такой возможности, не являются неоспоримыми. Мы описали, как суперсимметрия придаёт нашим теориям наиболее симметричный вид, но вы можете возразить, что мироздание, возможно, вовсе не стремится принять наиболее симметричную форму, достижимую с математической точки зрения. Мы обратили ваше внимание на важный технический момент, состоящий в том, что суперсимметрия избавляет нас от необходимости детальной подгонки параметров стандартной модели для преодоления ряда тонких проблем в квантовой теории, но вы можете возразить, что истинная теория, описывающая явления природы, вполне может балансировать на тонкой грани между непротиворечивостью и саморазрушением. Мы показали, что на ничтожно малых расстояниях суперсимметрия изменяет интенсивность трёх негравитационных взаимодействий в точности так, чтобы они могли слиться в одно великое объединённое взаимодействие, но вы, опять же, можете возразить, что в устройстве мироздания нет ничего, что диктовало бы необходимость совпадения интенсивности этих взаимодействий на микроскопическом масштабе. Наконец, вы можете предположить, что частицы-суперпартнёры до сих пор не обнаружены просто потому, что наша Вселенная не является суперсимметричной и, следовательно, частицы-суперпартнёры не существуют.
Никто не может опровергнуть ни одно из этих возражений. Однако доводы, говорящие в пользу суперсимметрии, необычайно усиливаются, если мы рассмотрим её роль в теории струн.
Суперсимметрия в теории струн
Первоначальный вариант теории струн, начало которой было положено работой Венециано в конце 1960-х гг., содержал все виды симметрии, которые обсуждались в первых пунктах этой главы, но не включал суперсимметрию (которая в то время ещё не была открыта). Эта первая теория, базировавшаяся на концепции струн, называлась теорией бозонных струн. Слово бозонная указывает на то, что все моды колебаний бозонной струны обладали целочисленным спином: в этой теории не было фермионных мод, т. е. мод, спин которых отличался бы от целого числа на половину единицы. Это приводило к двум проблемам.
Во-первых, если назначением теории струн было описание всех взаимодействий и всех видов материи, она должна была каким-то образом включать фермионные моды колебаний, поскольку все известные частицы вещества имеют спин 1/2. Вторая, гораздо более серьёзная проблема была связана с существованием в теории бозонных струн ещё одной моды колебаний, масса которой (или, точнее, квадрат массы) была отрицательной, — так называемого тахиона. Возможность того, что в дополнение к более привычным частицам с положительными массами наш мир может содержать тахионы, изучалась физиками ещё до появления теории струн, однако их работы показали, что создать непротиворечивую теорию, включающую тахионы, чрезвычайно трудно, если вообще возможно. Аналогичным образом физики испробовали самые фантастические способы, пытаясь придать смысл экзотической идее тахионной моды в контексте теории струн, но все попытки оказались безуспешными. Эти две проблемы показали, что хотя теория бозонных струн была весьма интересна, в ней определённо не хватало каких-то существенных элементов.
В 1971 г. Пьер Рамон из университета штата Флорида принял вызов и модифицировал теорию бозонных струн, включив в неё фермионные моды колебаний. Его работа и результаты, полученные позднее Шварцем и Андре Невье, положили начало новой версии теории струн. Ко всеобщему удивлению, в эту новую теорию бозонные и фермионные моды колебаний входили парами. Для каждой бозонной моды существовала соответствующая фермионная, и наоборот. К 1977 г. работы Фердинандо Льоцци из университета Турина, а также работы Шерка и Дэвида Олива из Имперского колледжа, показали истинный смысл этого группирования в пары. Новая теория струн включала суперсимметрию, и то, что бозонные и фермионные моды колебания входили парами, было отражением высокой степени симметрии этой теории. В этот момент родилась суперсимметричная теория струн — теория суперструн. Работы Льоцци, Шерка и Олива дали ещё один очень важный результат: они показали, что вызывавшая беспокойство тахионная мода колебаний бозонных струн не свойственна суперструнам. Части конструкции теории струн постепенно вставали на свои места.
Однако изначально основное влияние работы Рамона, Невье и Шварца оказали не на теорию струн. К 1973 г. физики Джулиус Весс и Бруно Зумино осознали, что суперсимметрия — новый вид симметрии, появившийся при изменении формулировки теории струн, — применима и к теориям, основанным на точечной модели частиц. Они быстро предприняли важные шаги в направлении включения суперсимметрии в систему квантовой теории поля, основанной на точечной модели частиц. А поскольку в это время квантовая теория поля была основным объектом исследования специалистов по физике элементарных частиц (при этом теория струн всё более прочно занимала место на переднем краю исследований), за достижениями Весса и Зумино последовало огромное количество исследований в области, которая получила название суперсимметричной квантовой теории поля. Суперсимметричная стандартная модель, которую мы обсуждали в предыдущем разделе, была одним из главных теоретических достижений в этом направлении. Таким образом, благодаря зигзагам на пути развития теории струн, в большом долгу перед ней оказалась даже теория, основанная на точечной модели частиц.
С возрождением теории суперструн в середине 1980-х гг. суперсимметрия вновь вернулась в лоно, где она была впервые открыта. И в этом контексте свидетельства в пользу суперсимметрии выходят далеко за пределы того, о чём говорилось в предыдущем разделе. Теория струн представляет собой единственный известный нам способ объединения общей теории относительности и квантовой механики. При этом только суперсимметричная версия теории струн позволяет избежать фатальной тахионной проблемы и содержит фермионные моды колебаний, соответствующие частицам вещества, составляющим окружающий нас мир. Таким образом, суперсимметрия идёт рука об руку с теорией струн и тем, что она даёт для квантовой теории гравитации и для решения грандиозной задачи великого объединения всех видов взаимодействия и всех частиц материи. Физики полагают, что если теория струн верна, то верна и идея суперсимметрии.
Однако до середины 1990-х гг. в суперсимметричной теории струн была одна весьма серьёзная проблема.
Суперпроблема изобилия
Если кто-нибудь скажет вам, что он разгадал тайну судьбы Амелии Эрхарт[27], наверное, сначала вы отнесётесь к его словам скептически, но если он предоставит вам подтверждённые документами серьёзные свидетельства, вы, скорее всего, дослушаете этого человека до конца и, кто знает, может быть, он даже убедит вас. Но что вы подумаете, если спустя мгновение он сообщит вам, что у него есть ещё одно объяснение? Вы терпеливо слушаете и, к своему удивлению, обнаруживаете, что альтернативное объяснение столь же хорошо документировано и продумано, как и первое. После завершения рассказа о новом объяснении вам будет представлено третье, четвёртое и даже пятое объяснения, и каждое из них будет отличаться от предыдущих, но будет столь же хорошо подкреплено доказательствами. Нет никаких сомнений, что к концу вашей беседы вы будете чувствовать себя не ближе к решению загадки судьбы Амелии Эрхарт, чем вы были вначале. В области фундаментальных объяснений слово «больше» определённо означает «меньше».
К 1985 г. теория струн, несмотря на заслуженное восхищение, которое она вызывала, начала звучать подобно чересчур рьяному эксперту по судьбе Амелии Эрхарт. Причина состояла в том, что к 1985 г. физики осознали, что суперсимметрия, являющаяся центральным звеном теории струн, на самом деле может быть включена в неё не одним, а пятью различными способами. Каждый метод приводил к образованию пар бозонных и фермионных мод колебания, но детали такой группировки, а также многочисленные другие свойства получавшихся теорий, существенно различались. Хотя названия, которые получили эти теории, не имеют большой важности, потрудимся запомнить, что это были: теория струн типа I, теория струн типа IIA, теория струн типа IIB, теория гетеротических струн O(32) (произносится «о тридцать два»), а также теория гетеротических струн E8 E8 (произносится «е восемь на е восемь»). Все особенности теории струн, которые мы обсуждали до сих пор, справедливы для каждой из этих теорий, они различаются только в более тонких деталях.
Иметь пять различных версий того, что считалось теорией всего, т. е. возможной конечной объединяющей теорией, было слишком много для специалистов по теории струн. Как существует только одно правдивое объяснение того, что случилось с Амелией Эрхарт (независимо от того, узнаем ли мы его когда-нибудь), так и наиболее глубокое, фундаментальное понимание устройства мироздания, согласно нашим представлениям, может быть только одним. Мы живём в одной Вселенной и ожидаем существование только одного объяснения.
Одно из решений этой проблемы может быть следующим. Хотя у нас есть пять различных теорий суперструн, четыре лишних можно отбросить с помощью экспериментальных исследований, и в результате останется одна, истинная формулировка. Но даже если это удалось бы сделать, у нас всё равно остался бы саднящий вопрос — откуда возникли другие теории. Немного перефразируя Виттена: «Если одна из пяти теорий описывает нашу Вселенную, то кто живёт в четырёх остальных?»{37} Мечта физика состоит в том, чтобы его поиск окончательных ответов привёл к одному, уникальному, совершенно неизбежному выводу. В идеале окончательная теория, будь то теория струн или что-то иное, должна быть такой, какова она есть, просто потому, что другого способа не существует. Если бы мы открыли, что существует только одна логически непротиворечивая теория, объединяющая основные компоненты общей теории относительности и квантовой механики, многие почувствовали бы, что достигнуто глубочайшее понимание того, почему мироздание имеет те свойства, которые оно имеет. Короче говоря, наступили бы райские времена единой теории.{38}
Как мы увидим в главе 12, последние исследования в теории суперструн позволили сделать гигантский шаг в направлении этой единой утопии, показав, что пять различных теорий в действительности представляют собой пять различных способов описания одной и той же объединяющей теории. Теория суперструн имеет единое генеалогическое древо.
Всё, похоже, постепенно становится на свои места. Однако, как мы увидим в следующей главе, объединение в рамках теории струн требует ещё одного, более радикального отказа от наших обычных представлений.
Глава 8. Измерений больше, чем видит глаз
Иллюзия привычного
Эйнштейн в своей специальной и общей теории относительности разрешил два основных противоречия физики последнего столетия. Хотя проблемы, послужившие побудительным мотивом его работ, вовсе не предвещали такого результата, каждое из этих решений полностью трансформировало наше понимание пространства и времени. Теория струн разрешила третий главный конфликт в физике прошлого века, причём таким способом, который, наверное, восхитил бы даже Эйнштейна, и потребовала очередного коренного пересмотра наших понятий пространства и времени. Сотрясение основ современной физики было столь сильным, что не устояли даже наши представления о числе измерений во Вселенной, казавшиеся совершенно незыблемыми и, тем не менее, подвергшиеся радикальному и убедительному изменению.
Наша интуиция питается жизненным опытом. Но этим роль опыта не ограничивается: он формирует опорный каркас, в рамках которого мы анализируем и интерпретируем полученную из окружающего мира информацию. Например, вряд ли вы будете сомневаться, что Маугли, воспитанный стаей диких волков, будет интерпретировать окружающую действительность совсем иначе, чем мы. Даже менее сильные различия, например, различия между людьми, воспитанными в существенно разных культурных традициях, подчёркивают ту роль, которую играет жизненный опыт в восприятии мира.
Однако есть явления, воздействие которых испытывают все. И часто именно убеждения и ожидания, основанные на таком универсальном опыте, труднее всего поддаются определению и пересмотру. Простой, но глубокий пример состоит в следующем. Закрыв эту книгу и встав со стула, вы можете двигаться в трёх независимых направлениях — т. е. в трёх независимых пространственных измерениях. Каким бы путём вы не последовали, — независимо от того, насколько сложным он будет, — результат может быть описан как комбинация перемещений в трёх направлениях: «влево-вправо», «вперёд-назад» и «вверх-вниз». Каждый раз, когда вы делаете очередной шаг, вы неявно делаете три независимых выбора, определяющих ваше движение в этих трёх измерениях.
Эквивалентное утверждение, с которым мы столкнулись, рассматривая специальную теорию относительности, заключается в том, что любая точка Вселенной может быть однозначно определена тремя параметрами, указывающими её положение в этих трёх пространственных измерениях. Например, вы можете описать адрес в горое, указав стрит[28] (положение в измерении «влево-вправо»), авеню (положение в измерении «вперёд-назад») и этаж (положение в измерении «вверх-вниз»). Работы Эйнштейна показали нам, что время может рассматриваться как ещё одно измерение (измерение «будущее-прошлое»), что увеличивает общее число измерений до четырёх (три пространственных и одно временное). Вы определяете события во Вселенной, указывая, где и когда они произошли.
Эта особенность Вселенной кажется столь фундаментальной и естественной, что обычно даже не упоминается. Тем не менее, в 1919 г. малоизвестный польский математик Теодор Калуца из Кёнигсбергского университета дерзнул бросить вызов очевидному — он предположил, что в действительности Вселенная может иметь не три измерения, число измерений может быть больше. Иногда предположения, звучащие бессмысленно, таковыми и являются. Иногда они потрясают основы физики. Хотя потребовалось некоторое время на то, чтобы предположение Калуцы получило общее признание, оно привело к революции в формулировке физических законов. Отзвуки этого провидческого прозрения мы слышим до сих пор.
Идея Калуцы и уточнение Клейна
Предположение о том, что наша Вселенная может иметь более трёх пространственных измерений, может показаться бессмысленным, эксцентричным или мистическим. Однако в действительности оно является вполне реальным и тщательно обоснованным. Убедиться в этом будет проще, если на время оставить в покое Вселенную и рассмотреть более привычный объект, например длинный и тонкий Садовый шланг.
Представим, что несколько сотен метров Садового шланга протянуто поперёк каньона, и мы наблюдаем его с расстояния, скажем, в километр, как показано на рис. 8.1а.
Рис. 8.1. а) Садовый шланг со значительного расстояния выглядит одномерным объектом. б) При увеличении становится видимым второе измерение — то, которое имеет форму окружности, охватывающей ось шланга
С такого расстояния хорошо видна горизонтальная протяжённость длинного развёрнутого шланга, однако, если только вы не обладаете орлиным зрением, вам будет трудно оценить его обхват. Наблюдая шланг с такого большого расстояния, вы можете подумать, что если бы на шланге жил муравей, у него было бы только одно измерение для прогулок: влево-вправо вдоль шланга. Если бы вас попросили указать, где этот муравей находится в какой-то момент времени, вам достаточно было бы указать только одно число: расстояние от муравья до левого (или правого) конца шланга. Основная идея этих рассуждений состоит в том, что с расстояния в километр длинный кусок Садового шланга выглядит одномерным объектом.
На самом деле известно, что у шланга есть обхват. Вам, быть может, трудно разглядеть это с расстояния в километр, но если вы вооружитесь биноклем, он увеличит изображение шланга, и вы сможете увидеть это обхват непосредственно, как показано на рис. 8.1б. Рассматривая увеличенное изображение, вы увидите, что у маленького муравья, живущего на шланге, на самом деле есть два независимых направления для прогулок. Одно из них, как вы уже заметили, проходит влево-вправо по длине шланга, а второе — это измерение «по часовой стрелке — против часовой стрелки», расположенное по окружности шланга. Теперь вы понимаете, что для того, чтобы сказать, где ваш крошечный муравей находится в заданный момент, вы должны указать два числа: положение муравья вдоль длины шланга и его положение на окружности. Это отражает тот факт, что поверхность Садового шланга является двумерной.{42}
Эти два измерения явно различаются. Направление вдоль шланга является длинным, протяжённым, и хорошо видимым. Направление, опоясывающее шланг, является коротким, «свёрнутым» и трудноразличимым. Для того чтобы узнать о существовании циклического измерения, приходится исследовать шланг с существенно большим разрешением.
Этот пример подчёркивает неочевидную и важную особенность пространственных измерений: они могут быть двух видов. Они могут быть просторными, протяжёнными и, вследствие этого, доступными непосредственному наблюдению, но они также могут быть маленькими, скрученными и гораздо менее поддающимися обнаружению. Конечно, в нашем примере не пришлось тратить слишком много усилий на то, чтобы обнаружить «свёрнутое» измерение, опоясывающее ось шланга. Вам было достаточно воспользоваться биноклем. Однако если вам придётся иметь дело с очень тонким Садовым шлангом, имеющим обхват волоса или капилляра, обнаружить свёрнутое измерение будет не так-то просто.
В статье, которую Калуца отправил Эйнштейну в 1919 г., он высказал удивительное предположение. Калуца утверждал, что пространственная структура Вселенной может содержать больше измерений, чем три известных нам из жизненного опыта. Как мы вскоре увидим, мотивом для столь радикальной гипотезы было то, что она позволяла построить элегантный и мощный аппарат, объединяющий общую теорию относительности Эйнштейна и теорию электромагнитного поля Максвелла в единую и однородную концептуальную систему. Но как это предложение может согласовываться с тем очевидным фактом, что мы видим в точности три пространственных измерения?
Ответ, который в неявной форме содержится в работе Калуцы, и который позднее был выражен в явном виде и уточнён шведским математиком Оскаром Клейном в 1926 г., состоит в том, что структура пространства нашей Вселенной может содержать как протяжённые, так и свёрнутые измерения. Это значит, что в нашей Вселенной есть измерения, которые являются просторными, протяжёнными и легко доступными для наблюдения, подобно длине Садового шланга. Однако, подобно циклическому измерению того же шланга, Вселенная может содержать и дополнительные пространственные измерения, которые туго скручены в ничтожно малой области — столь малой, что она не может быть обнаружена даже с помощью самого современного экспериментального оборудования.
Чтобы получить более ясное представление о сути этого замечательного предложения, вернёмся на минуту к примеру с Садовым шлангом. Представим себе, что на шланге чёрной краской нарисовано с малым шагом большое количество охватывающих его окружностей. Издалека шланг по-прежнему выглядит тонкой одномерной линией. Но, взглянув на него в бинокль, вы обнаружите свёрнутое измерение; после окраски найти его будет ещё легче, чем раньше. Оно будет выглядеть так, как показано на рис. 8.2.
Рис. 8.2. Поверхность Садового шланга является двумерной. Одно измерение (идущее вдоль горизонтальной оси шланга), отмеченное прямой стрелкой, является длинным и протяжённым. Другое измерение (окружность шланга), отмеченное круговой стрелкой, является маленьким и свёрнутым
Ясно видно, что поверхность шланга является двумерной, с одним крупным и протяжённым измерением, а другим небольшим и имеющим форму окружности. Калуца и Клейн предположили, что аналогичную структуру имеет и наша Вселенная, только в ней имеется три обычных, протяжённых измерения и одно маленькое, циклическое; таким образом, общее число пространственных измерений равно четырём. Нарисовать предмет в пространстве с таким числом измерений непросто, поэтому для большей наглядности мы ограничились случаем двух протяжённых и одного маленького циклического измерения. Мы изобразили это на рис. 8.3, где структура пространства последовательно увеличивается примерно так же, как в случае поверхности Садового шланга.
Рис. 8.3. Как и на рис. 8.1, каждый последующий уровень представляет значительное увеличение пространственной структуры, показанной на предыдущем уровне. Видно, что наша Вселенная может иметь дополнительные измерения (как это показано на четвёртом уровне увеличения), коль скоро они свёрнуты в столь малые пространственные образования, чтоне поддаются прямому наблюдению
Самое нижнее изображение на рисунке показывает видимую структуру пространства — обычный окружающий нас мир в привычном масштабе расстояний, например, в метрах. Эти расстояния представлены самой редкой сеткой. На последующих изображениях структура пространства показана со всё большим увеличением: мы фокусируем взгляд на всё меньших областях, которые последовательно увеличиваем, чтобы сделать их видимыми. Сначала при переходе к меньшим расстояниям не происходит ничего особенного; на первых трёх уровнях увеличения пространство сохраняет основные особенности своей структуры. Однако, по мере того как мы продолжаем наше путешествие вглубь микромира, на четвёртом уровне увеличения на рис. 8.3 появляется новое, свёрнутое циклическое измерение, напоминающее круговые петли на ковре плотной вязки. Калуца и Клейн предположили, что дополнительное циклическое измерение существует в каждой точке пространства, определяемого протяжёнными измерениями, точно так же, как круговой ободок существует в каждой точке вдоль оси развёрнутого горизонтального шланга. (Для большей наглядности мы изобразили циклические измерения только в точках, равномерно расположенных на протяжённых измерениях.) На рис. 8.4 крупным планом показана микроструктура пространства, какой её видели Калуца и Клейн.
Рис. 8.4. Линии сетки соответствуют обычным протяжённым измерениям; кружками показаны новые малюсенькие свёрнутые измерения. Подобно круговым петелькам, образующим ворс ковра, эти кружки существуют в каждой точке протяжённых измерений, однако чтобы не загромождать рисунок, мы нарисовали их только в узлах сетки
Несмотря на очевидное сходство с Садовым шлангом, есть и несколько важных различий. Вселенная имеет три протяжённых пространственных измерения (мы показали только два из них) по сравнению с одним таким измерением у Садового шланга. Однако ещё важнее то, что на этом рисунке мы показали пространственную структуру самой Вселенной, а не просто объекта (такого как Садовый шланг), который существует внутри Вселенной. Но основная идея остаётся неизменной: если дополнительные, свёрнутые циклические измерения нашей Вселенной, подобные круговым ободкам на Садовом шланге, являются чрезвычайно малыми, их гораздо труднее обнаружить, чем явно наблюдаемые протяжённые измерения. На самом деле, если размер этих измерений достаточно мал, их невозможно обнаружить даже с помощью самых мощных инструментов. Что очень важно, циклическое измерение представляет собой не просто какое-то вздутие внутри привычных протяжённых измерений, как может показаться при взгляде на рисунок. Напротив, циклическое измерение представляет собой новое измерение, которое существует в каждой точке пространства обычных измерений, наряду с измерениями вверх-вниз, влево-вправо и вперёд-назад, которые также существуют в каждой точке. Это новое и независимое направление, в котором мог бы двигаться муравей, если бы он был достаточно мал. Чтобы определить пространственное положение такого микроскопического муравья, нам потребуется указать, где он находится в обычных пространственных измерениях (представленных сеткой), а также где он расположен на циклическом измерении. Для представления информации о расположении в пространстве потребуется четыре числа; если добавить время, пространственно-временная информация потребует пяти параметров, на один больше, чем мы привыкли думать.
Итак, мы пришли к довольно удивительным выводам. Хотя мы наблюдаем только три протяжённых пространственных измерения, рассуждения Калуцы и Клейна показывают, что это не исключает существования дополнительных, свёрнутых измерений, по крайней мере, если они достаточно малы. Вселенная вполне может иметь больше измерений, чем доступно нашему глазу.
Насколько малы должны быть эти измерения? Современная техника может обнаружить объекты, размер которых составляет одну миллиардную от одной миллиардной доли метра. Если дополнительное измерение свёрнуто до размера, который меньше этого значения, обнаружить его невозможно. В 1926 г. Клейн объединил первоначальное предположение Калуцы с некоторыми идеями бурно развивавшейся квантовой механики. Его расчёты показали, что дополнительное циклическое измерение по размерам сопоставимо с планковской длиной, что выходит далеко за рамки современных возможностей экспериментального изучения. С этого времени физики стали называть гипотезу о существовании дополнительных крошечных пространственных измерений теорией Калуцы — Клейна.[29]
Взад и вперёд по Садовому шлангу
Наглядный пример Садового шланга и иллюстрации, приведённые на рис. 8.3, призваны прояснить то, почему наша Вселенная может иметь дополнительные пространственные измерения. Но даже специалистам, ведущим исследования в этой области, трудно наглядно представить Вселенную, имеющую более трёх пространственных измерений. По этой причине физики, следуя примеру Эдвина Эббота{40}, опубликовавшего в 1884 г. увлекательную книгу «Флатляндия»[30], ставшую классикой популярного жанра, часто стремятся развить свои интуитивные представления о дополнительных измерениях, пытаясь представить, на что была бы похожа жизнь в воображаемой вселенной, имеющей меньшее число измерений, живя в которой мы постепенно осознаём, что она имеет больше измерений, чем прямо доступно нашему наблюдению. Попробуем вообразить двумерную вселенную, по форме напоминающую Садовый шланг. При этом мы должны отказаться рассматривать шланг с точки зрения «внешнего» наблюдателя как объект нашей Вселенной. Мы должны переместиться из нашего мира во вселенную Садового шланга, в которой поверхность очень длинного Садового шланга (вы можете считать его бесконечно длинным) являет собой всё пространство этой вселенной. Представьте себе, что вы крошечный муравей, живущий своей жизнью на этой поверхности.
Перейдём к ещё более экстремальной точке зрения. Представим, что длина циклического измерения во вселенной Садового шланга очень мала, настолько мала, что ни вы, ни ваши собратья-обитатели шланга даже не подозреваете о существовании этого измерения. Напротив, вы и все живущие во вселенной Садового шланга считаете бесспорно очевидным следующий фундаментальный факт вашей жизни — вселенная имеет одно пространственное измерение. (Если бы вселенная Садового шланга породила своего муравьиного Эйнштейна, обитатели шланга могли бы сказать, что их вселенная имеет одно пространственное и одно временное измерение.) В действительности этот факт кажется им настолько самоочевидным, что обитатели шланга называют место, где они проживают, Линляндией[31], подчёркивая тем самым, что оно имеет одно пространственное измерение.
Жизнь в Линляндии сильно отличается от той, к которой мы привыкли. Например, знакомые нам тела просто не могут поместиться в Линляндии. Сколько бы усилий вы ни прилагали, пытаясь изменить форму тела, вам ничего не удастся сделать с тем очевидным фактом, что у вас есть длина, ширина и высота, т. е. пространственная протяжённость в трёх измерениях. В Линляндии нет места для таких экстравагантных конструкций. Хотя ваш мысленный образ Линляндии может быть по-прежнему связан с длинным, похожим на нить объектом, существующим в нашем пространстве, вспомните, что вы должны думать о Линляндии как о вселенной — это и есть вселенная. Как обитатель Линляндии вы должны помещаться в ней. Попробуйте представить себе это. Даже если у вас будет тело муравья, вы не поместитесь в вашу вселенную. Вы должны сплющить ваше муравьиное тело, чтобы оно выглядело подобно телу червяка, а затем сдавливать его ещё и ещё, пока у него совсем не останется толщины. Чтобы жить в Линляндии, вы должны быть существом, у которого есть только длина.
Теперь представьте, что у вас есть по глазу на каждой стороне вашего тела. В отличие от глаз человека, которые могут вращаться в глазницах, чтобы иметь обзор в трёх измерениях, ваши глаза, глаза линляндца, навсегда зафиксированы в одном положении, каждый из них направлен вдоль единственного измерения. Это не является анатомическим ограничением вашего нового тела. Нет, вы и все другие линляндцы понимаете, что поскольку в Линляндии только одно измерение, здесь просто нет другого направления, в котором могли бы смотреть ваши глаза. Вперёд и назад — вот и все направления, которые существуют в Линляндии.
Мы можем попытаться дальше развивать наши представления о воображаемой жизни в Линляндии, но быстро осознаем, что она не слишком богата. Например, если по соседству с вами есть другой линляндец, представьте себе, как он будет выглядеть: вы увидите один его глаз, тот, который обращён к вам, но в отличие от глаза человека он будет выглядеть просто точкой. Глаза в Линляндии не имеют никаких индивидуальных особенностей и не выражают эмоций — для всего этого здесь просто нет места. Более того, вы навеки обречены видеть этот точечный глаз вашего соседа. Если вы захотите обойти его и исследовать ту часть Линляндии, которая лежит по другую сторону от его тела, вы будете очень разочарованы. Вы не сможете обойти его. Он полностью «загораживает дорогу», и в Линляндии нет места, чтобы обойти его. Последовательность расселения линляндцев после того, как они разместились по Линляндии, фиксирована и не может измениться. Такая вот тоска.
Несколько тысяч лет после пришествия бога в Линляндию, линляндец по имени Калуца К. Лин вселил некоторую надежду в сердца подавленных обитателей Линляндии. По божественному вдохновению или в полной тоске от многолетнего созерцания точечного глаза своего соседа он предположил, что Линляндия, в конце концов, может быть вовсе и не одномерной. Что, если, — теоретизировал он, — Линляндия на самом деле является двумерной, со вторым очень маленьким циклическим измерением, которое до сих пор не было открыто из-за его крошечного пространственного размера? Он продолжал рисовать картину совершенно новой жизни, которая начнётся, если только удастся увеличить в размере это свёрнутое измерение — возможность, которую нельзя было отрицать согласно недавним работам его коллеги Линштейна. Калуца К. Лин описал вселенную, которая поразила вас и ваших сотоварищей и наполнила ваши сердца надеждой — вселенную, в которой линляндцы могут свободно обходить один другого, используя второе измерение: они перестанут быть рабами пространства. Вы поняли, что Калуца К. Лин описывает жизнь в «утолщённой» вселенной Садового шланга.
В действительности, если циклическое измерение разрастётся, «раздув» Линляндию до вселенной Садового шланга, ваша жизнь изменится очень сильно. Возьмём, например, ваше тело. Поскольку вы линляндец, всё, что находится между вашими глазами, составляет ваше тело. Следовательно, ваши глаза играют такую же роль для вашего линейного тела, как кожа для обычного человеческого тела: они образуют барьер между вашим телом и окружающим его миром. Врач в Линляндии может получить доступ к внутренностям вашего линейного тела только проколов их поверхность, — другими словами, «хирургическое вмешательство» в Линляндии осуществляется через глаза.
А теперь представим, что произойдёт, если Линляндия действительно имеет секретное, скрытое измерение типа предложенного Калуцей К. Лином, и это измерение развернётся до размера, поддающегося непосредственному наблюдению. Теперь другой линляндец может видеть ваше тело под углом и, следовательно, непосредственно сможет увидеть его внутренность, как показано на рис. 8.5.
Рис. 8.5. Когда Линляндия расширится до размеров вселенной Садового шланга, один линляндец сможет заглянуть внутрь тела другого
Используя это второе измерение, врачи смогут оперировать ваше тело, получая доступ непосредственно к вашим открытым внутренностям. Чудеса! Со временем, несомненно, у линляндцев разовьётся покров, подобный кожному, защищающий вновь открывшиеся внутренности их тел от контакта с внешним миром. Более того, они несомненно эволюционируют в существ, имеющих не только длину, но и ширину: они станут плоскими существами, скользящими по двумерной вселенной Садового шланга, как показано на рис. 8.6.
Рис. 8.6. Плоские двумерные существа, живущие во вселенной Садового шланга
Если циклическое измерение станет очень большим, эта двумерная вселенная начнёт очень походить на Флатляндию Эббота — воображаемый двумерный мир, который Эббот наделил богатой культурой и даже кастовой системой, основанной на геометрической форме тел обитателей. Если в Линляндии трудно представить себе что-либо интересное — там просто нет места дою этого, — то жизнь на Садовом шланге переполнена возможностями. Эволюция от одного к двум наблюдаемым протяжённым пространственным измерениям очень радикальна.