Вселенная. Емкие ответы на непостижимые вопросы Хокинг Стивен
Hawking Stephen. «A Brief History of Time». New York: Bantam Books, 1988. (Рус. пер.: Хокинг С. «От Большого взрыва до чёрных дыр». М.: Мир, 1990.)
Hawking Stephen, and Roger Penrose. «The Nature of Space and Time». Princeton: Princeton University Press, 1996. (Рус. пер.: Хокинг С., Пенроуз Р. «Природа пространства и времени». Ижевск: РХД, 2000.)
p>Hey Tony and Patrick Walters. «Einstein’s Mirror». Cambridge, Eng.: Cambridge University Press, 1997.Kaku Michio. «Beyond Einstein». New York: Anchor, 1987.
Kaku Michio. «Hyperspace». New York: Oxford University Press, 1994.
Lederman Leon, with Dick Teresi. «The God Panicle». Boston: Houghton Mifflin, 1993.
Lindley David. «The End of Physics». New York: Basic Books, 1993.
Lindley David. «Where Does the Weirdness Go?» New York: Basic Books, 1996.
Overbye Dennis. «Lonely Hearts of the Cosmos». New York: HarperCollins, 1991.
Pais Abraham. «Subtle Is the Lord: The Science and the Life of Albert Einstein». New York: Oxford University Press, 1982. (Рус. пер.: Пайс А. «Научная деятельность и жизнь Альберта Эйнштейна». М.: Наука, Физматлит, 1989.)
Penrose Roger. «The Emperor’s New Mind». Oxford, Eng.: Oxford University Press, 1989. (Рус. пер.: Пенроуз P. «Новый ум короля». М.: URSS, 2008.)
Rees Martin J. «Before the Beginning». Reading, Mass.: Addison-Wesley, 1997.
Smolin Lee. «The Life of the Cosmos». New York: Oxford University Press, 1997.
Thorne Kip. «Black Holes and Time Warps». New York: Norton, 1994.
Weinberg Steven. «The First Three Minutes». New York: Basic Books, 1993. (Рус. пер.: Вайнберг. С. «Первые три минуты». М.: Мир, 1981.)
Weinberg Steven. «Dreams of a Final Theory». New York: Pantheon, 1992. (Рус. пер.: Вайнберг С. «Мечты об окончательной теории». М.: URSS, 2008.)
Wheeler John A. «A Journey into Gravity and Spacetime». New York: Scientific American Library, 1990.
1
Таблица ниже — расширенный вариант табл. 1.1. В неё входят массы и константы взаимодействия элементарных частиц всех трёх семейств. Кварк каждого типа может обладать тремя значениями сильного заряда, которые названы (довольно причудливо) цветами. Приведённые значения константы слабого взаимодействия представляют собой, строго говоря, «третью компоненту» слабого изоспина. (Мы не привели «правосторонние» компоненты частиц — они отличаются отсутствием заряда слабого взаимодействия.)
Частица | Масса[53] | Электрический заряд[54] | Заряд слабого взаимодействия | Заряд сильного взаимодействия |
---|---|---|---|---|
Семейство 1 | ||||
Электрон | 0,00054 | 1 | 1/2 | 0 |
Электронное нейтрино | < 108 | 0 | 1/2 | 0 |
u-кварк | 0,0047 | 2/3 | 1/2 | красный, зелёный, синий |
d-кварк | 0,0074 | 1/3 | 1/2 | красный, зелёный, синий |
Семейство 2 | ||||
Мюон | 0,11 | 1 | 1/2 | 0 |
Мюонное нейтрино | < 0,0003 | 0 | 1/2 | 0 |
c-кварк | 1,6 | 2/3 | 1/2 | красный, зелёный, синий |
s-кварк | 0,16 | 1/3 | 1/2 | красный, зелёный, синий |
Семейство 3 | ||||
Тау-частица | 1,9 | 1 | 1/2 | 0 |
Тау-нейтрино | < 0,033 | 0 | 1/2 | 0 |
t-кварк | 189,0 | 2/3 | 1/2 | красный, зелёный, синий |
b-кварк | 5,2 | 1/3 | 1/2 | красный, зелёный, синий |
2
Из письма Альберта Эйнштейна к другу. Написано в 1942 г., цитируется по книге: Tony Hey, Patrick Walters, «Einstein’s Mirror». Cambridge, Eng.: Cambridge University Press, 1997.
3
Steven Weinberg, «Dreams of a Final Theory». New York: Pantheon, 1992, p. 52. (Рус. пер.: Вайнберг С. «Мечты об окончательной теории». М.: URSS, 2008.)
4
Интервью с Эдвардом Виттеном, 11 мая 1998 г.
5
Для читателей, любящих математику, заметим, что эти наблюдения могут быть выражены в количественной форме. Например, если движущиеся световые часы имеют скорость , а фотон совершает своё движение «туда и обратно» за t секунд (по показаниям неподвижных часов), то за время, которое потребуется фотону, чтобы вернуться к нижнему зеркалу, световые часы пройдут расстояние t. Используя теорему Пифагора, можно рассчитать длину пути по диагонали на рис. 2.3. Она составит , где h представляет собой расстояние между зеркалами световых часов (равное 15 см). Суммарная длина двух диагональных отрезков будет равна . Поскольку скорость света является константой, которая обычно обозначается c, фотону потребуется секунд на то, чтобы пройти оба диагональных отрезка. Таким образом, у нас есть уравнение , из которого мы можем найти значение . Чтобы избежать недоразумений, обозначим это значение как , индекс у t в этом выражении указывает на то, что мы измеряем продолжительность одного цикла для движущихся часов. С другой стороны, время цикла для неподвижных часов tнеподв можно рассчитать по формуле tнеподв = 2h/c. Используя несложные алгебраические преобразования, получим выражение , которое непосредственно свидетельствует о том, что продолжительность тика движущихся часов больше, чем у неподвижных. Это означает, что для промежутка времени между двумя выбранными событиями движущиеся часы совершат меньшее число тиков, чем неподвижные, т. е. для движущегося наблюдателя пройдёт меньше времени.
6
Если опыт с ускорителем частиц, понятный узкому кругу специалистов, не выглядит для вас очень убедительным, приведём ещё один пример. В октябре 1971 г. Дж. С. Хафеле, работавший в то время в университете Вашингтона в Сент-Луисе и Ричард Китинг из Военно-морской лаборатории США провели эксперимент, в ходе которого цезиевые атомные часы провели около 40 часов на борту самолётов, совершавших коммерческие авиарейсы. После того, как был учтён ряд тонких эффектов, связанных с действием гравитации (которая будет обсуждаться в следующей главе), расчёты с использованием специальной теории относительности показали, что показания движущихся часов должны быть меньше показаний неподвижных часов на несколько сотен миллиардных долей секунды. Именно такие данные и получили Хафеле и Китинг: для движущихся часов время действительно замедляет ход.
7
Для читателей, имеющих математическую подготовку, заметим, что по 4-вектору положения в пространстве-времени можно построить 4-вектор скорости
где — собственное время, определяемое соотношением
Тогда «скорость в пространстве-времени» будет представлять собой величину 4-вектора u,
которая равна скорости света c. Теперь уравнение
можно переписать в форме
Это показывает, что увеличение скорости тела в пространстве должно сопровождаться уменьшением величины d/dt, которая представляет собой скорость объекта во времени (скорость, с которой идут его собственные часы d по отношению к скорости наших неподвижных часов dt).
8
Isaac Newton, «Sir Isaac Newton’s Mathematical Principle of Natural Philosophy and His System of the World», trans. A. Motte and Florian Cajori. Berkeley: University of California Press, 1962, v. I, p. 634. (В рус. пер. см.: письмо Ньютона архиепископу Бентли от 25 февраля 1693 г. // Письма Ньютона и Ньютону. М.: ВИЕТ, 1993, № 1, с. 33–45.)
9
Цитируется по книге: Albrecht Flsing, «Albert Einstein». New York: Viking, 1997, p. 315.
10
John Stachel, «Einstein and the Rigidly Rotating Disk». Опубликовано в «General Relativity and Gravitation», ed. A. Held. New York: Plenum, 1980, p. 1.
11
Анализ аттракциона «Верхом на торнадо» или «жёсткого вращающегося диска», как он называется на более профессиональном языке, может легко привести к недоразумениям. Так, например, и по сей день нет общего согласия по ряду деталей этого примера. В тексте мы следовали духу анализа, выполненного самим Эйнштейном; в примечании мы, оставаясь на той же точке зрения, постараемся пояснить некоторые особенности, которые могут привести к недоразумениям. Во-первых, может показаться непонятным, почему длина окружности колеса не испытает лоренцевского сокращения в той же мере, что и линейка: в этом случае результат, полученный Слимом, совпадал бы с первоначальным. Здесь следует иметь в виду, что мы всё время считали, что колесо непрерывно вращается и никогда не рассматривали его в состоянии покоя. Таким образом, с точки зрения неподвижных наблюдателей, единственное различие между измерениями длины окружности и измерениями Слима будет состоять в том, что линейка Слима испытала лоренцевское сокращение; колесо вращалось и во время наших измерений, и тогда, когда мы наблюдали за измерениями Слима. Видя, что линейка Слима испытала сокращение, мы понимали, что ему придётся приложить её большее число раз, чтобы пройти по всей длине окружности и, следовательно, он получит большее значение, чем мы. Лоренцевское сокращение окружности колеса можно установить, только сравнив результаты измерений на покоящемся и вращающемся колесе, однако такое сравнение нас не интересовало.
Во-вторых, хотя нам и не требовалось анализировать аттракцион в состоянии покоя, у вас может остаться вопрос, а что случится с колесом, когда оно замедлит своё движение и остановится? Может показаться, что в этом случае следует учитывать изменение длины окружности при изменении скорости вращения, вызванное сокращением Лоренца. Но как можно согласовать это с неизменным радиусом? Это тонкая проблема, решение которой опирается на тот факт, что в реальном мире не существует абсолютно жёстких тел. Тела могут растягиваться и изгибаться в ответ на испытываемое ими растяжение или сжатие. Если этого не произойдёт, то, как указал Эйнштейн, диск, изготовленный путём охлаждения вращающейся отливки, может разрушиться при изменении скорости вращения. Более подробно история с жёстким вращающимся диском описана в работе Стахеля (John Stachel, «Einstein and the Rigidly Rotating Disk». Опубликовано в «General Relativity and Gravitation», ed. A. Held. New York: Plenum, 1980.).
12
Цитата Германа Минковского взята из работы: Albrecht Flsing, «Albert Einstein». New York: Viking, 1997, p. 189.
13
Интервью с Джоном Уилером, 27 января 1998 г.
14
В середине XIX в. французский учёный Урбен Жан-Жозеф Леверье установил, что орбита планеты Меркурий немного отклоняется от орбиты, по которой она должна вращаться вокруг Солнца в соответствии с ньютоновским законом всемирного тяготения. В течение более чем полувека предлагались самые разные объяснения так называемой аномальной прецессии перигелия (на обычном языке, в крайних точках своей орбиты Меркурий оказывался не в том месте, в котором он должен был находиться согласно теории Ньютона). В качестве возможных причин рассматривалось гравитационное влияние неизвестной планеты или пояса астероидов, влияние неизвестного спутника, воздействие межзвёздной пыли, сплюснутость Солнца, однако ни одно из этих объяснений не получило общего признания. В 1915 г. Эйнштейн рассчитал прецессию перигелия Меркурия с помощью уравнений только что открытой им общей теории относительности. Он получил результат, который по его собственному свидетельству заставил его сердце учащённо биться: значение, полученное с помощью общей теории относительности, в точности совпадало с экспериментальными данными. Этот успех, несомненно, был одной из важных причин, заставивших Эйнштейна поверить в свою теорию, но большинство других исследователей ожидало предсказания новых явлений, а не объяснения уже известных аномалий. Более подробно эта история описана в книге: Abraham Pais, «Subtle Is the Lord: The Science and the Life of Albert Einstein». New York: Oxford University Press, 1982. (Рус. пер.: Пайс А. «Научная деятельность и жизнь Альберта Эйнштейна». М.: Наука, Физматлит, 1989.)
15
Robert P. Crease and Charles C. Mann, «The Second Creation». New Brunswick, N. J.: Rutgers University Press, 1996, p. 39.
16
Richard Feynman, «The Character of Physical Law». Cambridge, Mass.: MIT Press, 1965, p. 129. (Рус. пер.: Фейнман Р. «Характер физических законов». М.: Мир, 1968.)
17
Хотя работа Планка разрешила загадку бесконечной энергии, по всей видимости, не эта загадка была непосредственной причиной, побудившей его к этому исследованию. Планк пытался решить другую, очень близкую проблему, связанную с экспериментальными данными, описывающими распределение энергии в духовке (или, если быть более точным, в «чёрном теле») по длинам волн. Дополнительные сведения по истории этих работ интересующийся читатель может найти в книге Thomas S. Kuhn, «Black-Body Theory and the Quantum Discontinuity», 1894–1912. Oxford, Eng.: Clarendon, 1978.
18
Timothy Ferris, «Coming of Age in the Milky Way». New York: Anchor, 1989, p. 286.
19
Стивен Хокинг. Доклад на Амстердамском симпозиуме по гравитации, чёрным дырам и теории струн, 21 июня 1997 г.
20
Richard Feynman, «QED: The Strange Theory of Light and Matter». Princeton: Princeton University Press, 1988. (Рус. пер.: Фейнман Р. «Квантовая электродинамика: странная теория света и материи». М.: Наука, 1988 (Библиотечка «Квант». Вып. 66).)
21
Stephen Hawking, «A Brief History of Time». New York: Bantam Books, 1988, p. 175. (Рус. пер.: Хокинг С. «От Большого взрыва до чёрных дыр». М.: Мир, 1998.)
22
Цитируется по книге: Timothy Ferris, «The Whole Shebang». New York: Simon & Schuster, 1997, p. 97.
23
Если вы всё ещё озабочены тем, как вообще что-либо может происходить в пустом пространстве, вы должны понять, что соотношение неопределённостей накладывает ограничения на то, насколько «пустой» может в действительности быть область в пространстве; оно изменяет наше понимание пустого пространства. Например, применительно к волновым возмущениям поля (таким, как электромагнитные волны, распространяющиеся в электромагнитном поле) соотношение неопределённостей утверждает, что амплитуда волны и скорость изменения амплитуды связаны тем же самым отношением обратной пропорциональности, которое выполняется для положения частицы и её скорости. Чем точнее указана амплитуда, тем менее точно мы знаем скорость, с которой она изменяется. Когда мы говорим, что область в пространстве является пустой, мы обычно имеем в виду, что, помимо всего прочего, в ней не распространяются волны и что все поля имеют нулевую интенсивность. Пользуясь грубым, но очень наглядным языком, можно перефразировать данное выражение, сказав, что амплитуды всех волн, проходящих через данную область, в точности равны нулю. Однако если амплитуды точно известны, то согласно соотношению неопределённостей это означает, что скорость изменения амплитуды является совершенно неопределённой и может принимать любое значение. Но если амплитуда изменяется, это означает, что в следующий момент она уже не может быть нулевой, даже несмотря на то, что область пространства по-прежнему остаётся «пустой». Опять же, в среднем поле будет нулевым, поскольку в одних областях оно будет принимать положительные значения, а в других — отрицательные; средняя суммарная энергия области не изменится. Но это верно только в среднем. Квантовая неопределённость предполагает, что энергия поля (даже в пустой области пространства) флуктуирует от больших значений к меньшим. При этом амплитуда флуктуаций увеличивается по мере уменьшения расстояний и промежутков времени, в которых исследуется эта область. Согласно формуле E = mc2 энергия, заключённая в таких кратковременных флуктуациях, может быть преобразована в массу путём мгновенного образования пары, состоящей из частицы и соответствующей античастицы, которые затем быстро аннигилируют, чтобы сохранить средний баланс энергии.
24
Для математически подготовленного читателя заметим, что принципы симметрии, используемые в физике элементарных частиц, обычно основаны на группах, чаще всего на группах Ли. Элементарные частицы систематизируются по представлениям различных групп; уравнения, описывающие эволюцию частиц во времени, должны удовлетворять соответствующим преобразованиям симметрии. Для сильного взаимодействия такой группой симметрии является группа SU(3) (аналог обычных трёхмерных вращений, но в комплексном пространстве), при этом три цветовых заряда кварка заданного типа преобразуются по трёхмерному представлению. Смещение (от красного, зелёного, синего к жёлтому, индиго и фиолетовому), которое упомянуто в тексте, если быть более точным, представляет собой SU(3) преобразование, применённое к «цветовым координатам» кварка. Калибровочной является симметрия, в которой групповые преобразования могут зависеть от точек пространства-времени: в этом случае «вращение» цветов кварка будет происходить по-разному в различных точках пространства и в различные моменты времени.
25
Величину планковской длины можно получить с использованием простых рассуждений, основанных на том, что физики называют размерным анализом. Идея состоит в следующем. Когда та или иная теория формулируется в виде набора уравнений, то чтобы теория приобрела связь с действительностью, абстрактным символам должны быть поставлены в соответствие физические характеристики реального мира. В частности, нужно ввести систему единиц измерения. Например, если мы обозначим некоторую длину символом a, то у нас должна быть шкала для интерпретации этого значения. В конце концов, если уравнение говорит нам, что искомая длина равна 5, мы должны знать, означает ли это 5 см, 5 км или 5 световых лет и т. п. В теории, которая включает в себя общую теорию относительности и квантовую механику, естественный выбор единиц измерения выглядит следующим образом. В природе есть две константы, которые входят в уравнения общей теории относительности: скорость света c и ньютоновская гравитационная постоянная G. Квантовая механика определяется постоянной Планка . Исследуя единицы, в которых выражены эти константы (например, c представляет собой скорость и поэтому выражается как расстояние, делённое на время, и т. п.), можно заметить, что величина имеет размерность длины; её значение составляет 1,616 1033 см. Это и есть планковская длина. Поскольку она содержит гравитационный и пространственно-временной параметры (G и c), а также квантово-механическую константу (), она устанавливает шкалу для измерений (естественную единицу длины) для любой теории, которая пытается объединить общую теорию относительности и квантовую механику. Когда мы используем в тексте выражение «планковская длина», мы часто имеем в виду приближённое значение, отличающееся от 1033 см не более чем на несколько порядков.
26
Интервью с Джоном Шварцем, 23 декабря 1997 г.
27
Схожие предположения были независимо высказаны Тамиаки Йонея, а также Коркутом Бардакчи и Мартином Гальперном. Значительный вклад в разработку теории струн на ранних этапах её существования был также сделан шведским физиком Ларсом Бринком.
28
Интервью с Джоном Шварцем, 23 декабря 1997 г.
29
Интервью с Майклом Грином, 20 декабря 1997 г.
30
Для читателей, имеющих математическую подготовку, укажем, что связь между модами колебаний струны и константами взаимодействия может быть более точно описана следующим образом. При квантовании струны её возможные состояния, как и состояния любой квантово-механической системы, могут быть представлены векторами в гильбертовом пространстве. Эти векторы могут быть разложены по собственным значениям некоторого набора коммутирующих эрмитовых операторов. Среди этих операторов имеется гамильтониан, собственное значение которого даёт энергию и, следовательно, массу этой колебательной моды, а также операторы, генерирующие различные калибровочные симметрии этой теории. Собственные значения этих последних операторов и дают константы взаимодействия, которые несут соответствующие колебательные моды струны.
31
Фейнмановская формулировка квантовой механики точечных частиц с использованием подхода, основанного на суммировании по траекториям, была обобщена на случай теории струн в работах Стэнли Мандельстама из университета штата Калифорния в Беркли и Александра Полякова, в настоящее время работающего на физическом факультете Принстонского университета.
32
Цитируется по книге R. Clark, «Einstein: The Life and Times». New York: Avon Books, 1984, p. 287.
33
Если говорить более точно, спин, равный 1/2, означает, что момент импульса электрона, связанный с его спином, составляет /2.
34
Открытие и развитие понятия суперсимметрии имеет непростую историю. В дополнение к тем, кто указан в тексте, основополагающий вклад внесли Р. Хааг, М. Сониус, Дж. Т. Лопушанский, Ю. А. Гольфанд, Е. П. Лихтман, Дж. Л. Шервэ, Б. Сакита, В. П. Акулов, Д. В. Волков и В. А. Сорока. Некоторые из их работ вошли в обзор Rosanne Di Stefano, «Notes on the Conceptual Development of Supersymmetry». Institute for Theoretical Physics, State University of New York at Stony Brook, preprint ITP-SB-8878.
35
Для читателя, имеющего математическую подготовку, заметим, что это расширение включает дополнение обычных декартовых координат в пространстве-времени новыми, квантовыми координатами, скажем u и , которые антикоммутируют: u = u. Это позволяет рассматривать суперсимметрию как симметрию относительно трансляций в квантово-механическом расширении пространства-времени.
36
Для читателя, интересующегося деталями этого технического вопроса, заметим следующее. В примечании {41} мы упоминали, что стандартная модель вводит «частицу, дающую массу», хиггсовский бозон, которая генерирует измеряемые экспериментально массы элементарных частиц, перечисленных в табл. 1.1 и 1.2. Для того чтобы эта процедура работала, хиггсовская частица сама по себе не должна быть слишком тяжёлой; проведённые исследования показывают, что её масса, во всяком случае, не должна превышать примерно 1 000 масс протона. Однако оказалось, что квантовые флуктуации могут вносить значительный вклад в массу хиггсовской частицы: это, в принципе, может приводить к массам, близким к планковской. Тем не менее теоретикам удалось установить, что можно избежать этого результата, указывающего на серьёзный дефект стандартной модели, путём тонкой настройки некоторых параметров стандартной модели (прежде всего так называемой голой массы хиггсовской частицы) с точностью порядка 1015, что позволяет нейтрализовать влияние квантовых флуктуаций на массу хиггсовской частицы.
37
Эдвард Виттен, из цикла лекций в память Хайнца Пагельса, г. Аспен, Колорадо, 1997 год.
38
Углублённое обсуждение этой и ряда других смежных идей приведено в книге Steven Weinberg, «Dreams of a Final Theory». (Рус. пер.: Вайнберг С. «Мечты об окончательной теории». М.: URSS, 2008.)
39
Как ни удивительно, физики Савас Димопулос, Нима Аркани-Хамед и Гия Двали, основываясь на более ранних догадках Игнатиоса Антониадиса и Джозефа Ликкена, смогли показать, что даже если бы свёрнутые дополнительные измерения были столь велики, что достигали размера в один миллиметр, они могли бы оставаться необнаруженными экспериментально. Причина состоит в том, что ускорители частиц исследуют микромир с помощью сильного, слабого и электромагнитного взаимодействий. Гравитационное взаимодействие, которое при технологически достижимых энергиях остаётся чрезвычайно слабым, обычно игнорируется. Однако Димопулос с коллегами показали, что свёрнутые измерения оказывают влияние преимущественно на гравитационное взаимодействие (что выглядит вполне правдоподобно в теории струн); этот эффект вполне мог быть пропущен во всех экспериментах, выполненных до настоящего времени. В ближайшем будущем с использованием высокоточной аппаратуры будут проведены новые эксперименты по изучению гравитационных эффектов, предназначенные для поиска таких «крупных» свёрнутых измерений. Положительный результат будет означать одно из величайших открытий в истории человечества.
40
Edwin Abbott, «Flatland», Princeton: Princeton University Press, 1991. (Рус. пер.: Эббот Э. «Флатляндия». М.: Амфора, 2001.)
41
Письмо А. Эйнштейна к Т. Калуце. Цитируется по книге: Abraham Pais, «Subtle Is the Lord». New York: Oxford University Press, 1982, p. 330. (Рус. пер.: Пайс A. «Научная деятельность и жизнь Альберта Эйнштейна». М.: Наука, Физматлит, 1989.)
42
Письмо А Эйнштейна к Т. Калуце. Цитируется по статье: D. Freedman and P. van Nieuwenhuizen, «The Hidden Dimensions of Spacetime». «Scientific American», 252 (1985), 62.
43
Письмо А Эйнштейна к Т. Калуце. Цитируется по статье: D. Freedman and P. van Nieuwenhuizen, «The Hidden Dimensions of Spacetime». «Scientific American», 252 (1985), 62.
44
Физики установили, что в многомерную формулировку труднее всего включить такое понятие стандартной модели как киральность. Поэтому, чтобы не перегружать обсуждение, мы не стали рассматривать это понятие в основном тексте. Для читателей, интересующихся этим вопросом, дадим здесь его краткое описание. Представьте, что кто-то показывает вам фильм, демонстрирующий некоторый научный эксперимент, и предлагает необычное задание — определить, показывает ли фильм сам эксперимент или его отражение в зеркале. Поскольку оператор был очень опытным, никаких признаков наличия зеркала на ленте не видно. Можете ли вы решить эту задачу? В середине 1950-х гг. теоретические работы Т. Д. Ли и Ч. Н. Янга, а также экспериментальные результаты Ц. С. By и её коллег показали, что вы можете решить эту задачу, если на плёнке снят подходящий эксперимент. А именно, их работы доказали, что законы мироздания не обладают полной зеркальной симметрией в том смысле, что зеркальные аналоги некоторых процессов, определяемых слабым взаимодействием, не могут существовать в нашем мире, даже если исходные процессы существуют. Таким образом, если, просматривая фильм, вы увидите, что он демонстрирует один из таких запрещённых процессов, вы будете знать, что наблюдаете зеркальное отражение, а не сам эксперимент. Поскольку зеркальное отражение меняет местами левое и правое, работы Ли, Янга и By показали, что Вселенная не обладает полной симметрией левого и правого, или, используя специальную терминологию, что Вселенная является киральной. Именно это свойство стандартной модели (в частности, слабого взаимодействия) физики считали почти невозможным включить в теорию супергравитации высших размерностей. Чтобы избежать недоразумений, отметим, что в главе 10 мы будем обсуждать концепцию теории струн, известную под названием «зеркальной симметрии», но там слово «зеркальная» будет использоваться в совершенно ином смысле.
45
Для читателя, имеющего математическую подготовку, отметим, что многообразие Калаби — Яу представляет собой комплексное кэлерово многообразие с нулевым первым классом Черна. В 1957 г. Калаби высказал предположение, что каждое такое многообразие допускает Риччи-плоскую метрику, а в 1977 г. Яу доказал справедливость этого предположения.
46
Эта иллюстрация была любезно предоставлена Эндрю Хэнсоном из университета штата Индиана, она была создана с использованием графического пакета «Mathematica 3-D».
47
Для читателя, имеющего математическую подготовку, заметим, что это конкретное пространство Калаби — Яу представляет собой действительное трёхмерное сечение гиперповерхности пятого порядка в комплексном проективном четырёхмерном пространстве.
48
Edward Witten, «Reflections on the Fate of Spacetime». «Physics Today», April 1996, p. 24.
4
Интервью с Эдвардом Виттеном, 11 мая 1998 г.
50
Sheldon Glashow and Paul Ginsparg, «Desperately Seeking Superstrings?» «Physics Today», May 1986, p. 7.
51
Sheldon Glashow. Опубликовано в «The Superworld I», ed. A. Zichichi, New York: Plenum, 1990, p. 250.
52
Sheldon Glashow, «Interactions», New York: Warner Books, 1988, p. 335.
53
Richard Feynman. Опубликовано в «Superstrings: A Theory of Everything?» ed. Paul Davies and Julian Brown, Cambridge, Eng: Cambridge University Press, 1988.
54
Howard Georgi. Опубликовано в «The New Physics», ed. Paul Davies, Cambridge: Cambridge University Press, 1989, p. 446.
55
Интервью с Эдвардом Виттеном, 4 мая 1998 г.
56
Интервью с Кумруном Вафой, 12 января 1998 г.
57
Цитируется по книге: Robert P. Crease and Charles С. Mann, «The Second Creation». New Brunswick, N. J.: Rutgers University Press, 1996, p. 414.
58
Интервью с Шелдоном Глэшоу, 28 декабря 1997 г.
59
Интервью с Шелдоном Глэшоу, 28 декабря 1997 г.
60
Интервью с Говардом Джорджи, 28 декабря 1997 г. Во время интервью Джорджи также отметил, что экспериментальное опровержение предсказанного распада протонов, которое следовало из предложенной им и Глэшоу первой теории великого объединения (см. главу 7), сыграло существенную роль в его нежелании принять теорию суперструн. Он горько заметил, что его теория великого объединения требует намного больших энергий, чем любая другая теория, когда-либо выносившаяся на суд, и когда его предсказание оказалось неверным, когда «он был нокаутирован природой», его отношение к изучению физики чрезвычайно высоких энергий резко изменилось. Когда я спросил его, не будет ли для него экспериментальное подтверждение теории великого объединения стимулом включиться в наступление на область планковских масштабов, он ответил: «Да, очень может быть».
61
David Gross, «Superstrings and Unification». Опубликовано в «Proceedings of the XXIV International Conference on High Energy Physics», ed. R. Kotthaus and J. Kuhn. Berlin: Springer-Verlag, 1988, p. 329.
62
Для читателя, имеющего математическую подготовку, заметим, что согласно более точной математической формулировке число семейств равно половине абсолютного значения числа Эйлера для пространства Калаби — Яу. Число Эйлера представляет собой сумму размерностей групп гомологий многообразия, где группы гомологий это то, что мы на нашем нестрогом языке назвали многомерными отверстиями. Таким образом, количество семейств, равное трём, следует из того, что число Эйлера для этих пространств Калаби — Яу равно ±6.
63
Интервью с Джоном Шварцем, 23 декабря 1997 г.
64
Для читателя, имеющего математическую подготовку, заметим, что мы ставим в соответствие многообразию Калаби — Яу конечную нетривиальную фундаментальную группу, порядок которой в некоторых случаях определяет знаменатель дробного заряда.
65
Интервью с Эдвардом Виттеном, 4 марта 1998 г.
66
Для читателей, хорошо знакомых с рассматриваемыми вопросами, заметим, что некоторые из этих процессов нарушают закон сохранения лептонного числа, а также CPT-симметрию (инвариантность относительно изменения знака заряда, чётности и направления времени).
67
Отметим для полноты, что хотя большая часть приведённых выше аргументов в равной степени справедлива как для открытых струн (струн со свободными концами), так и для замкнутых струн (которым мы уделяли основное внимание), в рассматриваемом вопросе два типа струн могут, кажется, проявлять различные свойства. Действительно, открытая струна не может быть «насажена» на циклическое измерение. Тем не менее, в результате исследований, сыгравших в конце концов ключевую роль во второй революции суперструн, Джо Польчински из Калифорнийского университета в городе Санта-Барбара и двое его студентов, Джиан-Хюи Дай и Роберт Лей, в 1989 г. продемонстрировали, что открытые струны прекрасно вписываются в схему, которая будет описана в данной главе.
68
Чтобы ответить на вопрос о том, почему возможные энергии однородных колебаний равны целым кратным 1/R, достаточно лишь вспомнить обсуждение квантовой механики (в частности, примера с ангаром) в главе 4. Там мы узнали о том, что согласно квантовой механике энергия, как и деньги, существуют в виде дискретных порций, т. е. в виде целых кратных различных энергетических единиц. В случае однородного колебательного движения струны во вселенной Садового шланга эта энергетическая единица в точности равна 1/R, как объясняется в основном тексте на основе соотношения неопределённостей. Таким образом, энергия однородных колебаний равна произведению целых чисел на 1/R.
69
Математически равенство энергий струн во вселенной с радиусом циклического измерения R или 1/R есть следствие формулы для энергии /R + R, где — колебательное число, а — топологическое число. Данное уравнение инвариантно относительно одновременных взаимных замен на и R на 1/R, т. е. при перестановке колебательных и топологических чисел с одновременной инверсией радиуса. Мы используем планковские единицы, но можно работать и в более привычных единицах, если переписать формулу для энергии через так называемую струнную шкалу ` значение которого примерно равно планковской длине, т. е. 1033 сантиметра. В результате энергия записывается в виде выражения /R + R/', инвариантного относительно взаимной замены на и R на '/R, где последние две величины выражены в стандартных единицах расстояния.
70
У читателя может возникнуть вопрос, каким образом с помощью струны, намотанной вокруг циклического измерения радиусом R, можно измерить значение радиуса 1/R. Хотя этот вопрос совершенно правомерен, ответ на него, в действительности, заключается в том, что сам вопрос сформулирован некорректно. Когда мы говорим, что струна намотана на окружность радиуса R, мы с необходимостью используем определение расстояния (чтобы фраза «радиус R» имела смысл). Однако это определение расстояния относится к модам ненамотанной струны, т. е. к колебательным модам. С точки зрения этого определения расстояния (и только этого!) конфигурация намотанной струны выглядит так, что струна обёрнута вокруг циклической компоненты пространства. Однако с точки зрения другого определения расстояния, соответствующего конфигурациям намотанных струн, топологические моды точно так же локализованы в пространстве, как и колебательные моды с точки зрения первого определения, и радиус, который они «видят», равен 1/R, что и отмечено в тексте.
Эти пояснения дают некоторое представление о том, почему расстояния, измеренные с помощью намотанных и ненамотанных струн, обратно пропорциональны друг другу. Однако, так как данный момент достаточно тонкий, возможно, имеет смысл привести технические подробности для читателя, склонного к математическому образу мышления. В обычной квантовой механике точечных частиц расстояние иимпульс (по существу, энергия) связаны преобразованием Фурье. Иными словами, собственный вектор оператора координаты на окружности радиусом R можно определить как , где p = /R, а есть собственный вектор оператора импульса (прямой аналог того, что мы называли общей колебательной модой струны — движение без изменения формы). В теории струн, однако, есть ещё один собственный вектор оператора координаты , определяемый состояниями намотанной струны: , где — собственный вектор для намотанной струны с . Из этих определений немедленно следует, что x периодична с периодом 2R, а периодична с периодом 2/R, так что x есть координата на окружности радиусом R, а — координата на окружности радиусом 1/R. Более конкретно, можно рассмотреть два волновых пакета и , распространяющихся из начала координат и эволюционирующих во времени, с помощью которых можно дать практическое определение расстояния. Радиус окружности, измеренный с помощью каждого из пакетов, будет пропорционален времени возвращения пакета в исходную точку. Так как состояние с энергией E эволюционирует с фазовым множителем, пропорциональным Et, видно, что время, а, следовательно и радиус, равны t ~ 1/E ~ R для колебательных мод и t ~ 1/E ~ 1/R для топологических мод.
71
Для читателя, сведущего в математике, отметим, что число семейств колебательных мод струны равно половине абсолютного значения эйлеровой характеристики многообразия Калаби — Яу, как указано в примечании {62}. Эта величина равна абсолютному значению разности h2,1 и h1,1, где hp,q обозначает число Ходжа (p,q). С точностью до константы эти значения равны числу нетривиальных гомологий 3-циклов (трёхмерных отверстий) и числу гомологий 2-циклов (двумерных отверстий). Таким образом, хотя в основном содержании говорится о полном числе отверстий, более точный анализ показывает, что число семейств зависит от абсолютного значения разности между числами чётномерных и нечётномерных отверстий. Выводы, однако, те же самые. Например, если два пространства Калаби — Яу отличаются перестановкой соответствующих чисел Ходжа h2,1 и h1,1, то число семейств частиц — полное число отверстий — не изменится.
72
Название объясняется тем, что «ромбы Ходжа», математические выражения чисел отверстий различных размерностей для пространств Калаби — Яу, являются зеркальными отражениями друг друга для каждой зеркальной пары.
73
Термин зеркальная симметрия используется в физике и в других контекстах, совершенно не связанных с данным, например, в связи с понятием киральности, т. е. в связи с вопросом о том, является ли Вселенная инвариантной относительно замены правого на левое (см. примечание {44}).
74
Для читателя, склонного к математической строгости рассуждений, будет понятно, что вопрос состоит в том, является ли топология пространства динамической, т. е. может ли она меняться во времени. Отметим, что хотя представление о динамических изменениях топологии часто используется в этой книге, на практике обычно рассматривается однопараметрическое семейство пространственно-временных многообразий, чья топология меняется при изменении параметра семейства. Формально этот параметр не является временем, но в определённом контексте может с ним отождествляться.
75
Для математически подкованного читателя отметим, что процедура включает сдутие рациональных кривых на многообразии Калаби — Яу. Далее используется тот факт, что при определённых условиях образовавшаяся сингулярность может быть устранена серией последовательных раздутий.
76
K. C. Cole, «New York Times Magazine», October 18, 1987, p. 20.
77
Цитируется по книге: John D. Barrow, «Theories of Everything». New York: Fawcett-Columbine, 1992, p. 13. (В рус. пер. цитата есть в книге: Кузнецов Б. Г. «Эйнштейн: Жизнь. Смерть. Бессмертие». М.: Наука, 1980, с. 363.)
78
Кратко поясним различия между пятью теориями струн. Для этого отметим, что колебательные возбуждения вдоль струнной петли могут распространяться по часовой стрелке и против неё. Теории струн типов IIA и IIB отличаются тем, что в последней теории колебания в обоих направлениях идентичны, а в первой теории противоположны по форме. Противоположность в данном контексте имеет точный математический смысл, но нагляднее всего её можно представлять в терминах вращений колебательных мод в каждой теории. В теории типа IIB оказывается, что все частицы вращаются в одном направлении (у них одна и та же киральность), а в теории типа IIA — в разных направлениях (у них разная киральность). Тем не менее, в каждой теории реализуется суперсимметрия. Две гетеротические теории имеют аналогичные, но более эффектные отличия. Все моды колебаний по часовой стрелке выглядят так же, как и моды струн типа II (если рассматривать только колебания по часовой стрелке, то теории струн типов IIA и IIB идентичны), но колебания против часовой стрелки совпадают с колебаниями исходной теории бозонных струн. Хотя в бозонных струнах возникают неразрешимые проблемы, если рассматривать их колебания в обоих направлениях, в 1985 г. Дэвид Росс, Джеффри Харви, Эмиль Мартинек и Райан Ром (все они в то время работали в Принстонском университете и их прозвали «Принстонский струнный квартет») показали, что при использовании этих струн в комбинации со струнами типа II получается вполне согласованная теория. Однако в этом союзе была странная особенность, известная со времён работ Клода Лавлейса из университета Ратчерса 1971 г. и Ричарда Броуэра из Бостонского университета, Питера Годдарда из Кембриджского университета и Чарльза Торна из Гейнсвилльского университета (штат Флорида) 1972 г. А именно, для бозонной струны требовалось 26 пространственно-временных измерений, а для суперструны, как обсуждалось, требовалось 10. Так что гетеротические струны (от греческого , т. е. разный) являются странными гибридами, в которых колебательные моды против часовой стрелки живут в 26 измерениях, а колебательные моды по часовой стрелке — в 10! Пока читатель окончательно не запутался, пытаясь понять этот странный союз, сообщим ему о работе Гросса и его коллег, в которой было показано, что 16 лишних бозонных измерений должны скручиваться в одно из двух торообразных многообразий очень специального вида, приводя к теориям O- и E-гетеротических струн. Так как 16 добавочных бозонных измерений компактифицированы, каждая из этих теорий ведёт себя так, как если бы в ней было 10 измерений, т. е. как теории струн типа II. В гетеротических теориях также реализован свой вариант суперсимметрии. И, наконец, теория типа I аналогична теории IIB, за исключением того, что помимо замкнутых струн, рассмотренных в предыдущих главах, в ней имеются струны со свободными концами, называемые открытыми струнами.
79
Понятие «точный» в смысле данной главы (например, «точное» уравнение движения Земли) в действительности относится к точному предсказанию некоторой физической величины в рамках выбранного теоретического формализма. До тех пор, пока у нас не будет истинной окончательной теории (возможно, она уже есть, а возможно, её вообще не будет) все наши теории сами являются приближенями реальности. Но это понятие приближения не имеет никакого отношения к приближениям, рассматриваемым в данной главе. Здесь нас интересует тот факт, что в рамках выбранной теории часто сложно или невозможно сделать точные предсказания. Вместо этого приходится искать эти предсказания с помощью приближённых методов в рамках теории возмущений.
80
Эти диаграммы являются струнными вариантами так называемых диаграмм Фейнмана, предложенных Ричардом Фейнманом для вычислений по теории возмущений в квантовой теории поля точечных частиц.
81
Для читателя, осведомлённого в математике, отметим, что в силу этого уравнения пространство-время должно иметь Риччи-плоскую метрику. Если разбить пространство-время на прямое произведение четырёхмерного пространства Минковского и шестимерного компактного кэлерова многообразия, то обращение в нуль кривизны Риччи будет эквивалентно требованию того, что кэлерово многообразие должно быть многообразием Калаби — Яу. Вот почему многообразия Калаби — Яу так важны в теории струн.
82
Для знающего читателя должно быть ясно, что для справедливости этих утверждений потребуется так называемая N = 2 суперсимметрия.
83
Более точно, если обозначить константу связи O-гетеротической струны символом gОГ, а константу связи струны типа I символом gI, то соотношение между константами, для которых состояния в данных физических теориях эквивалентны, имеет вид gОГ = 1/gI или gI = 1/gОГ. Если одна из констант связи мала, то другая константа велика, и наоборот.
84
Это близкий аналог рассмотренной выше (R, 1/R) дуальности. Если обозначить константу связи струны типа IIB через gIIB, то кажется правдоподобной гипотеза, что значения констант gIIB и 1/gIIB приводят к одинаковым физическим результатам. Если gIIB велико, то 1/gIIB мало, и наоборот.
85
Заметным исключением явилась важная работа 1987 г. Даффа, Поля Хоува, Такео Инами и Келлога Стелле, в которой более ранние наблюдения Эрика Бергшоеффа, Эргина Сезгина и Таунсенда использовались для обоснования того, что десятимерная теория струн может иметь глубокую связь с 11-мерной теорией.
86
Интервью с Эдвардом Виттеном, 11 мая 1998 г.
87
Знающему читателю будет понятно, что при преобразованиях зеркальной симметрии коллапсирующая трёхмерная сфера одного пространства Калаби — Яу отображается на коллапсирующую двумерную сферу другого пространства Калаби — Яу, приводя, на первый взгляд, к той же ситуации флоп-перестроек, которая рассматривалась в главе 11. Разница, однако, в том, что в подобном зеркальном описании антисимметричное тензорное поле B (действительная часть комплексной кэлеровой формы на зеркальном пространстве Калаби — Яу) обращается в нуль, и сингулярность гораздо сильнее, чем в случае, который описывался в главе 11.
88
Более точно, примерами экстремальных чёрных дыр являются чёрные дыры с минимальными для данных зарядов массами, в полной аналогии с рассмотренными в главе 12 БПС-состояниями. Такие чёрные дыры будут играть важнейшую роль при обсуждении энтропии чёрной дыры.