Вселенная. Емкие ответы на непостижимые вопросы Хокинг Стивен
А теперь как рефрен: почему на этом надо остановиться? Двумерная вселенная сама может иметь свёрнутое измерение и, следовательно, втайне от нас быть трёхмерной. Мы можем проиллюстрировать это рис. 8.4, представив, что существует только два протяжённых пространственных измерения (хотя при первом описании этого рисунка мы считали, что плоская сетка представляет три протяжённых измерения). Если циклическое измерение развернётся, двумерные существа увидят, что они оказались в совершенно ином мире, в котором движения не ограничены направлениями влево-вправо и вперёд-назад. Теперь эти существа могут двигаться и в третьем измерении — в направлении «вверх-вниз» вдоль круга. На самом деле, если третье измерение станет достаточно большим, это будет наша трёхмерная Вселенная. В настоящее время мы не знаем, простираются ли наши пространственные измерения до бесконечности, или они замыкаются на гигантскую окружность, недоступную в самые мощные телескопы. Если циклическое измерение на рис. 8.4 станет достаточно большим — миллиарды световых лет в поперечнике — этот рисунок вполне может быть изображением нашего мира.
И снова рефрен: почему на этом надо остановиться? Это приведёт нас к представлениям Калуцы и Клейна: наша трёхмерная Вселенная может иметь свёрнутое, четвёртое пространственное измерение, о котором никто не подозревал. Если эта поразительная возможность или её обобщение на случай многих свёрнутых измерений (мы вскоре рассмотрим его) истинны, и если эти свёрнутые измерения раскроются до макроскопического размера, то, как показывают приведённые выше примеры с меньшим числом измерений, жизнь в том виде, в котором мы её знаем, изменится очень сильно.
Удивительно, однако, что даже если дополнительные измерения всегда будут оставаться в свёрнутом состоянии и будут малы, сам факт их существования ведёт к глубоким последствиям.
Объединение в высших измерениях
Хотя высказанное Калуцей в 1919 г. предположение о том, что наша Вселенная может иметь недоступные нам непосредственно пространственные измерения, замечательно само по себе, его популярность связана с иными обстоятельствами. Эйнштейн сформулировал общую теорию относительности для привычного случая Вселенной с тремя пространственными и одним временным измерением. Однако математический формализм его теории можно непосредственно обобщить и выписать аналогичные уравнения для Вселенной с дополнительными пространственными измерениями. Калуца выполнил математический анализ и в явном виде выписал новые уравнения при «умеренном» предположении об одном дополнительном пространственном измерении.
Он обнаружил, что в этой пересмотренной формулировке уравнения, относящиеся к трём обычным измерениям, по существу совпадают с уравнениями Эйнштейна. Но благодаря тому, что он включил дополнительное пространственное измерение, Калуца, как и следовало ожидать, получил новые уравнения в дополнение к тем, которые первоначально вывел Эйнштейн. Изучив эти дополнительные уравнения, связанные с новым измерением, Калуца обнаружил нечто удивительное. Оказалось, что дополнительные уравнения представляют собой не что иное, как полученные Максвеллом в 1860-х гг. уравнения, описывающие электромагнитное взаимодействие! Добавив ещё одно пространственное измерение, Калуца объединил теорию гравитации Эйнштейна с максвелловской теорией электромагнитного поля.
До появления гипотезы Калуцы гравитация и электромагнетизм рассматривались как два отдельных вида взаимодействия; ничто не указывало на то, что между ними может существовать какая-либо связь. Однако, дерзнув предположить, что наша Вселенная имеет дополнительное пространственное измерение, Калуца обнаружил, что в действительности они глубоко связаны. Его теория утверждает, что и гравитация, и магнетизм связаны с волнами в структуре пространства. Гравитация переносится волнами, распространяющимися в нашем обычном трёхмерном пространстве, тогда как электромагнетизм переносится волнами, использующими новое, свёрнутое измерение.
Калуца послал свою статью Эйнштейну. Вначале Эйнштейн ей очень заинтересовался. 21 апреля 1919 г. он написал Калуце ответное письмо, в котором говорил, что ему никогда не приходило в голову, что подобное объединение может быть достигнуто «с помощью пятимерного [четыре пространственных измерения и одно временное] цилиндрического мира». Он также писал, что «на первый взгляд ваша идея нравится мне необычайно».{41} Однако спустя неделю Эйнштейн написал Калуце ещё одно письмо, которое уже содержало изрядную долю скептицизма: «Я внимательно прочитал вашу статью и нахожу её очень интересной. Я не вижу ничего, что позволило бы отрицать такую возможность. С другой стороны, я должен признать, что приведённые аргументы не выглядят достаточно убедительными».{42} Спустя более чем два года, 14 октября 1921 г., когда у Эйнштейна было достаточно времени, чтобы более полно усвоить новаторский подход, предложенный Калуцей, он снова пишет ему: «Я ещё раз обдумал совет воздержаться от публикации вашей идеи об объединении гравитации и электромагнетизма, который я дал вам два года назад… Если вы хотите, я бы мог представить вашу статью в академии».{43} Так, с запозданием, Калуца получил одобрение мастера.
Хотя идея была прекрасной, последующий детальный анализ гипотезы Калуцы, дополненной Клейном, показал, что она находится в серьёзном противоречии с экспериментальными данными. Простейшие попытки включить в теорию электрон приводили к предсказанию отношения его массы к заряду, которое существенно отличалось от измеренных значений. Поскольку не было видно способов разрешить эту проблему, многие физики потеряли интерес к идее Калуцы. Эйнштейн и ряд других учёных продолжали исследовать возможности использования дополнительных измерений, но тем не менее это направление вскоре оказалось на периферии теоретической физики.
В действительности, идея Калуцы намного опередила своё время. 1920-е гг. ознаменовались началом бурного роста теоретических и экспериментальных исследований, посвящённых изучению основных законов микромира. Теоретики были поглощены разработкой структуры квантовой механики и квантовой теории поля. Экспериментаторы были заняты детальным изучением свойств атомов и поиском новых элементарных компонентов мироздания. Теория направляла эксперимент, а эксперимент подправлял теорию — так продолжалось около полувека, и, в конечном счёте, это привело к разработке стандартной модели. Неудивительно, что в это бурное и продуктивное время предположения по поводу дополнительных измерений были на обочине исследований. В эпоху, когда физики открывали мощные методы квантовой механики, дававшие предсказания, которые могли быть проверены экспериментально, изучение возможности того, что Вселенная может иметь совершенно иные свойства на расстояниях, которые слишком малы, чтобы их можно было исследовать даже с помощью самой современной техники, вызывало мало интереса.
Но, рано или поздно, из машины выходит весь пар. К концу 1960-х — началу 1970-х гг. были разработаны теоретические основы стандартной модели. К концу 1970-х — началу 1980-х гг. многие её предсказания получили экспериментальное подтверждение, и большинство специалистов по физике элементарных частиц пришло к выводу, что подтверждение оставшейся части этой теории является только вопросом времени. Хотя некоторые важные детали оставались невыясненными, многие думали, что на основные вопросы, касавшиеся сильного, слабого и электромагнитного взаимодействий, ответы уже получены.
Пришло время вернуться к величайшей проблеме: неразрешённому противоречию между общей теорией относительности и квантовой механикой. Успех в формулировке квантовых теорий трёх взаимодействий, существующих в природе, вдохновил физиков на попытку разработать такую же теорию для гравитации. После того, как многочисленные гипотезы потерпели крах, сообщество физиков стало более восприимчивым к более радикальным подходам. Теория Калуцы — Клейна, оставленная умирать медленной смертью в конце 1920-х гг., была вновь воскрешена.
Современное состояние теории Калуцы — Клейна
За шесть десятилетий, прошедших с момента первого появления гипотезы Калуцы, понимание физики значительно изменилось и углубилось. Квантовая механика была полностью сформулирована и получила экспериментальное подтверждение. Были открыты и, в значительной степени, объяснены сильное и слабое взаимодействия, которые в 1920-е гг. ещё не были известны. Многие физики стали считать, что первоначальное предположение Калуцы потерпело неудачу из-за того, что он не знал об этих других взаимодействиях и был поэтому слишком консервативен в пересмотре структуры пространства. Дополнительные взаимодействия требуют дополнительных измерений. Было показано, что хотя одно новое циклическое измерение и способно решить задачу объединения общей теории относительности и электромагнетизма, оно является недостаточным.
К середине 1970-х гг. развернулись интенсивные исследования, нацеленные на разработку теорий высших размерностей со многими свёрнутыми измерениями. На рис. 8.7 показан пример с двумя дополнительными измерениями, свёрнутыми в форму мяча, т. е. сферу.
Рис. 8.7. Два дополнительных измерения, свёрнутые в сферу
Как и в случае с одним циклическим измерением, эти дополнительные измерения присутствуют в каждой точке пространства, описываемого нашими обычными протяжёнными измерениями. (Для наглядности мы, опять же, изобразили только пример, где сферические измерения показаны в узлах регулярной сети, построенной для протяжённых измерений.) Помимо предложения о другом числе дополнительных измерений, можно представить себе иные формы этих измерений. Например, на рис. 8.8 мы показали возможный вариант, в котором так же имеются два дополнительных измерения, имеющие теперь форму баранки, т. е. тора.
Рис. 8.8. Два дополнительных измерения, свёрнутые в баранку (тор)
Хотя это и выходит за пределы наших изобразительных возможностей, можно представить себе более сложные ситуации, в которых имеется три, четыре, пять и вообще произвольное число дополнительных пространственных измерений, свёрнутых в самые экзотические формы. Поскольку до сих пор не было получено экспериментального подтверждения существования всех этих измерений, существенным по-прежнему остаётся требование, чтобы их пространственный размер был меньше, чем самый малый масштаб длин, доступный современной технике.
Наиболее многообещающими из всех теорий с высшими размерностями были те, которые включали и суперсимметрию. Физики надеялись, что частичное сокращение наиболее интенсивных квантовых флуктуаций, связанное с парами частиц-суперпартнёров, поможет смягчить противоречие между гравитацией и квантовой механикой. Для теорий, содержащих гравитацию, дополнительные измерения и суперсимметрию, они предложили название многомерная супергравитация.
Как и в случае с оригинальной гипотезой Калуцы, различные варианты многомерной супергравитации выглядят, на первый взгляд, многообещающе. Новые уравнения, появляющиеся в результате добавления новых измерений, поразительно напоминают уравнения, используемые для описания электромагнетизма, а также сильного и слабого взаимодействий. Однако более внимательный анализ показывает, что старые загадки никуда не исчезли. Ещё более важно то, что катастрофические квантовые флуктуации пространства, возникающие на малых расстояниях, хотя и ослабляются суперсимметрией, но недостаточно для того, чтобы теория стала непротиворечивой. Физики также убедились, что трудно разработать единую, непротиворечивую теорию с высшими размерностями, объединяющую все свойства взаимодействий и материи.{44}
Постепенно становилось ясно, что хотя отдельные части объединённой теории начинают занимать свои места, однако ключевое звено, способное связать их в единое целое способом, не противоречащим квантовой механике, всё ещё отсутствовало. В 1984 г. это недостающее звено — теория струн — ярко вышло на сцену и заняло на ней центральное место.
Дополнительные измерения и теория струн
К этому моменту вы должны были убедиться, что наша Вселенная может иметь дополнительные свёрнутые пространственные измерения; естественно, пока они остаются достаточно малыми, никто не сможет доказать, что они не существуют. И всё же дополнительные измерения могут показаться просто трюком. Наша неспособность исследовать расстояния, меньшие одной миллиардной от одной миллиардной доли метра, допускает существование не только сверхмалых измерений, но и различных других фантастических возможностей, даже существование микроскопических цивилизаций, населённых крошечными зелёными человечками. Хотя первое выглядит гораздо более рационально, чем последнее, постулирование любой из этих непроверенных и, в настоящее время, непроверяемых экспериментально возможностей может выглядеть одинаково произвольным.
Таким было положение дел до появления теории струн. Эта теория разрешает центральное противоречие современной физики — несовместимость квантовой механики и общей теории относительности и унифицирует наше понимание всех фундаментальных компонент вещества и взаимодействий, существующих в природе. В дополнение к этим достижениям выясняется, что теория струн требует, чтобы Вселенная имела дополнительные измерения.
Вот почему это так. Один из главных выводов квантовой механики состоит в том, что наша предсказательная способность принципиально ограничена утверждениями, что такой-то результат имеет такую-то вероятность. Хотя Эйнштейн испытывал неприязнь к современному пониманию квантовой теории (и вы можете согласиться с ним), факт остаётся фактом. Давайте принимать его таким, каков он есть. Как всем известно, значения вероятности всегда находятся между 0 и 1, или, если пользоваться процентами, между 0 и 100 %. Как установили физики, первым признаком того, что квантовая механика перестаёт работать, является возникновение в расчётах «вероятностей», которые выходят за эти пределы. Например, как мы упоминали выше, признаком серьёзного противоречия между общей теорией относительности и квантовой механикой в модели с точечными частицами являются бесконечные значения вероятностей, получаемые при расчётах. Как уже обсуждалось, теория струн позволяет избавиться от этих бесконечностей. Однако мы ещё не сказали, что осталась другая, более тонкая проблема. На начальном этапе развития теории струн физики обнаружили, что некоторые вычисления приводят к появлению отрицательных вероятностей, также находящихся вне области допустимых значений. Таким образом, на первый взгляд, теория струн утонула в своём собственном квантово-механическом бульоне.
С непоколебимым упорством физики искали и нашли причину появления этих неприемлемых результатов. Начнём объяснение с простого наблюдения. Если мы положим струну на двумерную поверхность (такую, как поверхность стола или Садового шланга), то число независимых направлений, в которых может колебаться струна, уменьшится до двух: влево-вправо и вперёд-назад вдоль поверхности. Любая мода колебаний, ограниченная такой поверхностью, будет представлять собой комбинацию колебаний в этих двух направлениях. Одновременно это означает, что струна во Флатляндии, во вселенной Садового шланга или в любой другой двумерной вселенной тоже сможет колебаться только в этих двух независимых пространственных направлениях. Однако если мы уберём струну с поверхности, то число независимых направлений колебаний увеличится до трёх, поскольку струна теперь сможет колебаться и в направлении вверх-вниз. Это означает, что во вселенной с тремя пространственными измерениями струна также может колебаться в трёх независимых направлениях. Дальнейшее развитие этой идеи труднее поддаётся представлению, но общая схема сохраняется: во вселенных с большим числом пространственных измерений будет больше независимых направлений, в которых могут совершаться колебания.
Мы уделили такое внимание этому факту, относящемуся к колебаниям струн, потому что физики обнаружили: вычисления, дающие бессмысленные результаты, очень чувствительны к числу независимых направлений, в которых может колебаться струна. Отрицательные вероятности возникают из-за несоответствия между требованиями теории и тем, что, как кажется, диктует реальность: расчёты показали, что если бы струны могли колебаться в девяти независимых пространственных направлениях, все отрицательные вероятности исчезли бы. Ну что ж, это большая победа теории, но нам-то какое дело до этого? Если теория струн призвана описать наш мир с тремя пространственными измерениями, у нас по-прежнему остаются проблемы.
Но остаются ли? Вспоминая об идее более чем полувековой давности, мы видим, что Калуца и Клейн оставили нам лазейку. Поскольку струны так малы, они могут колебаться не только в больших, протяжённых измерениях, но и в крошечных свёрнутых. Таким образом, мы можем удовлетворить требованию о девяти пространственных измерениях, предъявленному к нашей Вселенной теорией струн, предположив в духе Калуцы и Клейна, что в дополнение к трём привычным, протяжённым пространственным измерениям Вселенная имеет шесть свёрнутых. В результате теория струн, которая была на грани исключения из мира физических реальностей, будет спасена. Более того, вместо постулирования существования дополнительных измерений, как делали Калуца, Клейн и их последователи, теория струн требует их. Для того чтобы теория струн стала непротиворечивой, Вселенная должна иметь девять пространственных измерений и одно временное — итого всего десять. Таким образом, идея Калуцы, прозвучавшая в 1919 г., торжественно и убедительно вышла на сцену.
Некоторые вопросы
Однако сразу же возникает ряд вопросов. Во-первых, почему теория струн требует именно девяти пространственных измерений для того, чтобы избежать бессмысленных значений вероятности? Это тот вопрос, на который, вероятно, труднее всего ответить без привлечения математического формализма теории струн. Прямой расчёт с использованием аппарата теории струн приводит к этому результату, но никто не может дать интуитивного, не загромождённого техническими деталями объяснения, почему так происходит. Эрнест Резерфорд однажды сказал, что в действительности, если вы не можете объяснить результат на простом, не отягощённом специальными терминами языке, это значит, что вы не понимаете его по-настоящему. Слова Резерфорда не говорят, что ваш результат неверен, они говорят, что вы не полностью понимаете его происхождение, значение или следствия. Наверное, это справедливо по отношению к дополнительным измерениям в теории струн. (Воспользуемся возможностью упомянуть в скобках о центральном положении второй революции в теории суперструн, которую мы будем обсуждать в главе 12. Расчёты, лежащие в основе заключения о том, что имеется десять пространственно-временных измерений — девять пространственных и одно временное, оказались приближёнными. В середине 1990-х гг. Виттен, основываясь на своих догадках и на более ранних работах Майкла Даффа из Техасского университета, а также Криса Халла и Пола Таунсенда из Кембриджского университета, смог привести убедительные свидетельства того, что в приближённых расчётах на самом деле было пропущено одно пространственное измерение. Теория струн, как он показал к большому удивлению большинства специалистов, работающих в этой области, на самом деле требует десяти пространственных измерений и одного временного, — т. е. в сумме одиннадцати измерений. Вплоть до главы 12 мы будем игнорировать этот важный результат, поскольку он не имеет прямого отношения к вопросам, которые мы собираемся рассматривать.)
Во-вторых, если уравнения теории струн (или, точнее, приближённые уравнения, которые мы будем обсуждать до главы 12) показывают, что Вселенная имеет девять пространственных измерений и одно временное, почему три пространственных измерения (и одно временное) являются развёрнутыми и протяжёнными, а все остальные — маленькими и свёрнутыми? Почему все они не являются развёрнутыми, или почему все они не являются свёрнутыми, почему не реализовался какой-то другой промежуточный вариант? В настоящее время никто не знает ответа на этот вопрос. Если теория струн верна, рано или поздно мы узнаем ответ, но пока наше понимание этой теории не позволяет его получить. Сказанное не значит, что никто не отваживался ответить на этот вопрос. Например, встав на точку зрения космологии, можно предположить, что вначале все измерения находились в туго свёрнутом состоянии, а затем, в ходе Большого взрыва, три пространственных измерения и одно временное развернулись до своего современного состояния, тогда как остальные пространственные измерения остались малыми. Предварительные соображения о том, почему развернулись только три пространственных измерения, будут рассмотрены в главе 14, но, честно говоря, они пока находятся в стадии разработки. Ниже мы будем предполагать, что все пространственные измерения, кроме трёх, находятся в свёрнутом состоянии, в соответствии с тем, что мы наблюдаем в окружающем мире. Одна из основных задач современного этапа исследований состоит в том, чтобы показать, что это предположение следует из самой теории.
В-третьих, если требуется несколько дополнительных измерений, не может ли быть так, что наряду с пространственными будут и дополнительные временные измерения? Если вы поразмышляете об этом с минуту, то почувствуете, что это поистине странная возможность. У нас есть внутреннее интуитивное представление о том, как выглядит вселенная, имеющая несколько пространственных измерений, поскольку мы живём в мире, в котором постоянно сталкиваемся с несколькими, а именно с тремя измерениями. Но как выглядит вселенная, в которой есть несколько времён? Будет ли одно из них совпадать с тем, к которому мы привыкли, а другие будут чем-то «иным»?
Ситуация станет ещё более загадочной, если вы подумаете о свёрнутых временных измерениях. Например, если крошечный муравей перемещается вдоль дополнительного пространственного измерения, свёрнутого наподобие круга, то, завершив очередной круг, он будет снова и снова оказываться в одном и том же месте. В этом мало удивительного, поскольку мы привыкли, что можем, если захотим, возвращаться в одно и то же место в пространстве столько раз, сколько нам нужно. Но если свёрнутое измерение является временным, перемещение вдоль него будет означать, что спустя какой-то промежуток мы будем оказываться в предыдущем моменте времени. Это, конечно, далеко выходит за пределы нашего повседневного опыта. Время в привычном для нас понимании — это измерение, в котором мы можем двигаться только в одном направлении с абсолютной неизбежностью. Мы никогда не можем вернуться в то мгновение, которое уже прошло. Конечно, свёрнутые временные измерения могут иметь характеристики, отличающиеся от тех, которые свойственны нашему обычному времени, простирающемуся из прошлого, с момента рождения Вселенной, к настоящему периоду. Однако в противоположность дополнительным пространственным измерениям, эти новые и доселе неизвестные временные измерения, очевидно, могут потребовать более значительной перестройки нашей интуиции. Некоторые теоретики исследуют возможность включения в теорию струн дополнительных временных измерений, но на сегодняшний день ситуация ещё далека от определённости. В нашем обсуждении теории струн мы будем придерживаться более «традиционного» подхода, в котором все свёрнутые измерения являются пространственными. Тем не менее, в будущем интригующая возможность новых временных измерений вполне может сыграть свою роль.
Физические следствия дополнительных измерений
Годы исследований, отсчёт которых идёт с первой статьи Калуцы, показали, что хотя размеры всех дополнительных измерений, предлагаемых физиками, должны быть слишком малы, чтобы мы могли наблюдать их непосредственно или с помощью имеющегося оборудования, эти измерения оказывают важное косвенное влияние на наблюдаемые физические явления. В теории струн эта связь между свойствами пространства на микроскопическом уровне и наблюдаемыми физическими явлениями видна особенно отчётливо.
Чтобы понять это, вспомним, что массы и заряды частиц определяются возможными модами резонансных колебаний струн. Представьте себе крошечную струну, которая движется и колеблется, и вы поймёте, что моды резонансных колебаний подвержены влиянию со стороны окружающего пространства. Подумайте, например, о морских волнах. На бескрайних просторах океана отдельная изолированная волна может иметь любую форму и двигаться в любом направлении. Это очень похоже на колебания струны, движущейся по развёрнутым протяжённым пространственным измерениям. Как указывалось в главе 6, такая струна в любой момент времени может колебаться в любом из протяжённых измерений. Но когда морская волна проходит через более узкий участок, на форму волны будут влиять, например, глубина моря, расположение и форма скал, форма канала, по которому движется вода и т. п. Можно также представить себе органную трубу или валторну. Звук, который может воспроизводить каждый из этих инструментов, непосредственно зависит от резонансной моды колебаний воздуха, проходящего через них, а эта мода определяется формой и размерами каналов в инструменте, через которые движется поток воздуха. Свёрнутые пространственные измерения оказывают аналогичное влияние на возможные моды резонансных колебаний струны. Поскольку крошечные струны колеблются во всех пространственных измерениях, форма, в которую свёрнуты эти дополнительные пространственные измерения, а также форма их взаимного переплетения, сильно влияют и строго ограничивают возможные моды резонансных колебаний. Эти моды, в значительной степени определяемые геометрией дополнительных измерений, формируют набор свойств возможных частиц, наблюдаемых в привычных протяжённых измерениях. Это означает, что геометрия дополнительных измерений определяет фундаментальные физические свойства, такие как массы частиц и заряды, которые мы наблюдаем в нашем обычном трёхмерном пространстве.
Это столь глубокий и важный момент, что мы повторим его ещё раз. Согласно теории струн Вселенная состоит из крошечных струн. Моды резонансных колебаний этих струн определяют, на уровне микромира, массы и константы взаимодействия элементарных частиц. Теория струн также требует существования дополнительных измерений, которые должны быть свёрнуты до очень маленького размера, чтобы не было противоречия с тем фактом, что исследователям до сих пор не удалось их обнаружить. Но крошечные струны могут двигаться в крошечных пространствах. Когда струна перемещается, осциллируя по ходу своего движения, геометрическая форма дополнительных измерений играет решающую роль, определяя моды резонансных колебаний. Поскольку моды резонансных колебаний струн проявляются в виде масс и зарядов элементарных частиц, мы имеем право утверждать, что эти фундаментальные свойства Вселенной в значительной степени определяются размерами и формой дополнительных измерений. Этот результат представляет собой одно из наиболее глубоких следствий теории струн.
Поскольку дополнительные измерения оказывают столь глубокое влияние на фундаментальные физические свойства Вселенной, мы должны с неослабевающей энергией исследовать, как выглядят эти свёрнутые измерения.
Как выглядят свёрнутые измерения?
Дополнительные пространственные измерения теории струн не могут быть свёрнуты произвольным образом: уравнения, следующие из теории струн, существенно ограничивает геометрическую форму, которую они могут принимать. В 1984 г. Филипп Канделас из университета штата Техас в г. Остине, Гари Горовиц и Эндрю Строминджер из университета штата Калифорния в г. Санта-Барбара, а также Эдвард Виттен показали, что этим условиям удовлетворяет один конкретный класс шестимерных геометрических объектов. Они носят название пространств Калаби — Яу (или многообразий Калаби — Яу[32]), в честь двух математиков, Эудженио Калаби из университета штата Пенсильвания и Шин-Туна Яу из Гарвардского университета, исследования которых в близкой области, выполненные ещё до появления теории струн, сыграли центральную роль в понимании этих пространств. Хотя математическое описание пространств Калаби — Яу является довольно сложным и изощрённым, мы можем получить представление о том, как они выглядят, взглянув на рисунок.{45}
Рис. 8.9. Пример пространства Калаби — Яу
Пример пространства Калаби — Яу показан на рис. 8.9.{46} Когда вы будете рассматривать этот рисунок, вы должны помнить, что ему присущи некоторые ограничения. Мы попытались представить шестимерное пространство на двумерном листе бумаги, что неизбежно привело к довольно существенным искажениям. Тем не менее, рисунок передаёт основные черты внешнего вида пространств Калаби — Яу.{47} На рис. 8.9 иллюстрируется всего лишь один из многих десятков тысяч возможных видов пространств Калаби — Яу, которые удовлетворяют строгим требованиям к дополнительным измерениям, вытекающим из теории струн. Хотя принадлежность к клубу, в который входят десятки тысяч членов, нельзя считать эксклюзивной особенностью, вы можете сравнить это число с бесконечным числом форм, которые возможны с чисто математической точки зрения; в этом смысле пространства Калаби — Яу действительно являются достаточно редкими.
Чтобы получить общую картину, вы должны теперь мысленно заменить каждую из сфер, показанных на рис. 8.7 и представляющих два свёрнутых измерения, пространством Калаби — Яу. Иначе говоря, как показано на рис. 8.10, в каждой точке нашего привычного трёхмерного пространства согласно теории струн имеется шесть доселе неведомых измерений, тесно свёрнутых в одну из этих довольно причудливых форм.
Рис. 8.10. Согласно теории струн Вселенная имеет дополнительные измерения, свёрнутые в пространство Калаби — Яу
Эти измерения представляют собой неотъемлемую и вездесущую часть структуры пространства, они присутствуют повсюду. Например, если вы опишете рукой широкую дугу, ваша рука будет двигаться не только в трёх развёрнутых измерениях, но и в этих свёрнутых. Конечно, поскольку эти свёрнутые измерения столь малы, ваша рука в своём движении пересечёт их бесчисленное количество раз, снова и снова возвращаясь к исходной точке. Размеры этих измерений настолько малы, что в них не слишком много места для перемещения таких огромных объектов, как ваша рука, и все они «размазываются»: закончив движение руки, вы остаётесь в полном неведении о путешествии, которое она совершила сквозь свёрнутые измерения Калаби — Яу.
Это поразительная особенность теории струн. Но если у вас практичный ум, вы обязаны вернуться к обсуждению существенных и конкретных вопросов. Теперь, когда мы лучше понимаем, как выглядят дополнительные измерения, мы можем задать вопрос, какие физические свойства обязаны своим происхождением струнам, колеблющимся в этих измерениях, и как сравнить эти свойства с результатами экспериментальных наблюдений? В викторине под названием «теория струн» это вопрос на миллион долларов.
Глава 9. Дымящееся ружьё: экспериментальные свидетельства
Ничто не доставило бы специалисту по теории струн большего удовольствия, чем возможность гордо предъявить миру подробный список предсказаний, поддающихся экспериментальной проверке. Действительно, не существует способа убедиться, что та или иная теория действительно описывает наш мир, не подвергнув её предсказания экспериментальной проверке. И неважно, какие восхитительные картины рисует теория струн — если она не описывает с хорошей точностью нашу Вселенную, она имеет не больше отношения к делу, чем навороченная компьютерная игра «Драконы и темницы».
Эдвард Виттен с гордостью объявил, что теория струн уже сделала впечатляющее и подтверждённое экспериментально предсказание: «Теория струн обладает замечательным свойством: она предсказывает гравитацию».{48} Этим Виттен хотел сказать, что Ньютон и Эйнштейн разработали свои теории гравитации, так как наблюдения ясно показывали им, что гравитация существует и поэтому требует точного и непротиворечивого объяснения. Напротив, даже если бы физики, занимающиеся изучением теории струн, совершенно ничего не знали об общей теории относительности, они неизбежно пришли бы к ней в рамках теории струн. Благодаря существованию моды колебаний, соответствующей безмассовому гравитону со спином 2, гравитация является неотъемлемым элементом этой теории. Как сказал Виттен: «Тот факт, что гравитация является следствием теории струн, является величайшим теоретическим достижением в истории».{49} Признавая, что «предсказание» правильнее было бы называть «послесказанием», так как физики дали теоретическое описание гравитации до появления теории струн, Виттен подчёркивает, что это просто историческая случайность. Какая-нибудь другая высокоразвитая цивилизация во Вселенной, фантазирует Виттен, вполне могла бы сначала открыть теорию струн, а уже после, в качестве ошеломляющего следствия, — теорию гравитации.
Однако, поскольку историю науки на нашей планете уже не перепишешь, многие считают сделанное задним числом предсказание гравитации неубедительным экспериментальным подтверждением теории струн. Большинство физиков в гораздо большей степени было бы удовлетворено одним из двух: либо чтобы теория струн дала обычное предсказание, поддающееся экспериментальной проверке, либо чтобы она дала истолкование каким-либо физическим свойствам (таким, как масса электрона или существование трёх семейств элементарных частиц), для которых в настоящее время не существует объяснения. В этой главе мы расскажем, насколько далеко учёные, работающие в области теории струн, продвинулись в этом направлении.
Ирония судьбы состоит в том, что хотя потенциально теория струн обещает стать по предсказательной силе наиболее мощной из всех теорий, с которыми когда-либо имели дело учёные, способной объяснить наиболее фундаментальные свойства природы, физики до сих пор не могут делать предсказания с точностью, достаточной для сопоставления с экспериментальными данными. Представьте себе ребёнка, который получил на Новый год игрушку, о которой давно мечтал, но не может её включить, потому что в инструкции не хватает нескольких страниц. Так и современные физики, владея тем, что вполне может оказаться святым Граалем современной науки, не могут воспользоваться всей мощью этого средства, пока не напишут полное «руководство пользователя». Тем не менее, мы увидим в этой главе, что при небольшом везении одно центральное свойство теории струн может получить экспериментальное подтверждение уже в ближайшем десятилетии. А при большей удаче косвенные подтверждения могут быть получены в любой момент.
Перекрёстный огонь критики
Истинна ли теория струн? Мы не знаем этого. Если вы разделяете веру в то, что законы физики не должны делиться на законы, управляющие макромиром, и законы, диктующие правила для микромира, а также верите, что мы не должны останавливаться, пока у нас не будет теории с неограниченной областью применимости, тогда теория струн — ваша единственная надежда. Конечно, вы можете возразить, что такое утверждение свидетельствует скорее о недостатке воображения у физиков, чем о какой-то уникальности теории струн. Возможно. Вы можете также сказать, что подобно человеку, который ищет потерянные ключи под уличным фонарём, физики столпились вокруг теории струн просто потому, что по какому-то капризу в развитии науки в этом направлении упал случайный луч прозрения. Может быть. В конце концов, если вы по натуре консерватор или любите спор ради спора, вы даже можете сказать, что физики напрасно тратят время на теорию, которая постулирует новые свойства природы в масштабе, в несколько сот миллионов миллиардов раз меньшем того, который доступен экспериментальному исследованию.
Если бы вы высказали эти упрёки в середине 1980-х гг., когда возник первый всплеск интереса к теории струн, вы оказались бы в одной компании со многими самыми именитыми физиками того времени. Например, нобелевский лауреат Шелдон Глэшоу, работавший в Гарвардском университете, вместе с другим физиком Полом Гинспаргом, в то время также сотрудником Гарварда, публично обвинили теорию струн в невозможности экспериментальной проверки: «Вместо традиционного соревнования теории и эксперимента, специалисты по теории суперструн заняты поисками внутренней гармонии там, где критерием истинности являются элегантность, уникальность и красота. Само существование теории держится на магических совпадениях, чудесных сокращениях и связях между казавшихся несвязанными (и, возможно, ещё и не открытыми) областями математики. Достаточно ли этих свойств, чтобы поверить в реальность суперструн? Могут ли математика и эстетика заменить и превзойти обычный эксперимент?»{50}
В другом своём выступлении Глэшоу продолжил эту тему, сказав, что «…теория струн столь амбициозна, что она может быть либо целиком истинна, либо целиком ложна. Единственная проблема состоит в том, что её математика настолько нова и сложна, что неизвестно, сколько десятилетий потребуется на её окончательную разработку».{51}
Он даже задавался вопросом, должны ли специалисты по теории струн «получать зарплату от физических факультетов, и позволительно ли им совращать умы впечатлительных студентов», предупреждая, что теория струн подрывает основы науки, во многом так, как это делала теология в средние века.{52}
Ричард Фейнман незадолго до своей смерти дал ясно понять, что он не верит в то, что теория струн является единственным средством для решения проблем, в частности, катастрофических бесконечностей, препятствующих гармоничному объединению гравитации и квантовой механики: «По моим ощущениям — хотя я могу и ошибаться — существует не один способ решения этой задачи. Я не думаю, что есть только один способ, которым мы можем избавиться от бесконечностей. Тот факт, что теория позволяет избавиться от бесконечностей, не является для меня достаточным основанием, чтобы поверить в её уникальность».{53}
И Говард Джорджи, знаменитый коллега и сотрудник Глэшоу по Гарварду, в конце 1980-х гг. также был среди громогласных критиков теории струн: «Если мы позволим увлечь себя сладкоголосым сиренам, вещающим об „окончательном“ объединении на расстояниях столь малых, что наши друзья-экспериментаторы не смогут помочь нам, мы попадём в беду, поскольку лишимся ключевого процесса отметания ошибочных идей, который выгодно отличает физику от многих других менее интересных видов человеческой деятельности».{54}
Как и во многих других делах большой важности, на каждого скептика приходится энтузиаст. Виттен говорил, что когда он познакомился с тем, как теория струн объединяет гравитацию и квантовую механику, это стало «величайшим интеллектуальным потрясением» в его жизни.{55} Кумрун Вафа, ведущий специалист по теории струн из Гарвардского университета, утверждал, что «теория струн, несомненно, даёт глубочайшее понимание мироздания, которого мы когда-либо достигали».{56} А нобелевский лауреат Мюррей Гелл-Манн сказал, что теория струн — «фантастическая вещь», и что он полагает, что один из вариантов этой теории однажды станет теорией всего мироздания.{57}
Итак, как вы могли видеть, дебаты подогревались отчасти физикой, а отчасти философскими рассуждениями о том, какой должна быть физика. «Традиционалисты» желали, чтобы теоретические работы имели тесную связь с экспериментальными наблюдениями, в духе успешной научной деятельности в течение нескольких последних столетий. Другие считали, что нам по силам взяться за проблемы, экспериментальное изучение которых находится за пределами современных технических возможностей.
Несмотря на различия в философских подходах, волна критики теории струн за последнее десятилетие существенно пошла на убыль. Глэшоу связывает это с двумя моментами. Во-первых, он заметил, что в середине 1980-х гг. «специалисты по теории струн с энтузиазмом и бьющим через край оптимизмом объявляли, что они вот-вот ответят на все вопросы физики. Сейчас, когда они стали более благоразумными, многие мои критические замечания середины 1980-х гг. потеряли свою актуальность».{58}
Во-вторых, он также указал, что «мы, исследователи, работы которых не связаны с теорией струн, не добились сколько-нибудь существенного прогресса за последнее десятилетие. Поэтому аргумент, что теория струн является единственным игроком на этом поле, имеет под собой очень серьёзное основание. Есть вопросы, на которые в рамках традиционной квантовой теории поля нельзя получить ответы. Это должно быть ясно. Ответы на них может дать кто-то другой, и единственный „другой“, которого я знаю — это теория струн».{59}
Джорджи вспоминал свои высказывания середины 1980-х гг. примерно в том же духе: «В разные времена на начальных этапах своего развития теория струн получала завышенные оценки. В последующие годы я обнаружил, что некоторые идеи теории струн ведут к интересным выводам, которые оказались полезны в моих собственных исследованиях. Теперь я с большей радостью наблюдаю, как люди посвящают своё время исследованиям в теории струн, поскольку вижу, что она способна дать нечто полезное».{60}
Теоретик Дэвид Гросс, входящий в число лидеров как в традиционной физике, так и в теории струн, красноречиво подытожил ситуацию: «Обычно, когда мы карабкались на гору природы, прокладыванием пути занимались экспериментаторы. Мы, ленивые теоретики, плелись где-то сзади. Время от времени они сбрасывали вниз экспериментальный камень, который рикошетил от наших голов. Со временем мы находили объяснение и могли продолжать наш путь, который нам перекрыли экспериментаторы. Догнав наших друзей, мы объясняли им, с чем они столкнулись, и как они туда попали. Таков был старый и лёгкий (по крайней мере, для теоретиков) способ восхождения на горы. Нам всем хотелось бы, чтобы эти дни снова вернулись. Но теперь мы, теоретики, должны возглавить колонну. Это будет гораздо более одинокий путь».{61}
Теоретики, занимающиеся струнами, не хотят совершать одиночное восхождение на самые высокие вершины природы; они предпочли бы разделить трудности и радости со своими коллегами-экспериментаторами. Сегодняшняя ситуация вызвана отставанием технологии, историческим разрывом: теоретические канаты и крючья для последнего штурма вершины готовы (по крайней мере, частично), а экспериментальные ещё не существуют. Но это вовсе не означает, что теория струн окончательно рассталась с экспериментом. Напротив, теоретики полны надежд «спихнуть вниз теоретический камень» с вершин ультравысокой энергии на головы экспериментаторов, работающих в базовом лагере. Это основная цель современных исследований в теории струн. Пока не удалось оторвать камня от вершины, чтобы запустить его вниз, но, как мы увидим ниже, несколько дразнящих и многообещающих камешков определённо удалось найти.
Дорога к эксперименту
Без радикальных прорывов в технологии мы никогда не сможем получить доступ к ультрамикроскопическому масштабу расстояний, необходимому для прямого наблюдения струн. На ускорителе размером несколько километров физики могут проводить исследования на расстояниях порядка одной миллиардной от одной миллиардной доли метра. Изучение меньших расстояний требует более высоких энергий и, следовательно, более крупных ускорителей, способных сфокусировать достаточное количество энергии на отдельных частицах. Поскольку планковская длина примерно на 17 порядков меньше, чем длины, которые мы можем исследовать сегодня, для того чтобы увидеть струну при использовании современных технологий, нам потребуется ускоритель размером с галактику. На самом деле Шмуль Нусинов из Тель-Авивского университета показал, что эта оценка основана на линейной экстраполяции и, по-видимому, является слишком оптимистичной; проведённый им детальный анализ показал, что потребуется ускоритель размером со всю Вселенную. (Энергия, необходимая для исследования вещества на планковских масштабах, равна примерно тысяче киловатт-часов — её хватило бы для работы среднего кондиционера в течение тысячи часов — и не представляет из себя чего-либо особо выдающегося. Кажущаяся неразрешимой техническая проблема состоит в том, чтобы сконцентрировать всю эту энергию в отдельной частице, т. е. на отдельной струне.) После того, как конгресс США в конечном счёте прекратил финансирование сверхпроводящего суперколлайдера — ускорителя с длиной окружности «всего» 87 км, вряд ли стоит ожидать, что кто-то даст деньги на строительство ускорителя для проведения исследований на планковских масштабах. Если мы собираемся проверить теорию струн экспериментально, мы должны найти косвенный метод. Мы должны определить физические следствия теории струн, которые могут наблюдаться на больших расстояниях, значительно превосходящих размер самих струн.[33] В своей основополагающей статье Канделас, Горовиц, Строминджер и Виттен сделали первые шаги в этом направлении. Они не только установили, что дополнительные измерения в теории струн должны быть свёрнуты в многообразие Калаби — Яу, но также определили следствия, которые имеет этот факт для возможных мод колебаний струн. Один из основных результатов, полученных ими, проливает свет на совершенно неожиданные решения, которые теория струн даёт старым проблемам физики элементарных частиц.
Вспомним, что открытые физиками элементарные частицы разделяются на три семейства с идентичной организацией, при этом частицы каждого следующего семейства имеют всё большую массу. Вопрос, на который до появления теории струн не было ответа, звучит так: «С чем связано существование семейств и почему семейств три?» Вот как отвечает на него теория струн. Типичное многообразие Калаби — Яу содержит отверстия, похожие на те, которые имеются в центре граммофонной пластинки, баранке или многомерной баранке, показанной на рис. 9.1.
Рис. 9.1. Баранка (или тор) и её кузены — торы с ручками
На самом деле, в многомерных пространствах Калаби — Яу могут иметься отверстия самых различных типов, в том числе отверстия в нескольких измерениях («многомерные отверстия»), но основную идею можно видеть и на рис. 9.1. Канделас, Горовиц, Строминджер и Виттен провели тщательное исследование влияния этих отверстий на возможные моды колебаний струн, и вот что они установили.
С каждым отверстием в многообразии Калаби — Яу связано семейство колебаний с минимальной энергией. Поскольку обычные элементарные частицы должны соответствовать модам колебаний с минимальной энергией, существование нескольких отверстий, похожих на отверстия в многомерной баранке, означает, что моды колебаний струн распадаются на несколько семейств. Если свёрнутое многообразие Калаби — Яу имеет три отверстия, мы обнаружим три семейства элементарных частиц.{62} Таким образом, теория струн провозглашает, что наблюдаемое экспериментально разделение на семейства не является необъяснимой особенностью, имеющей случайное или божественное происхождение, а объясняется числом отверстий в геометрической форме, которую образуют дополнительные измерения! Такие результаты заставляют сердца физиков биться учащённо.
Вам может показаться, что число отверстий в свёрнутых измерениях планковских размеров — результат, стоящий поистине на вершине скалы современной физики, — может теперь столкнуть пробный камень эксперимента вниз, в направлении доступных нам сегодня энергий. В конце концов, экспериментаторы могут определить (на самом деле, уже определили) число семейств частиц: три. К несчастью, число отверстий в каждом из десятков тысяч известных многообразий Калаби — Яу изменяется в широких пределах. Некоторые имеют три отверстия. Но другие имеют четыре, пять, двадцать пять и т. д. — у некоторых число отверстий достигает даже 480. Проблема состоит в том, что в настоящее время никто не знает, как определить из уравнений теории струн, какое из многообразий Калаби — Яу определяет вид дополнительных пространственных измерений. Если бы мы смогли найти принцип, который позволяет выбрать одно из многообразий Калаби — Яу из огромного числа возможных вариантов, тогда, действительно, камень с вершины загромыхал бы по склону в сторону лагеря экспериментаторов. Если бы конкретное пространство Калаби — Яу, выделяемое уравнениями теории, имело три отверстия, мы бы получили от теории струн впечатляющее «послесказание», объясняющее известную особенность нашего мира, которая в ином случае выглядит совершенно мистической. Однако поиск принципа выбора многообразия Калаби — Яу пока остаётся нерешённой проблемой. Тем не менее, и это важно, мы видим, что теория струн способна в принципе дать ответ на эту загадку физики элементарных частиц, что само по себе уже представляет значительный прогресс.
Число семейств частиц представляет собой лишь одно из экспериментальных следствий, вытекающих из геометрической формы дополнительных измерений. Благодаря влиянию на возможные моды колебаний струн, дополнительные размерности оказывают влияние на детальные свойства частиц-переносчиков взаимодействия и частиц вещества. Ещё один важный пример, продемонстрированный в работе Строминджера и Виттена, состоит в том, что массы частиц в каждом семействе зависят от того — будьте внимательны, это тонкий момент, — как пересекаются и накладываются друг на друга границы различных многомерных отверстий в многообразии Калаби — Яу. Это явление с трудом поддаётся визуализации, но основная идея состоит в том, что когда струны колеблются в дополнительных свёрнутых измерениях, расположение отверстий и то, как многообразие Калаби — Яу обворачивается вокруг них, оказывает прямое воздействие на возможные моды резонансных колебаний. Детали этого явления довольно сложны и, на самом деле, не столь существенны; важно то, что как и в случае с числом семейств, теория струн даёт основу для ответа на вопросы, по которым предыдущие теории хранили полное молчание, например, почему электрон и другие частицы имеют те массы, которые они имеют. Однако эти вопросы также требуют знания того, какой вид имеют дополнительные измерения, свёрнутые в пространства Калаби — Яу.
Сказанное выше дало некоторое представление о том, каким образом теория струн может однажды объяснить приведённые в табл. 1.1 свойства частиц вещества. Физики, работающие в теории струн, верят, что таким же образом смогут одажды объяснить и свойства перечисленных в табл. 1.2 частиц, переносящих фундаментальные взаимодействия. Когда струны закручиваются и вибрируют в развёрнутых и свёрнутых измерениях, небольшая часть их обширного спектра колебаний представлена модами, соответствующими спину 1 или 2. Эти моды являются кандидатами на роль фундаментальных взаимодействий. Независимо от конфигурации пространства Калаби — Яу, всегда имеется одна безмассовая мода колебаний, имеющая спин 2; мы идентифицируем эту моду как гравитон. Однако точный список частиц-переносчиков взаимодействия, имеющих спин 1, — их число, интенсивность взаимодействия, которое они передают, их калибровочные симметрии очень сильно зависят от геометрической формы свёрнутых измерений. Таким образом, повторим, мы пришли к пониманию того, что теория струн даёт схему, объясняющую существующий набор частиц, переносящих взаимодействие, т. е. объясняющую свойства фундаментальных взаимодействий. Однако, не зная точно, в какое многообразие Калаби — Яу свёрнуты дополнительные измерения, мы не можем сделать определённых предсказаний или «послесказаний» (выходящих за рамки замечания Виттена о «послесказании» гравитации).
Почему мы не можем установить, какое из многообразий Калаби — Яу является «правильным»? Большинство теоретиков относит это к неадекватности теоретических инструментов, используемых в теории струн. В главе 12 мы покажем более подробно, что математический аппарат теории струн столь сложен, что физики способны выполнить только приближённые вычисления в рамках формализма, известного под названием теории возмущений. В этой приближённой схеме все возможные многообразия Калаби — Яу выглядят равноправными; ни одно из них не выделяется уравнениями. Поскольку физические следствия теории струн существенно зависят от точной формы свёрнутых измерений, не имея возможности выбрать единственное пространство Калаби — Яу из многих возможных, нельзя сделать определённых заключений, поддающихся экспериментальной проверке. Современные исследования нацелены на разработку теоретических методов, выходящих за рамки приближённого подхода, в надежде, что помимо других выгод это выделит единственное многообразие Калаби — Яу для дополнительных измерений. В главе 13 мы рассмотрим прогресс, достигнутый в этом направлении.
Перебирая возможности
Вы можете и так поставить вопрос: пусть неизвестно, какое из пространств Калаби — Яу выбирает теория струн, но позволяет ли какой-нибудь выбор получить физические характеристики, которые согласуются с наблюдаемыми? Другими словами, если мы рассчитаем физические характеристики, которые даёт каждое возможное многообразие Калаби — Яу, и соберём их в один гигантский каталог, сможем ли мы найти среди них то, которое соответствует действительности? Это важный вопрос, однако есть две серьёзные причины, по которым на него нельзя дать исчерпывающего ответа.
Разумно было бы начать исследование, ограничившись только теми пространствами Калаби — Яу, которые дают три семейства частиц. Это значительно сокращает список возможных вариантов. Однако обратите внимание: мы можем деформировать тор с ручками из одной формы во множество других — на самом деле, в бесконечное множество — без изменения числа отверстий. На рис. 9.2 мы показали одну такую деформацию формы, приведённой в нижней части рис. 9.1.
Рис. 9.2. Мы можем различными способами изменить форму тора с ручками, не меняя количества отверстий в нём; здесь показан один из таких способов
Аналогично можно взять пространство Калаби — Яу с тремя отверстиями и плавно изменить его форму без изменения числа отверстий, опять же через бесконечное число промежуточных форм. (Когда выше мы говорили о десятках тысяч многообразий Калаби — Яу, мы уже сгруппировали все те многообразия, которые могут быть преобразованы друг в друга путём таких плавных деформаций, и учитывали такие группы как одно пространство Калаби — Яу.) Проблема состоит в том, что физические свойства колебаний струн, а также соответствующие им массы и константы взаимодействий, очень сильно зависят от подобных детальных изменений вида многообразия, а у нас, опять же, нет критериев для того, чтобы отдать одной из этих конкретных возможностей предпочтение перед другими. И неважно, сколько аспирантов усадят за эту работу профессора физики, невозможно перебрать все альтернативы, соответствующие бесконечному списку различных пространств.
Осознание этого побудило специалистов по теории струн исследовать физику, порождаемую выборкой из возможных многообразий Калаби — Яу. Но даже в этом случае ситуация остаётся непростой. Приближённые уравнения, используемые учёными в настоящее время, имеют недостаточную мощность для того, чтобы получить полную и точную физическую картину, которую даёт выбранное многообразие Калаби — Яу. Эти уравнения позволяют значительно продвинуться вперёд в отношении приблизительной оценки свойств колеблющейся струны, которые, как мы надеемся, будут соответствовать наблюдаемым частицам. Но точные и определённые физические вопросы, подобные тому, какова масса электрона или интенсивность слабого взаимодействия, требуют уравнений, точность которых намного превосходит ту, которую дают современные приближённые схемы. Вспомните главу 6 и пример с «Верной ценой», где говорилось, что «естественным» мерилом энергии в теории струн является планковская энергия, и только благодаря необычайно точному механизму сокращений теория струн способна дать моды колебаний, массы которых близки к массам известных частиц вещества и частиц, переносящих взаимодействие. Искусные сокращения требуют точных расчётов, поскольку даже небольшие погрешности могут оказать большое влияние на результат. Как мы увидим в главе 12, в середине 1990-х гг. физики смогли добиться значительного прогресса в выходе за рамки современных приближённых уравнений, хотя сделать предстоит ещё немало.
Итак, где же мы находимся? Да, мы столкнулись с проблемой отсутствия фундаментального критерия выбора конкретного многообразия Калаби — Яу. Да, у нас нет теоретических средств, необходимых для вывода наблюдаемых характеристик, соответствующих такому выбору. Но мы можем спросить, а есть ли в каталоге пространств Калаби — Яу какие-либо элементы, которые дают картину мира, в основном согласующуюся с наблюдениями? Ответ на этот вопрос звучит достаточно обнадёживающе. Хотя большинство элементов каталога дают картину, которая существенно отличается от нашего мира (в ней, помимо всего прочего, другое число семейств элементарных частиц, а также иные типы и константы фундаментальных взаимодействий), небольшое число многообразий даёт физическую картину, которая на качественном уровне близка к наблюдаемой в реальности. Таким образом, существуют примеры пространств Калаби — Яу, приводящие к колебательным модам струн, подходящим для частиц стандартной модели, если выбирать эти пространства в качестве свёрнутых измерений, существование которых требуется в теории струн. И, что имеет первостепенную важность, теория струн успешно встраивает гравитационное взаимодействие в квантово-механическую схему.
Для современного уровня понимания это лучшее, на что мы могли рассчитывать. Если бы многие многообразия Калаби — Яу давали примерное совпадение с экспериментальными данными, связь между конкретным выбором и наблюдаемой физической картиной была бы менее убедительной. Когда предъявляемым требованиям соответствуют многие варианты, ни один из них нельзя выделить даже с привлечением экспериментальных данных. С другой стороны, если бы ни одно многообразие Калаби — Яу не давало ничего даже отдалённо похожего на наблюдаемую физическую картину, мы могли бы сказать, что теория струн, конечно, прекрасная теоретическая структура, но она, по-видимому, не имеет отношения к нашему миру. То, что даже при наших весьма скромных современных способностях определения детальных физических следствий удалось найти небольшое число пригодных пространств Калаби — Яу, является чрезвычайно обнадёживающим фактом.
Объяснение свойств элементарных частиц и частиц-переносчиков фундаментальных взаимодействий было бы одним из великих, если не величайшим научным достижением. Тем не менее, у вас может возникнуть вопрос, существуют ли предсказания теории струн, в противоположность «послесказаниям», которые физики-экспериментаторы могут попытаться подтвердить уже сегодня или хотя бы в обозримом будущем. Такие предсказания есть.
Суперчастицы
Препятствия на пути теоретических исследований, которые не позволяют в настоящее время использовать теорию струн для получения детальных предсказаний, вынуждают нас к поиску не конкретных, а общих свойств Вселенной, состоящей из струн. В этом контексте слово «общие» указывает на характеристики, которые являются столь фундаментальными, что они мало чувствительны к тонким свойствам теории, которые в настоящее время недоступны для теоретического анализа или вообще не зависят от них. К таким характеристикам можно относиться с доверием, даже если мы не достигли полного понимания всей теории. В последующих главах мы обратимся к другим примерам, а сейчас сконцентрируем внимание на суперсимметрии.
Как мы уже отмечали, фундаментальное свойство теории струн состоит в том, что она обладает высокой симметрией, объединяя в себе не только наши интуитивные принципы симметрии, но и максимальное, с точки зрения математики, расширение этих принципов — суперсимметрию. Как говорилось в главе 7, это означает, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на 1/2. Если теория струн верна, то некоторые из колебаний струн будут соответствовать известным частицам. Парность, связанная с суперсимметрией, позволяет теории струн сделать предсказание, что у каждой известной частицы имеется суперпартнёр. Мы можем определить константы взаимодействия, которые должна иметь каждая из этих суперчастиц, однако в настоящее время не способны предсказать их массы. Но даже несмотря на это, предсказание существования суперпартнёров является общей особенностью теории струн; это свойство теории струн является истинным независимо от тех характеристик, которые пока не разработаны окончательно.
До настоящего времени никому не удавалось наблюдать суперпартнёров элементарных частиц. Это может означать, что они не существуют, и теория струн неверна. Однако по мнению многих специалистов по физике элементарных частиц это связано с тем, что суперпартнёры являются очень тяжёлыми и поэтому не могут быть обнаружены на тех экспериментальных установках, которыми мы располагаем сегодня. В настоящее время физики сооружают гигантский ускоритель вблизи г. Женева в Швейцарии, получивший название Большого адронного коллайдера[34]. Есть надежда, что мощность этой установки будет достаточна для открытия частиц-суперпартнёров. Ускоритель должен вступить в действие к 2010 г., и вскоре после этого суперсимметрия может получить экспериментальное подтверждение. Как сказал Шварц: «До открытия суперсимметрии осталось ждать не так уж долго. И когда это случится, это будет волнующее событие».{63}
Есть, однако, два момента, о которых следует помнить. Даже если частицы-суперпартнёры будут обнаружены, один этот факт недостаточен для того, чтобы утверждать истинность теории струн. Как мы видели выше, хотя суперсимметрия была открыта в ходе работ над теорией струн, она может быть успешно включена в теории, основанные на точечной модели частиц и, следовательно, не является уникальным признаком теории струн. И обратно, если даже частицы-суперпартнёры не будут обнаружены с помощью Большого адронного коллайдера, один этот факт ещё не позволяет отрицать теорию струн, поскольку он может быть связан с тем, что суперпартнёры слишком тяжелы, чтобы их можно было обнаружить на такой установке.
Тем не менее, если частицы-суперпартнёры будут обнаружены, несомненно, это будет сильное и вдохновляющее свидетельство в пользу теории струн.
Частицы с дробным электрическим зарядом
Другое возможное экспериментальное подтверждение теории струн, связанное с электрическим зарядом, является не столь фундаментальным, как существование суперпартнёров, но столь же удивительным. Ассортимент значений электрического заряда, который могут нести частицы в стандартной модели, очень ограничен: кварки и антикварки могут иметь (в единицах заряда электрона) положительный и отрицательный заряд, равный 1/3 и 2/3, а остальные частицы — 0, +1 и 1. Комбинации этих частиц образуют всё известное вещество Вселенной. Однако теория струн допускает существование мод резонансных колебаний, которым соответствуют частицы с существенно иным электрическим зарядом. Например, электрический заряд частиц может принимать ряд экзотических дробных значений, таких как 1/5, 1/11, 1/13 или 1/53. Эти необычные заряды могут возникать в том случае, когда свёрнутые измерения обладают определённым геометрическим свойством — наличием таких отверстий, что намотанные вокруг них струны могут распутаться, только сделав определённое число витков.{64} Детали этого явления не столь важны, заметим только, что число оборотов, которое должна сделать струна, чтобы распутаться, появляется в допустимых модах колебаний в знаменателе дробного значения электрического заряда.
Одни многообразия Калаби — Яу обладают этим геометрическим свойством, другие — нет, поэтому возможность дробных электрических зарядов не является такой фундаментальной, как существование частиц-суперпартнёров. С другой стороны, в то время как предсказание суперпартнёров не является эксклюзивной особенностью теории струн, десятилетия экспериментальных исследований не дали никакого повода ожидать, что столь экзотические электрические заряды могут существовать в какой-либо теории, основанной на точечной модели частиц. Конечно, их можно ввести в такие теории принудительно, но они там будут выглядеть так же уместно, как слон в посудной лавке. Возможность их объяснения из простых геометрических свойств, которые могут иметь дополнительные измерения, делает эти необычные электрические заряды естественным экспериментальным признаком теории струн.
Как и в случае с суперпартнёрами, частиц с таким экзотическим электрическим зарядом пока никому не удалось наблюдать, а современный уровень развития теории струн не позволяет сделать определённые выводы о массе, которую могут иметь эти частицы, если в силу свойств дополнительных измерений они действительно существуют. Объяснение того, что они до сих пор не открыты, опять же состоит в том, что если они существуют, их массы находятся за пределами современных технических возможностей обнаружения. Весьма вероятно, что они близки к планковской массе. Но если будущие эксперименты смогут обнаружить такие экзотические электрические заряды, это будет очень сильное свидетельство в пользу теории струн.
Некоторые более отдалённые перспективы
Существуют и другие способы, которыми могут быть получены свидетельства истинности теории струн. Например, Виттен указал на то, что в один прекрасный день астрономы могут обнаружить в данных, которые они собирают, наблюдая за Вселенной, прямое свидетельство, оставленное теорией струн. Как указывалось в главе 6, обычно размер струн близок к планковской длине, однако струны, несущие большую энергию, могут вырасти до гораздо больших размеров. Энергия Большого взрыва могла быть достаточно высокой для образования небольшого числа крупных, макроскопических струн, которые в ходе расширения Вселенной могли вырасти до астрономических масштабов. Можно ожидать, что в наше время или когда-нибудь в будущем подобная струна пройдёт по ночному небосводу, оказав несомненное и наблюдаемое влияние, которое будет зарегистрировано астрономами (например, небольшое смещение в температуре реликтового космического излучения, см. главу 14). Как однажды сказал Виттен: «Хотя это выглядит фантастично, но я бы предпочёл именно такой сценарий подтвержения истинности теории струн — нельзя вообразить более волнующего способа решения вопроса, чем увидеть струну в телескоп».{65}
Был предложен ряд других экспериментальных проверок теории струн на более близких к Земле расстояниях. Вот пять примеров. Во-первых, в табл. 1.1 мы отметили, что неизвестно, являются ли нейтрино очень лёгкими, или их масса в точности равна нулю. Согласно стандартной модели они являются безмассовыми, но это утверждение не имеет какого-либо глубокого обоснования. Теория струн могла бы принять этот вызов и дать истолкование известным фактам, касающимся нейтрино, и данным, которые могут быть получены в будущем. Особенно интересным было бы, если эксперименты, в конечном счёте, показали, что нейтрино имеет небольшую, но ненулевую массу.[35] Во-вторых, имеются некоторые гипотетические процессы, которые запрещены стандартной моделью, но которые допустимы теорией струн. Среди них возможный распад протона (не переживайте по этому поводу, если это и происходит, то очень медленно), а также возможные превращения и распады некоторых комбинаций кварков, которые нарушают некоторые давно установленные свойства квантовой теории поля, основанной на точечной модели частиц.{66} Эти процессы особенно интересны тем, что их отсутствие в классической теории делает их индикаторами физических явлений, которые не могут быть учтены без использования новых теоретических принципов. Любой из этих процессов, если его удастся наблюдать, даст благодатную почву для объяснения с помощью теории струн. В-третьих, для некоторых пространств Калаби — Яу существуют моды резонансных колебаний, соответствующие новым взаимодействиям, поля которых отличаются небольшой интенсивностью и большим дальнодействием. Если будут обнаружены признаки существования этих новых взаимодействий, они могут быть истолкованы как отражение новых физических явлений, предсказываемых теорией струн. В-четвёртых, как будет показано в следующей главе, астрономы собрали достаточно свидетельств в пользу того, что наша галактика и, возможно, вся Вселенная в целом, погружены в океан тёмного вещества, природу которого ещё предстоит установить. Имея много возможных мод резонансных колебаний, теория струн предлагает ряд кандидатов на роль тёмного вещества; для вынесения окончательного вердикта необходимо дождаться результатов будущих экспериментальных исследований, которые должны детально определить характеристики тёмного вещества.
И, наконец, пятый возможный способ связать теорию струн с экспериментальными данными включает космологическую постоянную. Мы обсуждали её в главе 3: она представляет собой дополнительный член, который был временно добавлен Эйнштейном к его первоначальным уравнениям общей теории относительности, чтобы обеспечить стационарность Вселенной. Хотя в дальнейшем открытие расширения Вселенной побудило Эйнштейна вернуть уравнениям их первоначальный вид, за прошедшее с тех пор время физики осознали, что не существует объяснения, почему космологическая постоянная должна быть равна нулю. В действительности, космологическая постоянная может интерпретироваться как суммарная энергия, содержащаяся в пустоте космического пространства, поэтому её значение может быть рассчитано теоретически и измерено экспериментально. Однако расчёты и измерения, выполненные до сегодняшнего дня, демонстрируют колоссальное расхождение. Наблюдения показывают, что космологическая постоянная либо равна нулю (как, в конечном счёте, полагал Эйнштейн), либо очень мала. Расчёты указывают, что квантовые флуктуации в вакууме дают ненулевое значение космологической постоянной, которое на 120 порядков (единица со 120 нулями) больше, чем значение, допускаемое экспериментальными данными! Это бросает вызов теоретикам и даёт им замечательную возможность подтвердить свою правоту. Смогут ли они, используя методы своей теории, устранить это расхождение и объяснить, почему космологическая постоянная равна нулю? Или, если экспериментальные данные, в конечном счёте, покажут, что космологическая постоянная имеет небольшое, но ненулевое значение, сможет ли теория струн объяснить этот факт? Если учёные, работающие над теорией струн, смогут ответить на этот вызов (что они пока не сделали), это даст убедительные свидетельства в поддержку данной теории.
Оценка ситуации
История физики содержит немало примеров идей, которые в момент своего появления казались совершенно не поддающимися проверке, но впоследствии получили полное экспериментальное подтверждение в результате разработки методов, появление которых трудно было предвидеть. Тремя примерами таких выдающихся идей, которые в настоящее время общеприняты, но которые в момент своего появления казались скорее научно-фантастическими, чем научными, являются: идея о том, что вещество состоит из атомов; гипотеза Паули о существовании частиц-призраков — нейтрино и гипотеза о том, что небеса усеяны нейтронными звёздами и чёрными дырами.
Мотивы, которые привели к созданию теории струн, были не менее стимулирующими, чем в случае любой из трёх идей, упомянутых выше, — в действительности, теория струн приветствовалась как наиболее важное и восхитительное достижение со времён появления квантовой механики. Это сравнение особенно уместно, поскольку история квантовой механики учит нас, что революции в физике легко могут затянуться на многие десятилетия, которые должны пройти, прежде чем новая теория достигнет зрелости. Между тем, если сравнивать современных специалистов по теории струн с физиками, которые были заняты разработкой квантовой механики, то у последних было большое преимущество: даже в незаконченной формулировке квантовая механика имела непосредственный контакт с экспериментальными данными. Несмотря на это, потребовалось около 30 лет на разработку логической структуры квантовой механики и ещё примерно 20 лет на её объединение со специальной теорией относительности. Мы заняты объединением квантовой механики и общей теории относительности, что представляет собой гораздо более сложную задачу, к тому же взаимодействие с экспериментом здесь очень затруднено. В отличие от тех, кто работал над квантовой механикой, учёные, которые сегодня занимаются разработкой теории струн, лишены яркого света природы, который дают детальные экспериментальные исследования и который направлял бы их шаг за шагом вперёд.
Это означает, что наше поколение физиков и, возможно, несколько следующих посвятят свою жизнь исследованиям и разработкам в области теории струн, не имея совершенно никакой обратной связи с экспериментом. Немалое число физиков, которые по всему миру ведут энергичные исследования в области теории струн, знают, что они идут на риск: усилия всей их жизни могут не принести окончательного подтверждения теории. Не вызывает сомнений, что прогресс в теоретических исследованиях будет оставаться значительным, но будет ли он достаточен для того, чтобы преодолеть существующие препятствия и сделать решающие, поддающиеся экспериментальной проверке предсказания? Помогут ли косвенные проверки, которые мы обсуждали выше, найти настоящее «дымящееся ружьё» для теории струн? Эти вопросы очень важны для всех, кто занимается исследованиям в области теории струн, но дать на них ответ не может никто. Только время способно ответить на них. Чарующая простота теории струн, способ, которым она разрешает противоречие между гравитацией и квантовой механикой, её способность объединить все компоненты мироздания и потенциально неограниченная предсказательная мощь — всё это рождает вдохновение, оправдывающее риск.
Эти высокие рассуждения постепенно находят всё более основательное подкрепление благодаря способности теории струн открывать новые поразительные физические характеристики Вселенной, основанной на понятии струны, которые, в свою очередь, вскрывают тонкую и глубокую логику мироздания. Выражаясь языком, которым мы пользовались в этой главе, многие из этих характеристик являются общими принципами, которые станут фундаментальными свойствами построенной из струн Вселенной независимо от неизвестных сегодня деталей. Самые удивительные из них окажут глубокое влияние на наше постоянно развивающееся понимание пространства и времени.
Часть IV. Теория струн и структура пространства-времени
Глава 10. Квантовая геометрия
Примерно за десятилетие Эйнштейн в одиночку сокрушил многовековые устои теории Ньютона, представив миру совершенно новую и значительно более глубокую теорию гравитации. И эксперты, и неспециалисты были покорены завораживающим изяществом и фундаментальной новизной формулировки общей теории относительности Эйнштейна. Не следует, однако, забывать о благоприятных исторических обстоятельствах, в значительной мере способствовавших успеху исследований Эйнштейна. Главное из них состоит в том, что Эйнштейну были известны математические результаты, полученные в XIX в. Георгом Бернгардом Риманом. Эти результаты давали возможность описания искривлённых пространств произвольной размерности в рамках строгого геометрического аппарата. В знаменитой инаугурационной лекции 1854 г. в Гёттингенском университете Риман перешёл через Рубикон мышления в рамках плоского евклидового пространства и проложил дорогу к единообразному математическому описанию геометрии всех типов искривлённых пространств. Именно пионерские идеи Римана позволили математикам дать количественное описание искривлённых пространств, подобных тем, которые иллюстрировались на рис. 3.4 и 3.6.
Гениальность Эйнштейна состояла в осознании того, что эти математические идеи были идеально приспособлены для выражения его новых взглядов на гравитационное взаимодействие. Он смело заявил о том, что математические понятия римановой геометрии безупречно согласуются с физикой гравитации.
Но сейчас, почти век спустя после научного подвига Эйнштейна, теория струн даёт нам квантово-механическое описание гравитации, требующее пересмотра общей теории относительности на длинах порядка планковской. А так как в основе общей теории относительности лежит понятие римановой геометрии, то и само это понятие должно быть модифицировано для соответствия новой физике, возникающей на малых расстояниях в теории струн. И если в общей теории относительности постулируется, что свойства искривлённого пространства Вселенной описываются геометрией Римана, то в теории струн утверждается, что данный постулат справедлив лишь в случае, когда структура Вселенной рассматривается на достаточно больших масштабах. На длинах порядка планковской должна вступать в игру новая геометрия, согласующаяся с новой физикой теории струн. Эту новую геометрию называют квантовой геометрией.
В отличие от геометрии Римана, здесь нет готовых геометрических рецептов, уже описанных в книгах по математике и пригодных для того, чтобы занимающиеся струнами физики могли взять их на вооружение и использовать в этой науке. Напротив, современные физики и математики погружены в исследования в теории струн, по крупицам собирая знания, которые лягут в основу новой области физики и математики. И хотя основная часть работы ещё впереди, в ходе этих исследований уже было открыто много новых диктуемых теорией струн геометрических свойств пространства-времени, которые наверняка произвели бы впечатление и на самого Эйнштейна.
Суть римановой геометрии
При прыжках на батуте его упругие волокна растягиваются под весом человеческого тела, и батут деформируется. Сильнее всего растяжение вблизи тела человека, а по мере приближения к краям батута растяжение менее заметно. Это наглядно видно, если на батут нанесено знакомое изображение (например, Мона Лиза). Если на батуте никто не стоит, изображение выглядит нормально, но если на батут встаёт человек, изображение искажается, в особенности непосредственно под человеком (см. рис. 10.1).
Рис. 10.1. Если на батуте с нанесённым изображением стоит человек, изображение сильнее всего искажается под весом тела человека
Этот пример иллюстрирует важнейший принцип описания искривлённых поверхностей, принятый в математической формулировке Римана. На основе более ранних наблюдений Карла Фридриха Гаусса, Николая Лобачевского, Яноша Бойяи и других математиков, Риман показал, что детальный анализ расстояний между всеми точками на поверхности объекта или внутри него даёт способ вычисления значения кривизны. Грубо говоря, чем больше (неоднородное) растяжение, тем сильнее отклонение от формулы для расстояний в плоском случае, и тем больше кривизна объекта. Например, батут сильнее всего растягивается под ногами человека, и поэтому расстояния между точками в этой области будут сильнее всего отличаться от расстояний в случае ненагруженного батута. Следовательно, кривизна батута здесь будет максимальной. Это интуитивно ясно из приведённого рисунка: именно в таких точках изображение на батуте искажено сильнее всего.
Эйнштейн использовал математические результаты Римана и дал им точную физическую интерпретацию. Как обсуждалось в главе 3, Эйнштейн показал, что гравитационное взаимодействие обусловлено кривизной пространства-времени. Рассмотрим эту интерпретацию более подробно. С математической точки зрения, кривизна пространства-времени, подобно кривизне батута, означает искажение расстояний между точками. С физической точки зрения, действие гравитационной силы на тело есть прямое следствие этого искажения расстояний. По мере того как размеры тел уменьшаются, физика и математика должны согласовываться всё лучше и лучше, потому что абстрактное математическое понятие точки становится всё ближе к физической реальности. Однако теория струн ограничивает точность, с которой геометрическая формулировка Римана может соответствовать физической природе гравитации, ибо накладывает ограничение на минимальный размер, который вы можете придать физическому телу. Как только вы спускаетесь до размера струны, дальше дороги нет. В теории струн не существует традиционного понятия точечной частицы: в противном случае с помощью теории струн было бы невозможно реализовать квантовую теорию гравитации. Это определённо свидетельствует о том, что риманова геометрия, в основе которой лежат вычисления расстояний между точками, на ультрамикроскопических масштабах модифицируется теорией струн.
Такое наблюдение несущественно для стандартных приложений общей теории относительности к изучению макросистем. Например, проводя исследования в области космологии, физики, не задумываясь, рассматривают огромные галактики в качестве точек, так как размер галактик пренебрежимо мал по сравнению с размером Вселенной. Этот грубый подход к формулировке римановой геометрии оказывается, тем не менее, исключительно точным — в области космологии успех общей теории относительности очевиден. Однако в ультрамикроскопической области в силу протяжённых свойств струн риманова геометрия просто не является подходящим математическим формализмом. Как мы увидим ниже, она должна быть заменена квантовой геометрией теории струн, и эта замена приведёт к возникновению поразительных и неожиданных новых эффектов.
Космологическая сцена
Согласно космологической модели Большого взрыва вся Вселенная образовалась в результате необычайного космического взрыва, произошедшего около 15 миллиардов лет назад. Как впервые обнаружено Хабблом, даже сегодня продолжают разлетаться «осколки» этого взрыва, представляющие собой миллиарды галактик. Вселенная расширяется. Нам неизвестно, продолжится ли это расширение бесконечно, или в какой-то момент расширение замедлится, затем прекратится, сменится сжатием, и, наконец, вновь приведёт к космическому взрыву. Астрономы и астрофизики пытаются изучить этот вопрос экспериментально, так как ответ зависит от величины, которую, в принципе, можно измерить, а именно от средней плотности материи во Вселенной.
Если средняя плотность материи превысит так называемую критическую плотность, равную примерно 1029 г/см3 (около 5 атомов водорода на каждый кубический метр Вселенной), то Вселенную пронзит всепроникающая гравитационная сила, которая остановит расширение и приведёт к сжатию. Если средняя плотность материи меньше критической, то гравитационное притяжение будет слишком слабым, чтобы остановить расширение, и оно будет продолжаться вечно. (Основываясь на житейских наблюдениях, можно подумать, что средняя плотность Вселенной во много раз превышает критическое значение. Нужно, однако, иметь в виду, что материя, как и деньги, имеет тенденцию скапливаться в определённых местах. Использование средней плотности Земли, Солнечной системы или даже Млечного пути в качестве средней плотности Вселенной сродни использованию величины состояния Билла Гейтса для оценки среднего состояния простых смертных. Состояние большинства людей бледнеет по сравнению с состоянием Гейтса, и это приводит к значительному уменьшению среднего значения. Существование огромных и практически пустых пространств между галактиками ведёт к колоссальному снижению средней плотности материи.)
Тщательно исследуя распределение галактик в пространстве, астрономы могут довольно точно предсказать среднюю плотность видимой материи во Вселенной. Она оказывается гораздо меньше критической. Однако имеются серьёзные основания полагать (как с теоретической, так и экспериментальной точки зрения), что Вселенная пронизана тёмной материей. Эта материя не участвует в ядерном синтезе, происходящем в звёздах, и поэтому не излучает свет. Следовательно, её нельзя обнаружить с помощью телескопа. Никому ещё не удавалось выяснить природу тёмной материи, не говоря уже о том, чтобы вычислить её точное количество. А это означает, что будущее нашей Вселенной, которая в настоящий момент расширяется, остаётся неясным.
Рассмотрим, например, что произойдёт, если плотность материи превышает критическое значение, и однажды в далёком будущем расширение прекратится, после чего Вселенная начнёт сжиматься. Все галактики сначала будут медленно приближаться друг к другу, затем, со временем, скорость их сближения возрастёт, и они помчатся навстречу друг другу с огромной скоростью. Представьте себе всю Вселенную, сжимающуюся в один непрерывно уменьшающийся сгусток космической материи. Согласно главе 3, начиная с максимального размера во многие миллиарды световых лет, Вселенная сожмётся до миллионов световых лет, и это сжатие будет ускоряться с каждой секундой. Всё будет сжиматься сначала до размеров одной галактики, затем до размеров одной звезды, планеты, апельсина, горошины, песчинки. Далее, согласно общей теории относительности, до размеров молекулы, атома, и, на неизбежной окончательной стадии Большого сжатия, до размеров точки. Согласно общепринятой теории Вселенная начала своё существование после взрыва в начальном состоянии нулевого размера, и если её масса окажется достаточной, завершит своё существование коллапсом в аналогичное состояние окончательного космического сжатия.
Однако мы хорошо знаем, что если характерные длины приближаются к планковской или становятся меньше неё, уравнения общей теории относительности теряют свою силу ввиду квантово-механических эффектов. На таких масштабах длин нужно использовать теорию струн. В результате встаёт вопрос о том, к каким изменениям геометрической картины на основе общей теории относительности, в которой допустим сколь угодно малый размер Вселенной (так же, как в римановой геометрии допустим сколь угодно малый размер абстрактного многообразия), приведёт использование теории струн. Вскоре мы увидим, что и здесь в теории струн имеются указания на ограничение физически достижимых масштабов длин, а новым замечательным следствием является невозможность сжатия Вселенной по любому пространственному измерению до размеров, меньших планковской длины.
Знакомство с теорией струн может вызвать у вас искушение высказать догадку, почему это так. Вы можете рассуждать, что независимо от того, сколько точек (имеются в виду точечные частицы) вы нагромождаете друг на друга, их суммарный объём остаётся равным нулю. Наоборот, если частицы — это струны, сжимающиеся при совершенно случайной ориентации, они заполнят шарик ненулевого размера, типа шарика планковских размеров, состоящего из спутанных резиновых лент. Такие соображения действительно не лишены смысла, но они не учитывают важные и тонкие свойства, изящно используемые в теории струн для обоснования минимального размера Вселенной. Эти свойства позволяют реально понять новую струнную физику и её влияние на геометрию пространства-времени.
Чтобы пояснить эти важные стороны теории, рассмотрим сначала пример, в котором отброшены детали, несущественные для понимания новой физики. Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяжёнными измерениями снова рассмотрим вселенную Садового шланга. Эта вселенная, имеющая два пространственных измерения, была введена в главе 8 до обсуждения теории струн с целью разъяснения идей Калуцы и Клейна 1920-х гг. Давайте использовать её в качестве «космологической сцены» для исследования теории струн в простой постановке. Достигнутое понимание свойств этой теории будет использовано ниже для того, чтобы лучше разобраться со всеми пространственными измерениями в теории струн. С этой целью вообразим, что сначала циклическое измерение вселенной Садового шланга имеет нормальный размер, но затем начинает сжиматься всё сильнее и сильнее, приближаясь по форме к Линляндии и приводя к Большому сжатию в упрощённом и частичном варианте.
Интересующий нас вопрос состоит в том, будут ли геометрические и физические характеристики этого космического коллапса иметь свойства, позволяющие явно отличить Вселенную, основанную на струнах, от Вселенной, основанной на точечных частицах.
Не нужно много времени, чтобы обнаружить существенно новую характеристику физики струн. В нашей двумерной вселенной точечная частица может двигаться так, как показано на рис. 10.2: вдоль протяжённого измерения Садового шланга, вдоль циклического измерения, или по обоим измерениям сразу.
Рис. 10.2. Точечные частицы, движущиеся по цилиндру
Замкнутая струна может совершать аналогичные движения, с той разницей, что при движении по поверхности струна колеблется (рис. 10.3а).
Рис. 10.3. Струны на цилиндре могут двигаться в двух конфигурациях — «ненамотанной» или «намотанной»
Это различие уже обсуждалось выше. Вследствие колебаний струна приобретает определённые характеристики, например массу и заряд. Это один из ключевых фактов теории струн, но он не является предметом настоящего обсуждения, так как его физические следствия уже рассмотрены выше.
Сейчас нас интересует другое отличие между движением частиц и струн, непосредственно связанное с формой пространства, где движется струна. Так как струна является протяжённым объектом, она может существовать ещё в одной конфигурации, отличной от упомянутых выше. Струна может наматываться (как лассо) на циклическое измерение вселенной Садового шланга (рис. 10.3б).{67} Струна будет продолжать скользить и колебаться, но находясь в этой расширенной конфигурации. На самом деле, струна может намотаться на циклическое измерение любое число раз (как показано на том же рисунке) и одновременно осуществлять колебательные движения в ходе своего скольжения. Если струна имеет подобную намотанную конфигурацию, мы говорим, что она находится в топологической моде движения. Ясно, что топологическая мода может существовать только у струн. У точечных частиц не существует аналога этой моды. Попытаемся понять влияние этого качественно нового типа движения струны как на свойства самой струны, так и на геометрические свойства измерения, вокруг которого она намотана.
Физические свойства намотанных струн
Выше при обсуждении движения струн основное внимание уделялось ненамотанным струнам. Струны, которые могут наматываться по циклической пространственной координате, имеют почти тот же набор свойств, что и рассмотренные выше струны. Их колебания также вносят существенный вклад в наблюдаемые величины. Главное отличие состоит в том, что у намотанной струны имеется минимальная масса, определяемая размером циклического измерения и числом оборотов струны вокруг него. Колебания струны дают добавку к этой минимальной массе.
Нетрудно понять причину существования минимальной массы. У намотанной струны есть ограничение на минимальную длину: это ограничение определяется длиной окружности циклического измерения и числом оборотов струны вокруг этого измерения. Минимальная длина струны определяет её минимальную массу. Чем больше эта длина, тем больше и масса, потому что при увеличении длины струна «растёт». Так как длина окружности пропорциональна радиусу, минимальные вклады топологической моды в массу струны пропорциональны радиусу окружности, на которую намотана струна. Учитывая соотношение Эйнштейна E = mc2, связывающее массу и энергию, можно, кроме того, утверждать, что сосредоточенная в намотанной струне энергия пропорциональна радиусу циклического измерения. (У ненамотанных струн тоже есть очень малая минимальная длина, иначе это были бы не струны, а точечные частицы. Аналогичные аргументы могли бы привести к заключению, что и ненамотанные струны имеют хоть и малую, но всё же отличную от нуля массу. В определённом смысле это так, но квантово-механические поправки, рассмотренные в главе 6 (см. аналогию с телеигрой «Верная цена»), могут в точности сократить этот массовый вклад. Напомним, что именно так и происходит, когда в спектре ненамотанной струны возникают фотоны, гравитоны, а также другие безмассовые частицы или частицы с очень малой массой. Намотанные струны в этом отношении отличаются от ненамотанных.)
Каким образом существование топологических конфигураций струн влияет на геометрические свойства измерения, вокруг которого наматываются струны? Ответ, который был дан в 1984 г. японскими физиками Кейджи Киккавой и Масами Ямасаки, весьма примечателен и очень нетривиален.
Посмотрим, что происходит на последних катастрофических этапах Большого сжатия вселенной Садового шланга. Когда радиус циклического измерения достигает планковской длины и, в духе общей теории относительности, продолжает стягиваться до меньших размеров, в этот момент, согласно теории струн, необходим радикальный пересмотр модели происходящего. В теории струн утверждается, что в случае, когда радиус циклического измерения становится меньше планковской длины и продолжает уменьшаться, все физические процессы во вселенной Садового шланга происходят идентично физическим процессам в случае, когда радиус циклического измерения больше планковской длины и увеличивается! Это означает, что когда радиус циклического измерения пытается преодолеть рубеж планковской длины в сторону меньших размеров, эти попытки предотвращаются теорией струн, которая в этот момент меняет правила геометрии на противоположные. Теория струн говорит о том, что такую эволюцию можно переформулировать, т. е. переосмыслить, сказав, что когда циклическое измерение стянется до планковской длины, затем оно начнёт расширяться. Законы геометрии на малых расстояниях переписываются в теории струн таким образом, что то, что ранее казалось полным космическим коллапсом, становится космическим расширением. Циклическое измерение может сжаться до планковской длины. Однако благодаря топологическим модам все попытки дальнейшего сжатия в действительности приведут к расширению. Рассмотрим, почему это происходит.
Спектр состояний струны[36]
Возможность новых конфигураций намотанной струны означает, что у энергии струны во вселенной Садового шланга есть два источника: колебательное движение и намотка (топологический вклад). Согласно Калуце и Клейну, каждый тип энергии зависит от геометрии шланга, т. е. радиуса свёрнутой циклической компоненты, но эта зависимость имеет ярко выраженный «струнный» характер, так как точечные частицы не могут наматываться вокруг измерений. Поэтому попытаемся сначала определить точную зависимость топологических и колебательных вкладов в энергию струны от размера циклического измерения. Для этого удобно разделить колебательные движения струны на две категории: однородные и обычные колебания. Обычные колебания неоднократно рассматривались выше (например, колебания, иллюстрация которых приведена на рис. 6.2). Однородные колебания соответствуют ещё более простому движению, а именно поступательному движению струны как целого, когда она скользит из одного положения в другое без изменения формы. Все движения струны являются суперпозициями поступательных движений и осцилляций, т. е. суперпозициями однородных и обычных колебаний, однако сейчас нам удобнее рассматривать такое разделение движений струны. На самом деле обычные колебания играют второстепенную роль в наших рассуждениях, и поэтому их вклады будут учтены лишь после изложения сути наших доводов.
Отметим два существенных наблюдения. Во-первых, энергия однородных колебательных возбуждений струны обратно пропорциональна радиусу циклического измерения. Это является прямым следствием соотношения неопределённостей в квантовой механике. При меньших радиусах струна локализована в меньшем объёме, и поэтому энергия её движения больше. Следовательно, при уменьшении радиуса циклического измерения энергия движения струны обязательно растёт, что объясняет указанную обратно пропорциональную зависимость. Во-вторых, как выяснено в предыдущем разделе, топологические вклады в энергию прямо пропорциональны радиусу, а не обратно пропорциональны ему. Из этих двух наблюдений следует, что большие значения радиуса соответствуют большим значениям топологической энергии и малым значениям колебательной энергии, а малые значения радиуса соответствуют малым значениям топологической энергии и большим значениям колебательной энергии.
В итоге получается важнейший результат: всякому большому радиусу вселенной Садового шланга соответствует некий малый радиус, при котором топологические энергии струны, вычисленные для вселенной с большим радиусом, равны колебательным энергиям струны, вычисленным для вселенной с малым радиусом, а колебательные энергии струны, вычисленные для вселенной с большим радиусом, равны топологическим энергиям струны, вычисленным для вселенной с малым радиусом. Но поскольку физические свойства зависят лишь от полной энергии конфигурации струны, а не от того, как эта энергия распределена между колебательным и топологическим вкладами, нет никакого физического различия между этими геометрически различными состояниями вселенной Садового шланга. А поэтому, что может показаться достаточно странным, в теории струн нет никакой разницы между вселенной толстого Садового шланга и вселенной тонкого Садового шланга.
Всё это можно назвать «космическим страхованием сделки», что, в определённой мере, аналогично действиям вкладчика небольшого капитала, столкнувшегося со следующей дилеммой. Предположим, он узнал, что судьба акций одной компании (например, производящей тренажёры) неразрывно связана с судьбой акций другой компании (например, производящей сердечные клапаны для шунтирования). Допустим, что по завершении сегодняшних торгов акции каждой компании стоили по одному доллару, и из авторитетного источника известно, что если акции одной компании пойдут вверх, то акции другой компании упадут вниз, и наоборот. Кроме того, этот абсолютно надёжный источник (деятельность которого, однако, может быть не очень-то законной) утверждает, что при завершении завтрашних торгов цены на акции этих двух компаний гарантированно будут обратно пропорциональны друг другу. Например, если одни акции буду стоить $2, то другие — $1/2 (50 центов), а если одни будут стоить $10, то другие — $1/10 (10 центов), и т. д. Однако какие именно акции пойдут вверх, а какие упадут в цене, источник сказать не может. Как поступить в такой ситуации?
Что же, вкладчик немедленно инвестирует все свои капиталы на биржевой рынок, распределив их в равных долях между акциями двух компаний. Сделав несколько оценок, легко убедиться, что капитал не уменьшится вне зависимости от того, что произойдёт на рынке завтра. В худшем случае капитал не изменится (если акции обеих компаний по завершении торгов будут стоить $1), но любое изменение стоимости акций по известной от источника схеме приведёт к увеличению вклада. Например, если акции первой компании будут стоить $4, а акции второй компании будут стоить $1/4 (25 центов), то их суммарная стоимость будет равна $4,25 (за каждую пару акций) против $2 накануне торгов. Более того, с точки зрения чистой прибыли совершенно не важно, акции какой компании выросли в цене, а какой компании упали. Если вкладчика волнуют только деньги, два различных исхода неразличимы в финансовом отношении.
Ситуация в теории струн аналогична в том смысле, что энергия струнных конфигураций есть сумма двух вкладов — колебательного и топологического, и эти вклады в полную энергию, вообще говоря, различны. Однако, как подробно обсуждается ниже, определённые пары разных геометрических состояний, соответствующие большой топологической/малой колебательной энергии и малой топологической/большой колебательной энергии, являются физически неразличимыми. И, в отличие от примера из области финансов, в котором при выборе между двумя видами акций могли бы играть роль соображения, отличные от соображений максимальной выгоды, здесь не существует совершенно никакого физического различия между двумя сценариями.
Как станет ясно далее, для более полной аналогии с теорией струн следует рассмотреть случай, когда начальное капиталовложение распределяется неравномерно между акциями двух компаний, например, покупается 1 000 акций первой компании и 3 000 акций второй компании. Теперь полная итоговая стоимость будет зависеть от того, какие акции упадут в цене, а какие вырастут. Например, если акции первой компании будут стоить $10, а акции второй — 10 центов, то начальное капиталовложение $4 000 вырастет до $10 300. Если случится противоположное, т. е. акции первой компании будут стоить 10 центов, а акции второй — $10, то капиталовложение вырастет до $30 100, что значительно больше.
Однако обратная зависимость цен акций гарантирует следующее. Если другой вкладчик распределяет капиталовложения прямо противоположным образом, т. е. покупает 3 000 акций первой компании и 1 000 акций второй компании, то в результате он получит $10 300 в случае роста акций второй компании (ту же сумму, которую получит первый вкладчик в случае роста акций первой компании) и $30 100 в случае роста акций первой компании (снова ту же сумму, которую получит первый вкладчик в противном случае). Таким образом, с точки зрения полной стоимости акций обмен типов поднявшихся и упавших в цене акций в точности компенсируется обменом числа акций каждой из двух компаний.
Приняв к сведению последнее наблюдение, снова обратимся к теории струн и рассмотрим возможные энергии струны на конкретном примере. Предположим, что радиус циклического измерения вселенной Садового шланга в 10 раз больше планковской длины. Запишем это в виде формулы R = 10. Струна может быть намотана вокруг этого измерения один раз, два раза, три раза и т. д. Число оборотов струны вокруг циклического измерения называют топологическим числом[37] струны. Энергия, обусловленная намоткой струны, определяется длиной намотанной струны и пропорциональна произведению радиуса на топологическое число. Кроме того, любая струна способна совершать колебательные движения. Интересующие нас сейчас энергии однородных колебаний обратно пропорциональны радиусу, т. е. пропорциональны произведению целочисленных множителей на обратный радиус 1/R, равный, в данном случае, одной десятой планковской длины. Мы будем называть эти целочисленные множители колебательными числами.{68}
Видно, что ситуация очень напоминает ситуацию на фондовой бирже. При этом топологические и колебательные числа являются непосредственными аналогами количеств купленных акций двух компаний, а R и 1/R играют роль цен на акции каждой компании по завершении торгов. Вычислить полную энергию струны, зная колебательное число, топологическое число и радиус, так же просто, как вычислить стоимость капиталовложения, исходя из количества акций каждой компании и стоимости акций после завершения торгов. В табл. 10.1 приведён ряд результатов для полных энергий различных конфигураций струн в случае вселенной Садового шланга радиуса R = 10.
Таблица 10.1. Выборочные колебательные и топологические конфигурации струны, движущейся во Вселенной с радиусом R = 10 (рис. 10.3). Колебательные вклады в энергию кратны 1/10, а топологические вклады кратны 10. В результате получаются перечисленные значения полной энергии. Единицей измерения энергии является планковская энергия, т. е., например, 10,1 в правом столбце соответствует значению 10,1, умноженному на планковскую энергию
Колебательное число | Топологическое число | Полная энергия |
---|---|---|
1 | 1 | 1/10 + 10 = 10,1 |
1 | 2 | 1/10 + 20 = 20,1 |
1 | 3 | 1/10 + 30 = 30,1 |
1 | 4 | 1/10 + 40 = 40,1 |
2 | 1 | 2/10 + 10 = 10,2 |
2 | 2 | 2/10 + 20 = 20,2 |
2 | 3 | 2/10 + 30 = 30,2 |
2 | 4 | 2/10 + 40 = 40,2 |
3 | 1 | 3/10 + 10 = 10,3 |
3 | 2 | 3/10 + 20 = 20,3 |
3 | 3 | 3/10 + 30 = 30,3 |
3 | 4 | 3/10 + 40 = 40,3 |
4 | 1 | 4/10 + 10 = 10,4 |
4 | 2 | 4/10 + 20 = 20,4 |
4 | 3 | 4/10 + 30 = 30,4 |
4 | 4 | 4/10 + 40 = 40,4 |
Полная таблица была бы бесконечно длинной, так как топологические и колебательные числа могут принимать произвольные целые значения, однако представленный фрагмент таблицы достаточен для обсуждения. Из таблицы видно, что она соответствует ситуации больших топологических вкладов и малых колебательных вкладов: топологические вклады кратны 10, а колебательные вклады кратны 1/10.
Предположим теперь, что радиус циклического измерения сужается, скажем, с 10 до 9,2, затем до 7,1 и далее до 3,4, 2,2, 1,1, 0,7 и т. д. до 0,1 (1/10), где, в нашем примере, процесс сужения прекращается. Для такой геометрически иной формы вселенной Садового шланга можно построить аналогичную таблицу энергий струн. В ней топологические вклады кратны 1/10, а колебательные вклады кратны обратному значению, т. е. 10. Результаты сведены в табл. 10.2.
Таблица 10.2. Аналогична табл. 10.1, но значение радиуса выбрано равным 1/10
Колебательное число | Топологическое число | Полная энергия |
---|---|---|
1 | 1 | 10 + 1/10 = 10,1 |
1 | 2 | 10 + 2/10 = 10,2 |
1 | 3 | 10 + 3/10 = 10,3 |
1 | 4 | 10 + 4/10 = 10,4 |
2 | 1 | 20+ 1/10 = 20,1 |
2 | 2 | 20 + 2/10 = 20,2 |
2 | 3 | 20 + 3/10 = 20,3 |
2 | 4 | 20 + 4/10 = 20,4 |
3 | 1 | 30+ 1/10 = 30,1 |
3 | 2 | 30 + 2/10 = 30,2 |
3 | 3 | 30 + 3/10 = 30,3 |
3 | 4 | 30 + 4/10 = 30,4 |
4 | 1 | 40+ 1/10 = 40,1 |
4 | 2 | 40 + 2/10 = 40,2 |
4 | 3 | 40 + 3/10 = 40,3 |
4 | 4 | 40 + 4/10 = 40,4 |
На первый взгляд может показаться, что таблицы совершенно различны. Но при более пристальном рассмотрении видно, что в столбцы полной энергии в обеих таблицах входят одинаковые элементы, хотя они и расположены в разном порядке. Чтобы найти элемент табл. 10.2, соответствующий данному элементу табл. 10.1, нужно просто поменять местами топологическое и колебательное число. Иными словами, колебательные и топологические вклады взаимно дополняют друг друга при изменении радиуса циклического измерения с 10 до 1/10. Поэтому с точки зрения полных энергий струн нет различия между этими двумя размерами циклического измерения. Как обмен типов акций в точности компенсировался обменом числа акций каждой из двух компаний, так и замена радиуса 10 на 1/10 в точности компенсируется заменой топологических и колебательных чисел. Кроме того, значения начального радиуса R = 10 и его обратного значения 1/10 выбраны в данном примере лишь для простоты, и результат будет тем же для любого радиуса.{69}
Табл. 10.1 и 10.2 не полны по двум причинам. Во-первых, как указано выше, здесь выбраны лишь некоторые из бесконечного набора колебательных и топологических чисел, возможных для струны. Это, разумеется, не является серьёзной проблемой — мы могли бы строить таблицу до тех пор, пока не иссякнет терпение, и убедились бы, что указанное свойство продолжает оставаться справедливым. Во-вторых, кроме топологического вклада в энергию мы до сих пор учитывали лишь однородные колебания струны. Сейчас необходимо учесть и обычные колебания, так как они дают дополнительный вклад в полную энергию струны и, кроме того, определяют переносимый струной заряд. Здесь важно отметить, что исследования свидетельствуют о независимости этих вкладов от радиуса. Поэтому, даже если эти вклады были бы включены в табл. 10.1 и 10.2, таблицы всё равно точно соответствовали бы друг другу, так как обычные колебательные вклады учитывались бы в каждой таблице совершенно одинаковым образом. Следовательно, можно заключить, что массы и заряды частиц во вселенной Садового шланга радиусом R идентичны массам и зарядам частиц во вселенной Садового шланга радиусом 1/R. А так как именно эти массы и заряды управляют фундаментальными физическими законами, нет никакого физического различия между двумя геометрически различными вселенными. Результаты любого эксперимента в одной вселенной и соответствующего эксперимента в другой вселенной будут в точности совпадать.
Спор двух профессоров
После превращения в двумерные существа Джордж и Грейс стали профессорами физики во вселенной Садового шланга. Они основали конкурирующие лаборатории, сотрудники каждой из которых вскоре заявили о том, что им удалось определить размер циклического измерения. На удивление, при всей безупречной репутации каждой лаборатории в области высокоточных исследований, результаты оказались разными. Джордж уверен в том, что радиус (в единицах планковской длины) равен R = 10, а Грейс утверждает, что значение радиуса равно R = 1/10.
«Грейс, — говорит Джордж, — мои вычисления по теории струн показывают, что если радиус циклического измерения равен 10, то энергии наблюдаемых мной струн должны соответствовать табл. 10.1. Я провёл масштабные эксперименты на новом ускорителе с энергиями порядка планковской, и результаты в точности подтвердили это предположение. Следовательно, я совершенно определённо заявляю, что радиус циклического измерения равен R = 10». В свою очередь, Грейс приводит в защиту своего результата в точности те же доводы, но её вывод состоит в том, что зарегистрированы значения энергий из табл. 10.2, и радиус, таким образом, равен R = 1/10.
Озарённая проблеском интуиции Грейс демонстрирует Джорджу, что несмотря на разное расположение элементов эти таблицы тождественны. Джордж, который, как всем известно, соображает несколько медленнее Грейс, отвечает: «Но как такое возможно? Я знаю, что, согласно принципам квантовой теории и свойствам намотанных струн, различные значения радиуса должны приводить к разным возможным значениям энергий и зарядов струн. И если эти значения согласуются, то и значения радиуса также должны находиться в согласии».
Грейс, во всеоружии своего нового понимания физики струн, отвечает: «То, что Вы говорите, почти, но не полностью правильно. Да, обычно верно, что для двух различных радиусов получаются различные допустимые энергии. Однако в частном случае, когда два значения радиуса обратно пропорциональны друг другу, например, как 10 и 1/10, допустимые энергии и заряды на самом деле одинаковы. Судите сами: то, что Вы назвали бы колебательной модой, я назвала бы топологической модой. Но природе безразлично, на каком языке мы говорим. Физические явления обусловлены свойствами фундаментальных составляющих — массами (энергиями) частиц и переносимыми ими зарядами. Не имеет значения, равен ли радиус R или 1/R: полный список значений свойств фундаментальных составляющих теории струн один и тот же».
В минуту прозрения Джордж отвечает: «Мне кажется, я понимаю. Хотя моё и Ваше детальное описание струн — их намотка на циклическое измерение или особенности их колебательного поведения — могут отличаться, полный список их физических характеристик одинаков. А так как физические свойства Вселенной зависят от свойств фундаментальных составляющих, нет ни различия между радиусами, которые обратно пропорциональны друг другу, ни способа определить это различие». Именно так.
Три вопроса
Здесь читатель может спросить: «Будь я существом, живущим на вселенной Садового шланга, я просто измерил бы длину окружности шланга рулеткой и однозначно определил бы радиус — без всяких „но“ и „если“. Так к чему вся эта чепуха о невозможности отличить два разных радиуса? Кроме того, разве теория струн не распрощалась с масштабами меньше планковской длины — зачем же эти примеры циклических измерений с радиусами в доли планковской длины? И, если уж на то пошло, кого волнует эта двумерная вселенная Садового шланга? Что всё это добавляет к пониманию случая всех измерений?»
Начнём с третьего вопроса; ответ на него поставит нас лицом к лицу с двумя первыми.
Хотя обсуждение касалось вселенной Садового шланга, ограничение одним протяжённым и одним циклическим пространственными измерениями было выбрано лишь для простоты. Если бы мы рассматривали три протяжённых пространственных измерения и шесть циклических измерений — простейшее из всех многообразий Калаби — Яу, — результат был бы в точности тем же самым. У каждой окружности есть радиус, и если его заменить обратным радиусом, получится физически идентичная вселенная.
Этот вывод можно даже продвинуть на один гигантский шаг вперёд. В нашей Вселенной наблюдаемы три пространственных измерения, каждое из которых, согласно астрономическим наблюдениям, имеет протяжённость порядка 15 миллиардов световых лет (световой год равен примерно 9,46 триллионам километров, так что это расстояние равно примерно 142 миллиардам триллионов километров). Как отмечалось в главе 8, у нас нет данных о том, что происходит за этими границами. Мы не знаем, уходят ли эти измерения в бесконечность или замыкаются сами на себя, образуя огромные окружности — всё это может иметь место за пределами чувствительности современных телескопов. Если справедливо последнее предположение, то путешествующий всё время в одном направлении астронавт в конце концов обойдёт вокруг Вселенной, как Магеллан вокруг Земли, и прилетит назад в исходную точку.
Следовательно, хорошо знакомые протяжённые измерения могут тоже иметь форму окружностей, и поэтому они попадают под действие принципа физической неразличимости пространств с радиусами R и 1/R теории струн. Приведём несколько грубых оценок. Если привычные нам измерения являются циклическими, то их радиусы должны быть, как говорилось выше, около 15 миллиардов световых лет, т. е. примерно R = 1061 в единицах планковской длины, и эти радиусы должны увеличиваться при расширении Вселенной. Если теория струн верна, то картина физически эквивалентна ситуации, в которой привычные нам измерения имеют невообразимо малый радиус порядка 1/R = 1/1061 = 1061 в единицах планковской длины! И это — хорошо нам знакомые измерения в альтернативном описании по теории струн. На самом деле, на этом взаимном языке эти крошечные окружности будут со временем становиться ещё меньше, так как 1/R уменьшается, когда R растёт. Кажется, мы основательно сели в лужу. Как такое возможно в принципе? Как двухметровый человек может втиснуться в такую невообразимо микроскопическую вселенную? Как такая невидимая крупинка может быть физически эквивалентной огромным просторам небес? И, более того, здесь сам собой перед нами встаёт второй вопрос. Считалось, что теория струн налагает запрет на зондирование Вселенной на масштабах, меньших планковской длины. Но если радиус R больше планковской длины, то 1/R с необходимостью меньше неё. Так что же происходит на самом деле? Ответ, который также затрагивает первый из трёх поставленных вопросов, выдвигает на первый план важные и нетривиальные свойства пространства и расстояния.
Два взаимосвязанных понятия расстояния в теории струн
В нашем понимании мира расстояние является настолько фундаментальным понятием, что очень легко недооценить всю его глубину и тонкость. Вспоминая поразительные изменения, которые претерпели понятия о времени и пространстве после открытия специальной и общей теории относительности, в свете новых результатов теории струн мы должны быть несколько более точными даже при определении расстояния. Наиболее осмысленными определениями в физике являются те, которые конструктивны, т. е. дают (по крайней мере, в принципе) способ для измерения того, что определяется. В конце концов, не важно, насколько абстрактным является понятие, — если в нашем распоряжении есть конструктивное определение, всегда можно свести смысл этого понятия к экспериментальной процедуре его измерения.
Как же дать конструктивное определение понятия расстояния? В рамках теории струн ответ на этот вопрос довольно неожиданный. В 1988 г. физики Роберт Бранденбергер и Кумрун Вафа из Гарвардского университета показали, что если пространственная форма измерения является циклической, в теории струн есть два различных, но связанных друг с другом конструктивных определения расстояния. Для каждого определения своя экспериментальная процедура измерения расстояния, и каждое определение, грубо говоря, основано на простом принципе измерения времени, за которое движущийся с постоянной фиксированной скоростью зонд проходит данный отрезок. Различие двух процедур состоит в выборе этого зонда. В первом случае используются струны, не намотанные вокруг циклического измерения, а во втором — струны, которые намотаны вокруг него. Свойство протяжённости фундаментального зонда объясняет существование двух естественных конструктивных определений расстояния в теории струн. В теории точечных частиц, где намотка не имеет места, возможно лишь одно такое определение.
Чем отличаются результаты двух процедур? Ответ, который дали Бранденбергер и Вафа, столь же поразителен, сколь и нетривиален. Основную идею можно проиллюстрировать с помощью соотношения неопределённостей. Ненамотанные струны могут свободно двигаться в пространстве, и с их помощью можно измерить полную длину окружности, пропорциональную R. Согласно соотношению неопределённостей их энергии пропорциональны 1/R (вспомним отмеченную в главе 6 обратную пропорциональность энергии зонда расстояниям, которые он способен измерять). С другой стороны, мы видели, что минимальная энергия намотанных струн пропорциональна R. Поэтому, согласно соотношению неопределённостей, если такие струны используются в качестве зондов, то эти зонды чувствительны к расстояниям порядка 1/R. Из математической реализации этой идеи следует, что если для измерения радиуса циклического измерения пространства используются оба зонда, с помощью ненамотанных струн будет измерено значение R, а с помощью намотанных — значение 1/R, где, как и выше, все результаты измерений расстояний выражены в единицах планковской длины. Есть равные основания считать результат каждого из измерений радиусом окружности: теория струн демонстрирует, что для разных зондов, которые используются для измерения расстояния, мы можем получить разные ответы. На самом деле это справедливо для всех измерений длин и расстояний, а не только для определения размера циклического измерения. Реультаты, полученные с помощью ненамотанных и намотанных струнных зондов, будут обратно пропорциональны друг другу.{70}
Так почему же, если теория струн действительно описывает нашу Вселенную, мы до сих пор не сталкивались с различными понятиями расстояния в повседневной жизни или научных исследованиях? Всякий раз, говоря о расстояниях, мы опираемся на опыт, в котором есть место лишь для одного понятия расстояния и ни намёка на другое понятие. Где мы упустили альтернативную возможность? Ответ в том, что при всей симметрии нашего подхода, для значений R (а, следовательно, и значений 1/R), сильно отличающихся от единицы (что опять означает единицу, умноженную на планковскую длину), одно из конструктивных определений крайне сложно реализовать экспериментально, в то время как второе реализуется весьма просто. По существу, мы всегда выбираем самый простой подход, не подозревая, что существует другая возможность.
Значительное различие в сложности реализации двух подходов обусловлено значительным различием масс используемых зондов, т. е. различием между высокоэнергетической топологической и низкоэнергетической колебательной модой (и наоборот), если радиус R (и 1/R) сильно отличается от планковской длины (когда R = 1). При таких радиусах «высоким» энергиям соответствуют чрезвычайно большие массы зондов (в миллиарды миллиардов раз больше массы протона), а «низким» энергиям соответствуют исчезающе малые массы. Различие двух подходов при этом непреодолимо велико, так как даже создать столь тяжёлые струнные конфигурации в настоящее время технически невозможно. На практике можно реализовать лишь один из двух подходов, а именно тот, в котором используется более лёгкая струнная конфигурация. До сего момента именно на него неявно опирались все предыдущие рассуждения, связанные с понятием расстояния; именно он питает нашу интуицию, и, следовательно, хорошо с ней согласуется.
Игнорируя практическую сторону вопроса, можно сказать, что в описываемой теорией струн Вселенной каждый вправе выбирать любой из двух подходов. Когда астрономы измеряют «размер Вселенной», они регистрируют фотоны, которые, путешествуя по Вселенной, волей случая попадают в их телескопы. Эти фотоны являются лёгкими струнными модами, и результат равен 1061 планковских длин. Если три известные нам пространственные измерения действительно циклические, а теория струн верна, то астрономы, использующие совершенно другое (в данный момент не существующее) оборудование, в принципе могли бы обмерять небеса тяжёлыми модами намотанных струн. Они получили бы ответ, обратный этому огромному расстоянию. Именно в таком смысле можно считать, что Вселенная либо громадна (как мы обычно и считаем), либо крайне мала. Согласно информации, которую дают лёгкие моды струны, Вселенная громадна и расширяется, а согласно информации тяжёлых мод — крайне мала и сжимается. В этом нет противоречия: просто используются два различных, но одинаково осмысленных определения расстояния. Из-за технических ограничений для нас гораздо привычнее первое определение, но и второе определение столь же законно.
Сейчас можно ответить на вопрос о двухметровых людях в крошечной вселенной. Когда мы измеряем человеческий рост, мы пользуемся лёгкими модами струны. Чтобы сравнить этот рост с размером Вселенной, для измерения размера Вселенной нужно использовать ту же процедуру, что даст 15 миллиардов световых лет — значительно больше, чем два метра. Спрашивать же, как двухметровый человек поместится в «крошечную» вселенную, так же бессмысленно, как сравнивать божий дар с яичницей. Если есть два понятия расстояния — на основе лёгких и на основе тяжёлых мод, — то нужно сравнивать результаты измерений, сделанных одним и тем же способом.
Минимальный размер
Предыдущее обсуждение было лишь разминкой; теперь мы перейдём к главному. Если всё время измерять расстояния «простым способом», т. е. использовать самые лёгкие моды струны вместо самых тяжёлых, полученные результаты всегда будут больше планковской длины. Чтобы это понять, посмотрим, что будет происходить при гипотетическом Большом сжатии всех трёх пространственных измерений в предположении, что они являются циклическими. Для определённости примем, что в начале мысленного эксперимента лёгкими являются моды ненамотанных струн и измерения с их помощью показывают, что радиус Вселенной огромен, а Вселенная сжимается. По мере сжатия эти моды будут становиться тяжелее, а топологические моды легче. Когда радиус уменьшится до планковской длины, т. е. R станет равным 1, массы топологических и колебательных мод станут сравнимы. Два подхода к измерению расстояния окажутся одинаково сложными для осуществления, и, кроме того, оба они приведут к одинаковому результату, так как единица обратна самой себе.
По мере того как радиус будет продолжать уменьшаться, топологические моды станут легче, и, поскольку мы всегда выбираем «простой способ», именно они будут теперь использоваться для измерения расстояний. Так как этот метод измерения даёт значения, обратные значениям в случае колебательных мод, радиус будет больше планковской длины, и этот радиус будет возрастать. Это простое следствие того, что при стягивании R (измеряемого с помощью ненамотанных струн) до 1 и дальнейшем сжатии, величина 1/R (измеряемая с помощью намотанных струн) будет увеличиваться до 1 и продолжать расти. Следовательно, если всегда следить за тем, чтобы для измерений использовались лёгкие моды струны, т. е. чтобы всегда использовался «простой способ» измерения расстояний, то минимальным зарегистрированным значением будет планковская длина.
В частности, здесь удаётся избежать Большого сжатия до нулевого размера: радиус Вселенной, измеряемый с помощью лёгких мод струн-зондов, всегда больше планковской длины. Вместо того чтобы переходить через значение планковской длины в сторону меньших размеров, радиус, измеряемый с помощью самых лёгких мод, уменьшается до планковской длины и тут же начинает расти. Сжатие заменяется расширением.
Использование лёгких мод струны согласуется с традиционным понятием длины, которое существовало задолго до открытия теории струн. Именно это понятие расстояния ответственно, как обсуждалось в главе 5, за возникновение неразрешимых проблем с бурными квантовыми флуктуациями в случае, если масштабы, меньшие планковских, считаются физически значимыми. Здесь ещё с одной точки зрения видно, что с помощью теории струн можно избежать ультрамикроскопических расстояний. В физической формулировке общей теории относительности и в соответствующей математической формулировке римановой геометрии есть только одно понятие расстояния, и оно может быть сколь угодно малым. В физической формулировке теории струн и в разрабатываемой для неё области математики — квантовой геометрии — есть два понятия расстояния. Их осмысленное использование даёт понятие расстояния, которое согласуется как с нашей интуицией, так и с общей теорией относительности, если масштабы достаточно велики, но радикально отличается от последних, если эти масштабы становятся малыми. Одно из отличий состоит в том, что расстояния, меньшие планковской длины, недосягаемы.
Приведённые утверждения достаточно сложны, поэтому ещё раз подчеркнём один из главных моментов. Если мы принципиально будем игнорировать различие между «простым» и «трудным» подходами к измерению длины и будем, например, продолжать использовать моды ненамотанной струны при стягивании R за планковскую длину, то, казалось бы, мы действительно сможем измерить расстояния, меньшие планковской длины. Однако, как говорилось выше, слово «расстояния» в предыдущем предложении должно быть аккуратно определено, так как у этого слова два различных значения, и только одно из них соответствует нашему традиционному пониманию. А в данном случае, когда R становится меньше планковской длины, но мы продолжаем использовать ненамотанные струны (несмотря на то, что они теперь тяжелее намотанных), мы используем «трудный» подход к измерению расстояний, и смысл понятия «расстояние» не соответствует общеупотребительному значению этого слова. Эти рассуждения, однако, далеко выходят за рамки семантики или даже за рамки обсуждения удобства или практичности измерения. Даже если мы выберем нестандартное понятие расстояния, считая радиус меньшим, чем планковская длина, законы физики, как обсуждалось в предыдущих пунктах, будут идентичны законам физики во Вселенной, где этот радиус (в обычном понимании расстояния) будет больше планковской длины (об этом, например, свидетельствует точное соответствие табл. 10.1 и 10.2). А для нас важна именно физика, а не терминология.
На основе этих идей Бранденбергер, Вафа и другие физики предложили переписать законы космологии таким образом, чтобы в моделях Большого взрыва или возможного Большого сжатия фигурировала не Вселенная нулевого размера, а Вселенная, все размеры которой равны планковской длине. Безусловно, это весьма интересное предложение для устранения математических, физических и логических нестыковок в описании Вселенной, рождающейся из точки с бесконечной плотностью и схлопывающейся в эту точку. Конечно, сложно вообразить себе Вселенную, сжатую до крошечной песчинки планковского размера, но вообразить себе Вселенную, сжатую до нулевого размера — вот это уж действительно слишком. Весьма вероятно, что более удобоваримую альтернативу стандартной модели Большого взрыва даст находящаяся сейчас в зачаточном состоянии струнная космология, которую мы обсудим в главе 14.
Что произойдёт, если пространственные измерения не являются циклическими? Будут ли и в этом случае справедливы замечательные утверждения теории струн о минимальных пространственных размерах? Никто не знает точного ответа. Важнейшее свойство циклических измерений состоит в том, что на них можно наматывать струны. Коль скоро на пространственные измерения можно наматывать струны, большинство выводов будут оставаться справедливыми вне зависимости от точного вида этих измерений. Но что будет, если, скажем, два измерения имеют вид сферы? Тогда нельзя заставить струны сохранять намотанную конфигурацию: они всегда могут «соскользнуть» подобно тому, как резинка может соскользнуть с мяча, на который она натянута. Накладывает ли теория струн ограничение на минимальный размер и в этом случае?
Судя по результатам многочисленных исследований, ответ зависит от того, сжимается ли всё пространственное измерение (как в примерах этой главы), или (с чем мы столкнёмся в главах 11 и 13) коллапсирует отдельный «кусок» пространства. Как считает большинство теоретиков, независимо от вида пространства существует минимальный предел сжатия всего пространственного измерения, и механизм возникновения этого предела во многом схож с механизмом в случае циклических измерений. Обоснование существования предела является важной задачей дальнейших исследований ввиду её непосредственного влияния на многие аспекты теории струн, включая следствия для космологии.
Зеркальная симметрия
Создав общую теорию относительности, Эйнштейн связал физику тяготения с геометрией пространства-времени. На первый взгляд, теория струн укрепляет и расширяет связь между физикой и геометрией: свойства колеблющихся струн (например, массы и переносимые ими заряды) в значительной степени определяются свойствами свёрнутой компоненты пространства. Однако, как мы только что видели, квантовая геометрия, связывающая геометрические и физические стороны теории струн, обладает рядом удивительных свойств. В общей теории относительности, как и в «традиционной» геометрии, окружность радиуса R отличается от окружности радиуса 1/R, что кажется незыблемым и очевидным, а в теории струн эти окружности физически неразличимы. Этот факт подталкивает нас пойти дальше и задаться вопросом, не существует ли геометрических структур пространства, отличающихся друг от друга ещё сильнее (не только размером, но, возможно, и видом), но, тем не менее, физически неразличимых в теории струн?
В 1988 г. Ленс Диксон из Стэндфордского центра линейных ускорителей сделал важнейшее в этом отношении наблюдение, которое впоследствии было обобщено Вольфгангом Лерхе из ЦЕРНа, Вафой из Гарварда и Николасом Уорнером, работавшим в то время в Массачусетском технологическом институте. На основе эстетических соображений, основанных на понятии симметрии, эти физики выдвинули смелое предположение, что два различных многообразия Калаби — Яу, выбранные в качестве дополнительных измерений в теории струн, могут приводить к одинаковым физическим результатам.
Чтобы дать представление о том, как может оказаться справедливой подобная кажущаяся невероятной гипотеза, вспомним, что число отверстий в добавочных измерениях Калаби — Яу определяет число семейств, в которые группируются возбуждения струны. Эти отверстия аналогичны отверстиям тора или его обобщений с несколькими ручками (рис. 9.1).
К несчастью, на двумерном рисунке, который можно воспроизвести на странице, нельзя продемонстрировать то, что отверстия в шестимерном пространстве Калаби — Яу могут иметь различные размерности. Хотя такие отверстия трудно вообразить, их можно описать на понятном математическом языке. Суть состоит в том, что число семейств частиц, возникающих при возбуждениях струны, зависит только от числа всех отверстий, а не от числа отверстий каждой конкретной размерности (вот почему мы не заботились о том, чтобы изобразить разнообразные отверстия в главе 9). Предположим теперь, что у двух пространств Калаби — Яу число отверстий разных размерностей различно, но суммарное число отверстий одинаково. Так как число отверстий различных размерностей не совпадает, два этих пространства различны. Но так как суммарное число отверстий одинаково, число семейств в каждой Вселенной одно и то же. Конечно, это говорит о совпадении лишь одного физического свойства. Эквивалентность всех физических свойств — гораздо более сильное требование, но и совпадение одного свойства уже свидетельствует в пользу того, что гипотеза Диксона — Лерхе — Вафы — Уорнера может оказаться верной.
В конце 1987 г. я поступил на стажировку на физический факультет Гарвардского университета, где мне выделили кабинет по соседству с кабинетом Вафы. Так как тема моей диссертации была посвящена физическим и математическим свойствам свёрнутых измерений Калаби — Яу в теории струн, Вафа держал меня в курсе своих работ в этой области. Когда в конце 1988 г. он, стоя на пороге моего кабинета, сообщил о гипотезе, к которой они пришли совместно с Лерхе и Уорнером, я был весьма заинтересован, но отнёсся к ней скептически. Интерес объяснялся тем, что в случае, если гипотеза окажется верной, она может открыть новые просторы исследований в теории струн, а скепсис был следствием понимания того, что догадки и установленные свойства теории — далеко не одно и то же.
На протяжении следующих месяцев я часто думал об этой гипотезе, и, честно говоря, почти убедил себя в том, что она неверна. Но вскоре, к моему удивлению, казалось бы, совершенно не связанные исследования совместно с Роненом Плессером, который в то время был аспирантом в Гарварде, а теперь работает в Институте Вейцмана и университете Дьюка, полностью изменили моё отношение к гипотезе. Плессер и я заинтересовались методами построения путём математических преобразований новых доселе неизвестных многообразий Калаби — Яу из заданного многообразия Калаби — Яу. Особенно притягательным нам казался метод орбифолдов, предложенный в середине 1980-х гг. Диксоном, Джеффри Харви из Чикагского университета, Вафой и Виттеном. Грубо говоря, этот метод состоит в склеивании различных точек на исходном многообразии Калаби — Яу согласно математической схеме, гарантирующей, что при склеивании снова получится многообразие Калаби — Яу. Эта процедура иллюстрируется на рис. 10.4.
Рис. 10.4. Метод орбифолдов есть процедура построения нового многообразия Калаби — Яу путём склеивания различных точек на исходном многообразии
Математические выкладки, стоящие за подобными манипуляциями, невообразимо сложны, и в этом причина того, что занимающимся струнами теоретикам удалось детально исследовать эту процедуру лишь применительно к простейшим многообразиям — многомерным обобщениям торов, изображённых на рис. 9.1. Однако мы с Плессером поняли, что ряд очень красивых утверждений Дорона Гепнера, работавшего тогда в Принстонском университете, может привести к мощной теоретической схеме, в рамках которой можно применить технику орбифолдов к сложным многообразиям Калаби — Яу, например, к изображённому на рис. 8.9.
После нескольких месяцев напряжённой работы в этом направлении мы пришли к неожиданному выводу. Если склеивать определённые группы точек правильным образом, получающееся многообразие Калаби — Яу будет отличаться от исходного, но совершенно удивительным образом. Число отверстий нечётной размерности нового многообразия будет равно числу отверстий чётной размерности исходного, и наоборот. Это, в частности, означает, что полное число отверстий, а, следовательно, и число семейств частиц в двух многообразиях будут одинаковыми, хотя из-за чётно-нечётных замен вид многообразий и их фундаментальные геометрические свойства будут существенно разными.{71}
Воодушевлённые очевидной связью с догадкой Диксона — Лерхе — Вафы — Уорнера, Плессер и я углубились в изучение центрального вопроса: будут ли эти два различных многообразия с одинаковым числом семейств частиц согласованы по остальным физическим свойствам? Через пару месяцев кропотливого математического анализа, подбадриваемые моим бывшим научным руководителем Грэмом Россом из Оксфорда и Вафой, мы с Плессером пришли к утвердительному ответу. По математическим соображениям, связанным с чётно-нечётными заменами, мы назвали эти физически эквивалентные, но геометрически различные пространства Калаби — Яу зеркальными многообразиями.{72} Пространства зеркальных пар Калаби — Яу не являются в буквальном смысле зеркальными образами друг друга. Но при всём различии геометрических свойств, если эти пространства используются в качестве дополнительных измерений теории струн, они приводят к физически эквивалентным Вселенным.
Недели, последовавшие после того, как результат был получен, были крайне волнующими. Мы осознавали, что находимся вблизи новой области физики струн. Мы показали, что изначально установленная Эйнштейном тесная взаимосвязь между геометрией и физикой в теории струн существенно модифицируется. Радикально отличающиеся геометрические структуры, которые в общей теории относительности имели бы различные физические свойства, в теории струн приводят к эквивалентным физическим моделям. Вдруг мы сделали ошибку? Вдруг в их физических свойствах имеются тонкие отличия, которые мы не заметили? Например, когда мы сообщили о своих результатах Яу, он вежливо, но твёрдо сказал, что мы, должно быть, ошиблись; по его мнению, с математической точки зрения наши результаты слишком странные, чтобы оказаться справедливыми. Его мнение заставило нас взять длительный перерыв для проверок. Одно дело ошибиться в скромном утверждении, которое мало кому интересно. Но наш результат был неожиданным шагом в новом направлении, и неминуемо вызвал бы бурные отклики. Если мы ошибёмся, об этом узнают все.
В конце концов, после всех мыслимых проверок и перепроверок, убеждённость в нашей правоте укрепилась, и мы решили опубликовать результат. Несколькими днями позже, когда я сидел в своём кабинете в Гарварде, зазвонил телефон. Это был Филипп Канделас из Техасского университета, который сразу же осведомился, сижу я или стою. Я сказал, что сижу. Канделас сообщил мне, что он и двое его студентов, Моника Линкер и Рольф Шиммригк, обнаружили закономерность, услышав о которой, я непременно упаду со стула. Тщательно изучив огромный набор пространств Калаби — Яу, моделированных на компьютере, они обнаружили, что почти все пространства идут парами, отличающимися заменами чисел чётномерных и нечётномерных отверстий. Я ответил ему, что всё ещё сижу: мы с Плессером получили тот же результат. Оказалось, что работа Канделаса и наша работа дополняют друг друга; мы с Плессером пошли на один шаг дальше и показали, что все физические свойства зеркальных пар одинаковы, а Канделас со своими учениками показал, что на пары разбивается гораздо большее число многообразий Калаби — Яу. Эти две работы и привели к открытию зеркальной симметрии в теории струн.{73}
Физика и математика зеркальной симметрии