Вселенная. Емкие ответы на непостижимые вопросы Хокинг Стивен
Ослабление жёсткой и однозначной эйнштейновской взаимосвязи между геометрией пространства и наблюдаемыми физическими явлениями есть яркий пример новизны теории струн. Однако развитие теории струн далеко не исчерпывается изменением философской концепции. Зеркальная симметрия, в частности, даёт мощное средство для исследования как физических аспектов теории струн, так и математических аспектов теории пространств Калаби — Яу.
Математики, работающие в области так называемой алгебраической геометрии, изучали пространства Калаби — Яу из чисто математического интереса задолго до открытия теории струн. Они обнаружили множество свойств этих геометрических пространств, никоим образом не предполагая, что их результаты будут когда-нибудь использоваться физиками. Однако определённые черты теории пространств Калаби — Яу оказались слишком сложными для всестороннего математического исследования. Открытие зеркальной симметрии существенно изменило положение дел. По существу, зеркальная симметрия говорит о том, что определённые пары пространств Калаби — Яу, которые ранее считались совершенно независимыми, тесно связаны теорией струн. Связь состоит в том, что если в качестве дополнительных свёрнутых измерений выбирать два пространства из любой пары, получатся физически эквивалентные вселенные. Такая неожиданная взаимосвязь даёт мощный инструмент математических и физических исследований.
Представим, например, что вы хотите вычислить физические характеристики — массы и заряды, — соответствующие выбору одного из возможных пространств Калаби — Яу в качестве дополнительных измерений. При этом вас не особенно заботит степень согласования ваших результатов с экспериментом, так как в настоящее время, в силу ряда рассмотренных выше теоретических и технических причин, экспериментальное подтверждение результатов достаточно проблематично. Вместо этого проводится мысленный эксперимент, который должен показать, как выглядел бы мир, если бы было выбрано данное пространство Калаби — Яу. Сначала всё идёт хорошо, но в середине такого теоретического анализа возникает необходимость математического расчёта непомерной сложности. Никто, ни один из лучших специалистов-математиков, не может подсказать, как поступать дальше. Двигаться некуда. И тут выясняется, что у этого пространства Калаби — Яу есть зеркальный партнёр. Поскольку окончательные физические свойства будут одинаковы для каждого члена зеркальной пары, вычисления можно проводить для любого из этих пространств. Таким образом, можно перевести сложное вычисление для первого из пространств на язык его зеркального партнёра, и результат вычислений, т. е. физические свойства, будут теми же. Сначала можно предположить, что изменённый вариант вычисления будет таким же сложным, как первоначальный. Но возникает приятная и поразительная неожиданность. Обнаруживается, что вид вычисляемого выражения очень сильно отличается от исходного, и, в некоторых случаях, невообразимо сложное вычисление становится поразительно лёгким в зеркальном пространстве. Не существует простого объяснения, почему это происходит, но, по крайней мере для определённых вычислений, это действительно так, и уменьшение сложности расчётов оказывается впечатляющим. В результате препятствие на пути решения задачи становится преодолимым.
Ситуация схожа со случаем, когда требуется точно подсчитать число апельсинов, плотно набитых в огромный ящик, скажем, со сторонами 15 м и глубиной 3 м. Пересчитывать апельсины по одному крайне неблагодарное занятие. Но тут, к счастью, находится человек, который присутствовал в момент, когда завезли эти апельсины. Он сообщает, что апельсины были аккуратно упакованы в меньшие коробки, занимающие куб, по длине, ширине и глубине которого умещалось 20 коробок. Оценив, что число коробок равно 8 000, остаётся лишь вычислить, сколько апельсинов входит в одну коробку, и задача решена. В итоге, путём грамотного преобразования вычислений удаётся значительно упростить задачу. В теории струн ситуация с громоздкими вычислениями аналогична. Что касается пространств Калаби — Яу, вычисления могут состоять из очень большого числа этапов. Однако при переходе к расчётам для зеркального пространства вычисления можно гораздо более эффективно реорганизовать, так что выполнить их достаточно просто. Этот факт был отмечен Плессером и мной, а затем результативно использовался на практике в последующих работах Канделаса и его коллег Ксении де ла Осса и Линды Паркс из Техасского университета, а также Пола Грина из университета штата Мэриленд. Они показали, что вычисления невообразимой сложности могут быть проведены до конца с помощью идеи зеркальной пары, персонального компьютера и пары листов алгебраических выкладок.
Особенно захватывающим данный результат оказался для математиков, так как именно из-за этих вычислений многие их исследования годами находились в тупике. Теория струн, по крайней мере по утверждениям физиков, обогнала математику.
Здесь можно напомнить о многолетнем здоровом и добром соперничестве между физиками и математиками. Случилось так, что два норвежских математика, Гейр Эллингсруд и Штейн Арилд Штремме, работали над одной из многочисленных задач, которую Канделас и его коллеги успешно решили с использованием зеркальной симметрии. Грубо говоря, задача заключалась в вычислении числа сфер, которые можно упаковать внутрь некоторого пространства Калаби — Яу. Это подобно нашему примеру с подсчётом числа апельсинов в ящике. На семинаре в 1991 г. в Беркли, где собрались физики и математики, Канделас объявил о результате, полученном его группой с использованием теории струн и зеркальной симметрии: 317 206 375. Эллингсруд и Штремме, в свою очередь, объявили о результате своего очень сложного математического вычисления: 2 682 549 425. Несколько дней математики и физики спорили: кто же прав? Вопрос был принципиальным и мог, фактически, служить «лакмусовой бумажкой» для проверки достоверности количественных результатов теории струн. Некоторые даже шутливо замечали, что такая проверка — лучшее, что можно придумать ввиду невозможности проверки теории струн на эксперименте. Кроме того, в результате Канделаса заключалось нечто гораздо большее, чем просто число, каковым это было для Эллингсруда и Штремме. Канделас и его коллеги, кроме того, объявили о решении многих других задач неизмеримо большей сложности, за которые никогда не взялся бы ни один математик. Но можно ли верить результатам теории струн? Семинар закончился плодотворным обменом мнений между математиками и физиками, но причина расхождения результатов так и не была установлена.
Примерно месяц спустя участники семинара в Беркли получили по электронной почте письмо, озаглавленное «Физика победила!». Эллингсруд и Штремме нашли ошибку в своей компьютерной программе, и после её исправления результат совпал с результатом группы Канделаса. С тех пор было проведено немало количественных проверок надёжности расчётов в теории струн с помощью зеркальной симметрии. Теория струн с триумфом прошла все проверки. Ещё позже, почти через десять лет после открытия физиками зеркальной симметрии, математики добились значительных успехов в выявлении математических принципов, лежащих в основе этой симметрии. Используя фундаментальные результаты математиков Максима Концевича, Юрия Манина, Ганга Тиана, Джуна Ли и Александра Гивенталя, Яу и его коллеги Бонг Лиан и Кефенг Лиу нашли, в конце концов, строгое математическое доказательство для обоснования формул, используемых для подсчёта числа сфер внутри пространств Калаби — Яу, разрешив проблемы, которые сотни лет оставались камнем преткновения для математиков.
Эти исследования не просто оказались успешными для конкретного случая, но и выявили ту роль, которую физика начала играть в современной математике. Довольно долгое время физики рылись в архивах математических журналов в поисках средств для построения и анализа моделей физического мира. Сейчас, с открытием теории струн, физика начинает выплачивать свой долг и снабжать математиков новыми мощными подходами к неразрешённым проблемам. Теория струн не только предлагает единое описание физического мира, но и помогает установить глубокий и прочный союз с математикой.
Глава 11. Разрывая ткань пространства
Если непрерывно растягивать резиновую плёнку, рано или поздно она порвётся. Этот простой факт заставлял физиков годами обращаться к вопросу, возможно ли подобное по отношению к ткани пространства, создающего Вселенную. Может ли эта ткань разорваться, или такое вводящее в заблуждение представление есть результат слишком буквального понимания аналогии с резиновой плёнкой?
Общая теория относительности Эйнштейна отвечает на вопрос о возможном разрыве структуры пространства отрицательно.{74} Уравнения общей теории относительности основаны на римановой геометрии, которая, как отмечалось в предыдущей главе, позволяет проанализировать искажения свойств расстояний между соседними точками пространства. Чтобы формулы для расстояний были осмысленными, в математическом формализме требуется гладкость самого пространства. Понятие «гладкости» имеет конкретный математический смысл, но общеупотребительное значение слова «гладкость» хорошо передаёт суть этого понятия: гладкий — значит без складок, без проколов, без отдельных «нагромождённых» друг на друга кусков, без разрывов. Если бы в структуре пространства существовали такие нерегулярности, уравнения общей теории относительности нарушались бы, оповещая о космической катастрофе того или иного рода: зловещая перспектива, которую наша Вселенная благоразумно обходит.
Впрочем, эта зловещая перспектива не отпугивала склонных фантазировать теоретиков, которые годами исследовали возможность квантово-механического обобщения классической теории Эйнштейна, допускающего существование проколов, разрывов и слияний ткани пространства. Тот факт, что по законам квантовой физики на малых расстояниях происходят неистовые флуктуации, позволял предположить, что проколы и разрывы могут быть обычными явлениями в микроскопической структуре пространства. Понятие пространственно-временных червоточин[38] (хорошо знакомое поклонникам фантастического сериала «Звёздный путь») опирается на подобные предположения. Идея проста. Представим себе крупную корпорацию, управление которой находится на девяностом этаже одного из небоскрёбов. Исторически сложилось так, что отделение корпорации, с которым сотрудникам этого управления в последнее время всё чаще приходится связываться, находится на девяностом этаже соседнего небоскрёба. Так как переносить один из офисов в другое здание нецелесообразно, разумным решением было бы строительство моста, соединяющего две башни. Тогда сотрудники получили бы возможность переходить из офиса в офис, не спускаясь вниз и поднимаясь вверх на девяносто этажей.
Пространственно-временная червоточина играет схожую роль. Это мост или туннель, служащий укороченным маршрутом из одной области вселенной в другую. Пример червоточины в двумерной вселенной показан на рис. 11.1.
Рис. 11.1. а) «U-образная» вселенная, в которой достичь одного конца с другого можно лишь после длительного космического путешествия. б) Ткань пространства рвётся, и два конца червоточины начинают вытягиваться. в) Два конца червоточины соединяются, образуя новый мост — «срезая путь» между двумя концами вселенной
Если управление «двумерной» корпорации находится вблизи нижней окружности рис. 11.1а, то в её отделение на верхней окружности можно попасть, лишь путешествуя по всему U-образному маршруту, ведущему из одного края вселенной в другой. Но если ткань пространства может рваться с образованием проколов, изображённых на рис. 11.1б, если эти проколы могут «срастись» краями, как на рис. 11.1в, то две ранее отдалённые области соединятся пространственным мостом. Это и есть червоточина. Нужно отметить, что хотя червоточина и мост между небоскрёбами имеют некоторое сходство, между ними есть и существенное различие. Мост между небоскрёбами пролегает по существующему пространству, т. е. по пространству между небоскрёбами. Червоточина, в отличие от этого, образует новое пространство, ибо изображённая на рис. 11.1а двумерная искривлённая поверхность — это всё, что имелось. Область вне поверхности лишь артефакт неадекватной картинки, которая не может изобразить U-образную вселенную иначе как погружённой в наш трёхмерный мир. Червоточина создаёт новое пространство и потому прокладывает новую пространственную территорию.
Существуют ли червоточины во Вселенной? Этого не знает никто. И если они действительно существуют, неясно, могут ли они быть только микроскопической формы, или перекрывать обширные области пространства, как в фантастических фильмах. Существование червоточин в реальном мире во многом определяется тем, возможен ли разрыв структуры пространства.
Другой яркий пример того, как ткань пространства может растягиваться до предела, дают чёрные дыры. На примере рис. 3.7 мы видели, что сильнейшее гравитационное поле чёрной дыры приводит к настолько сильной искривлённости пространства, что оно выглядит проколотым в центре чёрной дыры. В отличие от червоточин, есть веские экспериментальные свидетельства в пользу существования чёрных дыр, и вопрос о том, что происходит в центре дыры, приобретает конкретный научный характер. В экстремальных условиях внутри чёрной дыры уравнения общей теории относительности становятся неприменимыми. По мнению некоторых физиков, в центре чёрной дыры действительно имеется прокол, но мы ограждены от этой космической «сингулярности» горизонтом событий, не позволяющим даже свету вырваться из гравитационной ловушки. Такие соображения привели Роджера Пенроуза из Оксфордского университета к «гипотезе космической цензуры», согласно которой подобные пространственные особенности возможны лишь в местах, тщательно скрытых от наших глаз пеленой горизонта событий. С другой стороны, до открытия теории струн некоторые физики считали, что корректное объединение квантовой теории и общей теории относительности «залатает» бросающиеся в глаза бреши в ткани пространства, сгладив его квантовыми поправками.
С открытием теории струн, органично связывающей квантовую теорию с гравитацией, появилась твёрдая почва для исследования этих вопросов. На сегодняшний день они окончательно не решены, но в последние годы были решены тесно связанные с ними вопросы. В этой главе мы покажем, что в теории струн впервые явно демонстрируется возможность разрыва ткани пространства при определённых физических явлениях (в некоторых отношениях отличных от явлений пространственных червоточин и чёрных дыр).
Волнующая возможность
В 1987 г. Шин-Тун Яу и его студент Ганг Тиан, работающий сейчас в Массачусетском технологическом институте, сделали интересное математическое наблюдение. Используя хорошо известный математический приём, они обнаружили, что одни многообразия Калаби — Яу можно преобразовать в другие путём протыкания их поверхности и сшивания образовавшегося отверстия согласно строго определённой математической процедуре.{75} Грубо говоря, они обнаружили, что внутри исходного пространства Калаби — Яу можно выделить двумерную сферу определённого вида (рис. 11.2).
Рис. 11.2. В выделенной области внутри пространства Калаби — Яу находится сфера
(Двумерная сфера аналогична поверхности надувного мяча, который, как и все знакомые нам объекты, трёхмерен. Здесь, однако, мы говорим только о поверхности, не учитывая толщину материала, из которого сделан мяч, а также пространство внутри него. Точки на поверхности мяча определяются двумя числами, «широтой» и «долготой», аналогично тому, как определяются координаты на поверхности Земли. Вот почему поверхность мяча, как и поверхность упоминавшегося в предыдущих главах Садового шланга, является двумерной.) Далее они рассмотрели стягивание сферы в одну точку; этот процесс показан на рис. 11.3.
Рис. 11.3. Сфера внутри пространства Калаби — Яу сжимается в точку, приводя к перетяжке в ткани пространства. На этом и следующих рисунках для простоты показана лишь часть всего пространства Калаби — Яу
Как и все последующие рисунки этой главы, он упрощён с целью наглядности изображения наиболее важного «куска» пространства Калаби — Яу: но вы должны помнить, что такие преобразования происходят внутри несколько большего пространства Калаби — Яу, подобного изображённому на рис. 11.2. И, наконец, Тиан и Яу рассмотрели случай, когда в точке сжатия пространство Калаби — Яу слегка надрывается (рис. 11.4а), раскрывается и перестраивается в другую шарообразную фигуру (рис. 11.4б), которую затем снова можно раздуть до нормального размера (рис. 11.4в и 11.4 г).
Рис. 11.4. При разрыве перетяжки пространства Калаби — Яу возникает сфера, которая сглаживает его поверхность. Исходная сфера рис. 11.3 оказывается «перестроенной»
Математики называют последовательность таких действий флоп-перестройкой[39]. Всё происходит так, как будто надувной мяч «выворачивается» наизнанку внутри другого пространства Калаби — Яу. Тиан, Яу и другие математики показали, что при определённых условиях новое многообразие Калаби — Яу (см. рис. 11.4 г), будет топологически отличным от исходного (рис. 11.3а). То есть, выражаясь привычным языком, не существует никакого способа деформировать исходное пространство Калаби — Яу, показанное на рис. 11.3а, в конечное пространство Калаби — Яу, показанное на рис. 11.4 г, не разрывая на некотором промежуточном этапе структуры пространства Калаби — Яу.
С точки зрения математики процедура Яу и Тиана очень интересна, так как позволяет получить новые пространства Калаби — Яу из уже известных. Но действительная сила процедуры проявляется в области физики, где в этой связи возникает волнующий вопрос: если забыть об абстрактном характере данной математической процедуры, может ли в природе иметь место изображённая на рис. 11.3а–11.4 г последовательность превращений? Может ли произойти так, что вопреки предсказаниям теории Эйнштейна структура пространства способна рваться и затем восстанавливаться подобно тому, как описано выше?
Зеркальная перспектива
На протяжении нескольких лет после 1987 г., когда Яу сделал своё наблюдение, он часто советовал мне поразмыслить о возможных физических применениях флоп-перестроек. Я отнекивался. Мне казалось, что флоп-перестройки относятся только к абстрактной математике и не имеют никакого отношения к теории струн. Действительно, из главы 10, в которой было установлено существование минимального радиуса циклического измерения, можно сделать вывод, что в теории струн сфера на рис. 11.3 не может полностью стянуться к выколотой точке. Однако, как тоже отмечено в главе 10, если стягивается часть пространства (в данном случае — сферическая часть многообразия Калаби — Яу), а не всё циклическое измерение, то аргументы, которые позволяют различать малые и большие радиусы, не применимы буквально. Тем не менее, возможность разрыва структуры пространства казалась маловероятной, даже при том, что запрещающие флоп-перестройку соображения не выдерживали серьёзной критики.
Уже позже, в 1991 г., норвежский физик Энди Люткен и мой однокурсник по учёбе в Оксфорде, а ныне профессор университета Дьюка, Пол Аспинуолл, задались вопросом, который впоследствии оказался очень интересным. Если перестраивается пространственная структура компоненты Калаби — Яу нашей Вселенной, как это будет выглядеть с точки зрения зеркального пространства Калаби — Яу? Чтобы понять, почему возник такой вопрос, нужно вспомнить, что физические свойства зеркальной пары пространств Калаби — Яу (если эти пространства используются в качестве дополнительных измерений) идентичны, но сложность математических расчётов, необходимых для установления этих физических свойств, может сильно отличаться. Аспинуолл и Люткен предположили, что математически сложный переход между рис. 11.3 и 11.4 может описываться гораздо проще в терминах зеркальных пространств, и физический смысл этого перехода станет гораздо понятнее.
В момент проведения этих исследований ещё не было достаточного понимания зеркальной симметрии, чтобы иметь возможность ответить на поставленный вопрос. И всё же Аспинуолл и Люткен отметили, что в зеркальном описании нет ничего такого, что свидетельствовало бы об абсурдных физических последствиях разрывов пространства при флоп-перестройках. Примерно в то же время мы с Плессером, развивая найденную нами идею зеркальных пар многообразий Калаби — Яу (см. главу 10), неожиданно сами столкнулись с необходимостью анализа флоп-перестроек. Математикам хорошо известен тот факт, что склеивание различных точек (подобное показанному на рис. 10.4), которое использовалось нами для построения зеркальных пар, приводит к геометрическим следствиям, идентичным перетягиванию и проколам на рис. 11.3 и 11.4. В соответствующей физической формулировке мы с Плессером, однако, не нашли явных противоречий. Более того, вдохновлённые результатами Аспинуолла и Люткена (а также результатом их предыдущей совместной работы с Грэмом Россом), мы пришли к выводу, что математически перетягивание можно «отреставрировать» двумя различными способами. Один из них приводит к пространству Калаби — Яу, соответствующему рис. 11.3а, а другой — к пространству, соответствующему рис. 11.4 г. Это подсказало нам, что переход от рис. 11.3а к рис. 11.4 г действительно может иметь место в реальном мире.
Таким образом, к концу 1991 г. у некоторых физиков, занимающихся теорией струн, возникло ясное ощущение того, что ткань пространства может разрываться. Но ни у кого из них не было технических методов, которые позволили бы твёрдо установить или опровергнуть справедливость этой замечательной гипотезы.
В течение 1992 г. мы с Плессером время от времени возвращались к попыткам доказать, что структура пространства может подвергаться перестройкам с разрывами пространства. Наши расчёты частично подтверждали эту гипотезу в частных случаях, но строгого доказательства найти не удавалось. Весной Плессер съездил с докладом в Принстонский институт перспективных исследований. Там он встретился с Виттеном и в частной беседе рассказал ему о наших попытках дать интерпретацию математической процедуры флоп-перестройки с разрывом пространства в рамках теории струн. После того, как Плессер изложил свои соображения, Виттен отвернулся от доски и некоторое время, возможно минуту или две, молча смотрел в окно своего кабинета. Затем он повернулся к Плессеру и сказал, что если наши идеи окажутся правильными, то «это будет впечатляюще». Такая реакция Виттена побудила нас работать с удвоенной энергией. Однако вскоре исследования застопорились, и мы обратились к другим вопросам в теории струн.
Даже работая над другими задачами, я постоянно ловил себя на том, что возвращаюсь к мысли о возможности перестроек с разрывами пространства. Месяц от месяца во мне укреплялась уверенность, что они должны быть неотъемлемой частью теории струн. Из расчётов, сделанных ранее вместе с Плессером, а также из стимулирующих обсуждений с Дэвидом Моррисоном, математиком университета Дьюка, казалось, следовало, что возможность перестроек является естественным следствием зеркальной симметрии. Во время моего пребывания в Дьюке Моррисон и я, используя результаты гостившего в то же время в Дьюке Шелдона Каца из Оклахомского университета, наметили стратегию обоснования появления флоп-перестроек в теории струн. Однако когда мы приступили к вычислениям, оказалось, что они крайне громоздки: даже с использованием самого быстрого в мире компьютера на расчёты ушла бы сотня лет. Мы продвигались вперёд, но нам явно не хватало новой идеи, которая значительно повысила бы эффективность нашего вычислительного метода. Не подозревая об этом, Виктор Батырев, математик из университета города Эссен, дал нам такую идею в двух своих статьях, опубликованных весной и летом 1992 г.
Батырев очень интересовался зеркальной симметрией, особенно после успешного решения Канделасом и соавторами описанной в конце главы 10 задачи о подсчёте числа сфер. Однако Батырев, будучи математиком, был сбит с толку приёмами, которые мы с Плессером использовали для нахождения зеркальных пар пространств Калаби — Яу. Хотя в нашем подходе применялись известные теоретикам методы, Батырев позже признался мне, что наша статья произвела на него впечатление «чёрной магии». Это было следствием исторически сложившихся культурных различий между математикой и физикой, и по мере размытия теорией струн границ каждой науки различия в языке, методах и стиле исследований становились всё более явными. Физики больше похожи на композиторов-авангардистов, стремящихся обойти устоявшиеся правила и расширить границы дозволенного при поиске решения задачи. Математики же больше похожи на классических композиторов, обычно скованных рамками гораздо более жёсткой схемы и с неохотой воспринимающих переход к следующему шагу до тех пор, пока предыдущие шаги не были обоснованы со всей строгостью. У каждого подхода свои преимущества и недостатки, и каждый из них обладает своими уникальными возможностями для творческих исследований. Так же, как современную музыку нелепо сравнивать с классической, эти подходы нельзя сравнивать, чтобы выяснить, какой из них лучше — используемые методы в значительной степени определяются вкусами и подготовкой.
Батырев решил перевести схему построения зеркальных многообразий на более понятный математический язык, и это ему удалось. Под впечатлением белее ранней работы тайваньского математика Ши-Шир Роана, Батыреву удалось сформулировать последовательную математическую процедуру построения пар пространств Калаби — Яу, являющихся зеркальными близнецами друг друга. Его процедура сводится к нашей с Плессером, если применять её для рассмотренных нами примеров, но приводит к более общей формулировке в терминах знакомых математикам понятий.
Оборотной стороной медали было то, что в работах Батырева использовались знания из неизвестных большинству физиков областей математики. Мне, например, удалось уловить суть его аргументов, но понимание многих важнейших моментов давалось с огромным трудом. Одно, тем не менее, было ясно: методы, описанные в его статье, при правильном их осознании и применении вполне могут дать второе дыхание исследованиям флоп-перестроек с разрывом пространства.
К концу лета, находясь под впечатлением результатов этих работ, я решил вернуться к задаче о флоп-перестройках и сконцентрировать на ней всё своё внимание. От Моррисона я узнал, что он собирается провести год в Институте перспективных исследований, а Аспинуолл, по моим сведениям, тоже будет там на стажировке. После нескольких телефонных звонков и переписки по электронной почте я договорился, что тоже проведу осень 1992 г. в этом институте.
Рождение стратегии
Трудно вообразить себе лучшее место для многочасовой и напряжённой исследовательской работы, чем Институт перспективных исследований. Этот институт, основанный в 1930 г., расположен среди слегка холмистых полей, примыкающих к идиллическому лесу, и находится в нескольких милях от территории Принстонского университета. Говорят, здесь ничто не может отвлечь вас от работы в Институте, потому что отвлекать просто нечему.
После отъезда из Германии в 1933 г. Эйнштейн обосновался в этом институте и прожил здесь до конца своей жизни. Не нужно напрягать воображение, чтобы представить его размышляющим о единой теории поля в безлюдной тишине и почти аскетической атмосфере окрестностей Института. В воздухе здесь витает дух наследия прошлых глубоких идей, и ощущение этого может быть или возбуждающим, или угнетающим, в зависимости от того, на какой промежуточной стадии находятся ваши исследования.
Как-то раз, вскоре после моего прибытия в Институт, мы с Аспинуоллом прогуливались по улице Нассау (главной торговой улице в Принстоне), рассуждая о том, где будем сегодня обедать. Вопрос не праздный, потому что Поль — большой любитель мясного, а я вегетарианец. В самый разгар обмена мнениями о стилях жизни он спросил, есть ли у меня идеи о том, какими новыми задачами стоило бы заняться. Я ответил, что есть, и подробно изложил свои соображения по поводу важности вопроса о том, возможны ли во Вселенной флоп-перестройки с разрывом пространства, если Вселенная действительно описывается теорией струн. Я также обрисовал ему стратегию своих действий и рассказал о недавно возникшей надежде на то, что работа Батырева может помочь восполнить недостающие пробелы в понимании. Я полагал, что проповедую новообращённому, и Поль будет возбуждён перспективой этого исследования. Но я ошибся. Сейчас, задним числом, я понимаю, что его сдержанность объяснялась добродушной и давно возникшей тягой к интеллектуальному соперничеству, в котором каждый из нас играет роль «адвоката дьявола» по отношению к идеям другого. Не прошло и нескольких дней, как он примкнул ко мне, и мы оба с головой погрузились в изучение флоп-перестроек.
К тому времени приехал и Моррисон. Втроём мы собрались в институтском кафе, чтобы выработать план действий. Мы были единодушны в том, что главная задача состоит в ответе на вопрос, могут ли переходы от рис. 11.3а к рис. 11.4 г иметь место в нашей Вселенной. Однако решение этой задачи в лоб сулило непреодолимые препятствия, так как описывающие этот переход уравнения, особенно те из них, которые описывают разрыв пространства, крайне сложны. Вместо этого, мы решили переформулировать задачу в терминах зеркальных пространств, надеясь на то, что уравнения в этом случае будут более простыми. Идея схематически показана на рис. 11.5, где в верхнем ряду показана эволюция от рис. 11.3а к рис. 11.4 г,
Рис. 11.5. Флоп-перестройка с разрывом пространства (верхний ряд) и соответствующая зеркальная формулировка (нижний ряд)
а в нижнем — та же эволюция с точки зрения зеркальных многообразий Калаби — Яу. Уже тогда нам было ясно, что в зеркальной формулировке физика струн обладает хорошими свойствами и свободна от всякого рода катастроф. На рис. 11.5 видно, что в нижнем ряду не наблюдается разрывов или проколов пространства. Однако самый сложный вопрос, к которому привело нас это наблюдение, заключался в том, не переходим ли мы через границы применимости зеркальной симметрии. И, несмотря на то, что верхние и нижние многообразия Калаби — Яу, изображённые в левой колонке на рис. 11.5, приводят к эквивалентным физическим результатам, верно ли, что на каждом шаге вправо, изображённом на рис. 11.5 (в процессе чего в середине обязательно встретятся фазы прокола-разрыва-восстановления) физические свойства исходной и зеркальной точки зрения идентичны?
Хотя у нас были достаточные основания считать, что важная связь между исходными и зеркальными многообразиями не нарушится в ходе преобразований, приводящих к разрыву пространства Калаби — Яу в верхней части рис. 11.5, мы понимали, что вопрос о том, останутся ли многообразия на рис. 11.5 зеркальными друг другу после разрыва, нетривиален. Это ключевой вопрос, так как если они останутся зеркальными, отсутствие катастрофы в зеркальной формулировке будет означать отсутствие катастрофы в исходной формулировке, и это станет доказательством того, что пространство в теории струн может разрываться. Мы поняли, что этот вопрос можно свести к вычислению. Нужно рассчитать физические свойства Вселенной для верхнего многообразия Калаби — Яу после разрыва (например, используя правое верхнее пространство Калаби — Яу на рис. 11.5) и физические свойства зеркального (по предположению) пространства (правого нижнего пространства Калаби — Яу на рис. 11.5), а затем сравнить, будут ли эти свойства одинаковы.
Этим расчётом Аспинуолл, Моррисон и я занимались осенью 1992 г.
Поздние вечера в последней обители Эйнштейна
Острый, как лезвие бритвы, ум Эдварда Виттена облечён в мягкие манеры, что часто приобретает насмешливый, почти иронический оттенок. Виттен общепризнанно считается наследником титула Эйнштейна в роли величайшего из живущих на Земле физиков. Некоторые даже считают его величайшим физиком всех времён. У Виттена неутолимая жажда к передовым исследованиям в физике, а его влияние на выбор направлений исследования в теории струн огромно.
Работоспособность Виттена стала легендой. По словам его жены Кьяры Наппи, которая занимается физикой в том же институте, Виттен часами сидит на кухне, мысленно анализируя передовые достижения в теории струн и лишь изредка возвращаясь в комнату за ручкой и бумагой, чтобы проверить одну или две тонкие детали.{76} Другую историю рассказал стажёр, которого как-то летом разместили в соседнем с Виттеном кабинете. Он описывал своё уныние, когда он часами мучился со сложными расчётами в теории струн под ритмичный и непрекращающийся стук клавиш из кабинета Виттена, свидетельствовавший о том, что прямо из головы Виттена в файлы на компьютере одна за другой струятся статьи, которые вскоре сыграют поворотную роль в науке.
Примерно через неделю после моего приезда, когда мы с Виттеном беседовали в институтском дворике, он справился о моих научных планах. Я рассказал ему о флоп-перестройках с разрывами пространства и о стратегии, которую мы в этой связи избрали. Услышав об этих идеях, Виттен крайне заинтересовался, но предупредил, что, по его мнению, расчёты будут чрезвычайно сложными. Он также отметил потенциально слабое звено в описанной стратегии, которое относилось к моей совместной работе с Вафой и Уорнером, проделанной несколькими годами ранее. Вопрос, который поднял Виттен, имел лишь косвенное отношение к нашему подходу, но этот вопрос побудил его заняться задачей, которая, в конце концов, оказалась связанной с нашими задачами и дополнительной по отношению к ним.
Аспинуолл, Моррисон и я решили разбить вычисления на два этапа. Естественное на первый взгляд разделение состояло в вычислении сначала физических характеристик, соответствующих последнему многообразию Калаби — Яу в верхнем ряду рис. 11.5, а затем характеристик, соответствующих последнему многообразию в нижнем ряду рис. 11.5. Если зеркальность не нарушается в результате разрыва для верхнего ряда, то эти два многообразия должны приводить к одинаковым физическим следствиям, так же, как к одинаковым следствиям приводит анализ двух исходных многообразий. (В такой постановке задачи не требуется проведения крайне сложных вычислений для верхнего многообразия в момент его разрыва.) Оказалось, что вычисления физических характеристик для последнего из верхнего ряда многообразий Калаби — Яу достаточно просты. Главная сложность состояла в том, чтобы сначала определить точный вид последнего многообразия Калаби — Яу в нижнем ряду на рис. 11.5 (которое, по предположению, является зеркальным образом верхнего многообразия), а затем получить для него соответствующие физические результаты.
Процедура решения второй задачи, т. е. вычисления физических характеристик последнего из многообразий Калаби — Яу в нижнем ряду, если известна его точная геометрическая форма, была разработана несколькими годами ранее Канделасом. Его подход, однако, подразумевал проведение длительных расчётов. Мы поняли, что для решения задачи в данном конкретном случае нужно написать хорошую компьютерную программу. Аспинуолл, — не только известный физик, но и крутой программист, — взял эту задачу на себя. Моррисон и я приступили к расчёту первой задачи о нахождении точного вида пространства Калаби — Яу.
Мы чувствовали, что именно в этом месте работа Батырева может подсказать нам ряд важных моментов. Однако и на этот раз исторически сложившиеся культурные различия в подходах математиков и физиков, — в данном случае, Моррисона и меня, — стали тормозить продвижение вперёд. Нам нужно было соединить мощь двух наук и найти математический вид нижних многообразий Калаби — Яу, которые соответствуют той же физической Вселенной, что и верхние многообразия, если флоп-перестройки с разрывами на самом деле имеют место в действительности. Но ни я, ни Моррисон не знали чужого языка достаточно хорошо для того, чтобы ясно увидеть путь к достижению этой цели. Стало очевидным, что и мне, и ему нужно срочно пройти курс в области, экспертом в которой является другой из нас. Поэтому днём мы решили с максимальной отдачей пытаться двигаться вперёд в наших расчётах, а по вечерам по очереди играть друг для друга роли преподавателя и студента: я буду в течение часа или двух читать лекции для Моррисона по интересующим нас физическим вопросам, а затем он в течение часа или двух будет читать мне лекции по соответствующим математическим вопросам. Эти лекции обычно заканчивались около 11 вечера.
Мы стали твёрдо соблюдать такой ежедневный режим. Продвижение было медленным, но мы чувствовали, что всё начинает понемногу вставать на свои места. Тем временем Виттен семимильными шагами двигался к разрешению вопроса о слабом звене, которое он обнаружил ранее. В его работе предлагался новый мощный метод, связывающий физические результаты в теории струн с математическими аспектами пространств Калаби — Яу. Аспинуолл, Моррисон и я почти ежедневно участвовали в импровизированных дискуссиях с Виттеном, и он рассказывал нам о новых перспективах, которые открываются в его подходе. С каждой неделей становилось всё яснее, что его работа, основанная на совершенно ином подходе, с неожиданной стороны приближается к вопросу о флоп-перестройках. Аспинуолл, Моррисон и я поняли, что если мы в ближайшее время не закончим наши вычисления, Виттен отправит всех нас в нокаут.
Ничто так благотворно не действует на мозг физика, как доза здорового соперничества. Аспинуолл, Моррисон и я вошли в азарт. Нужно отметить, что для Аспинуолла это означало одно, а для нас с Моррисоном совершенно другое. В характере Аспинуолла своеобразно сочетаются утончённость английского аристократа, во многом благодаря десяти годам студенчества и аспирантуры в Оксфорде, и озорное плутовство. Режим, в котором он работает, делает его одним из самых дисциплинированных физиков, которых я когда-либо знал. В то время как многие из нас засиживаются допоздна, Аспинуолл никогда не работает позже пяти часов вечера. В то время как многие из нас работают по выходным, Аспинуолл никогда этого не делает. Он чинно откланивается, потому что к этому моменту он успевает сделать всё. Для него войти в азарт означает ещё выше поднять планку эффективности своей работы.
Было начало декабря. Моррисон и я к тому времени обучали друг друга уже несколько месяцев, и это обучение начало себя оправдывать. Мы были очень близки к тому, чтобы установить точный вид искомого пространства Калаби — Яу. Более того, Аспинуолл почти закончил писать свою компьютерную программу и ждал нашего результата, который должен был служить её начальными данными. Ночью в четверг нам с Моррисоном, наконец, стало совершенно ясно, как можно определить вид искомого пространства Калаби — Яу. Это сводилось к некоторой процедуре, которая также требовала своей (довольно простой) компьютерной программы. К полудню пятницы мы написали и отладили программу, а к позднему вечеру у нас на руках был результат.
Но это была пятница, и уже перевалило за 5 пополудни. Аспинуолл ушёл домой, и не вернётся до понедельника. Мы оказались в ситуации полного бессилия без его компьютерной программы. Но ни Моррисон, ни я и в мыслях не могли представить, что придётся ждать все выходные: мы стояли на пороге решения вопроса о разрывах структуры пространства мироздания, мучившего нас столько времени, и бездействие было невыносимым. Мы позвонили Аспинуоллу домой и стали упрашивать его прийти в офис завтра утром. Сначала он решительно отказался. Но после долгого ворчания в трубку он всё же согласился присоединиться к нам, если мы ему принесём блок из шести банок пива. Мы согласились.
Как и планировалось, мы встретились в Институте в субботу утром. Ярко светило Солнце, и настроение у всех было шутливо-расслабленным. Я был наполовину уверен, что Аспинуолл так и не появится, а когда он всё же пришёл, минут пятнадцать пел ему дифирамбы по поводу первого в его жизни прихода в офис в выходной день. Он заверил меня, что это больше не повторится.
Мы все сгрудились вокруг компьютера Моррисона, стоявшего в нашем кабинете. Аспинуолл объяснил Моррисону, как запустить программу и какой точный вид должны иметь вводимые в неё данные. Моррисон привёл полученные ночью результаты к нужному виду, и теперь всё было готово.
Расчёт, который нужно было провести, грубо говоря, сводился к определению массы конкретной частицы, являющейся колебательной модой струны при её движении во вселенной, компоненту Калаби — Яу которой мы изучали всю осень. Мы надеялись, что в соответствии с выбранной нами стратегией масса окажется точно такой же, что и масса в случае многообразия Калаби — Яу, возникшего после флоп-перестройки с разрывом пространства. Последнюю массу вычислить было легко, и мы сделали это несколькими неделями раньше. Ответ оказался равным 3 в определённой системе единиц, которой мы пользовались. А так как сейчас проводился численный расчёт на компьютере, то ожидаемый результат должен был быть близким к числу 3, что-то вроде 3,000001 или 2,999999; отличие от точного ответа объяснялось бы ошибками округления.
Моррисон сел за компьютер. Его палец завис над клавишей «Enter». Напряжение нарастало. Моррисон выдохнул «поехали» и запустил программу. Через пару секунд компьютер выдал ответ: 8,999999. Моё сердце упало. Неужели действительно флоп-перестройки с разрывом пространства нарушают зеркальную симметрию, а значит, вряд ли существуют в реальности? Но в следующее же мгновение мы сообразили, что здесь какая-то глупая ошибка. Если в массах частиц на двух многообразиях действительно есть отличие, почти невероятно, что компьютер выдал бы результат, столь близкий к целому числу. Если наши идеи неверны, то с тем же самым успехом компьютер мог бы выдать ответ, состоящий из совершенно случайных цифр. Мы получили неправильный ответ, но неправильность его была такого вида, из которого напрашивался вывод о том, что где-то мы допустили банальную ошибку. Аспинуолл и я подошли к доске, и моментально ошибка была найдена: мы забыли множитель 3 в «простом» вычислении несколько недель назад, так что правильный результат должен был равняться 9. Поэтому ответ компьютера — это как раз то, на что мы надеялись.
Конечно, совпадение результата после того, как найдена ошибка, является лишь наполовину убедительным. Если известен желаемый результат, очень легко найти способ его получить. Нам срочно требовался другой пример. Имея все необходимые программы, придумать его не представляло сложности. Мы вычислили массу ещё одной частицы на верхнем многообразии Калаби — Яу, на этот раз с особой тщательностью, чтобы избежать ещё одной ошибки. Ответом было число 12. Мы снова окружили компьютер и запустили программу. Через несколько секунд был получен ответ 11,999999. Согласие. Мы доказали, что предполагаемое зеркальное пространство является зеркальным пространством, и флоп-перестройки с разрывами пространства являются частью теории струн.
Я вскочил со стула и, опьянённый победой, сделал круг по комнате. Моррисон, сияя, сидел за компьютером. И только реакция Аспинуолла была нестандартной. «Здорово. Я и не сомневался, что всё так и будет, — спокойно сказал Аспинуолл. — А где моё пиво?»
Подход Виттена
В понедельник мы с победоносным видом направились к Виттену, чтобы сообщить ему о нашем успехе. Он был очень рад нашему результату. Оказалось, что он тоже только что нашёл способ доказательства существования флоп-перестроек в теории струн. Его аргументация была совершенно иной и значительно проясняла понимание того, почему пространственные разрывы на микроскопических масштабах не приводят к катастрофическим последствиям.
Подход Виттена акцентирует различие между теорией точечных частиц и теорией струн в случае таких разрывов. Суть различия в том, что вблизи разрыва возможны два типа движения струны и только один тип движения точечной частицы. А именно, струна может двигаться, примыкая к разрыву, как и точечная частица, но, кроме того, она может опоясывать разрыв при движении, — что недоступно для точечной частицы, — как показано на рис. 11.6.
Рис. 11.6. Мировая поверхность, заметаемая струной, служит экраном, который гасит потенциально катастрофические эффекты при разрыве структуры пространства
В результате опоясывания области разрыва струна экранирует окружающую её Вселенную от катастрофических последствий, которые имели бы место в противном случае. В теории струн всё происходит так, как будто мировая поверхность струны (двумерная поверхность, которую заметает струна при её движении в пространстве, см. главу 6) эффективно играет роль барьера, на котором все пагубные воздействия геометрического вырождения пространства в точности сокращаются.
Здесь читатель вправе задать вопрос. Что будет, если разрыв действительно произойдёт, но поблизости не окажется струн, которые экранировали бы его? Насколько эффективную защиту от этой кластерной бомбы, взрывающейся в момент разрыва пространства, может дать бесконечно тонкая «броня» струны? Ответ на оба вопроса основан на важнейшем квантово-механическом эффекте, рассмотренном в главе 4. Там было показано, что в фейнмановской формулировке квантовой механики объект, будь то струна или частица, движется от одной точки к другой, «разведывая» все возможные траектории. Наблюдаемое в результате движение есть объединение всех возможностей, и отдельные вклады каждой возможной траектории в движение точно определяются формулами квантовой механики. Если структура пространства внезапно разорвётся, то среди всех возможных траекторий движущихся струн окажутся и те, которые опоясывают место разрыва (см. рис. 11.6). И хотя кажется, что около разрыва может не оказаться струн, в квантовой механике учитываются все возможные их траектории, и среди таких траекторий многие (в действительности, бесконечное число) будут опоясывать место разрыва. Виттен показал, что вклады именно этих траекторий сокращают эффект космической катастрофы, к которой привёл бы разрыв пространства.
В январе 1993 г. Виттен и мы втроём одновременно послали наши работы в электронный архив статей в Интернете, из которого статьи моментально становятся доступными во всём мире. В наших статьях, основанных на двух совершенно различных точках зрения, приводились первые примеры переходов с изменением топологии — такое название мы дали процедуре с разрывом пространства. Давний вопрос о том, могут ли происходить разрывы пространства, был разрешён теорией струн и подтверждался количественными расчётами.
Следствия
Мы добились большого успеха в понимании того, как могут происходить разрывы пространства без катастрофических физических последствий. Но что на самом деле происходит при таких разрывах? Какие следствия разрыва могут быть наблюдаемыми? Мы видели, что многие свойства окружающего нас мира зависят от конкретной структуры свёрнутых измерений. Поэтому естественно предположить, что радикальное изменение пространства Калаби — Яу при преобразовании, показанном на рис. 11.5, будет иметь серьёзные физические последствия. Однако на самом деле на двумерных иллюстрациях, которыми мы пользуемся для того, чтобы представить себе пространства, картина происходящего в действительности преобразования несколько усложнена. Если бы нам удалось наглядно изобразить шестимерную геометрию, мы бы увидели, что структура пространства действительно рвётся, но не так уж сильно. Повреждения больше похожи на изящные следы, оставляемые молью на пальто, чем на результат резкого приседания в брюках, из которых вы давно выросли.
В нашей работе, как и в работе Виттена, показано, что физические характеристики (например, число семейств струнных мод и типы частиц каждого семейства) не изменяются в ходе этих процессов. То, что может действительно меняться при преобразованиях пространства Калаби — Яу, на промежуточном этапе которых происходит разрыв, это массы отдельных частиц, т. е. энергии возможных мод колебаний струны. В наших работах было показано, что эти массы будут непрерывно изменяться в ответ на изменение геометрического вида компоненты Калаби — Яу, причём некоторые будут увеличиваться, а некоторые — уменьшаться. Важно, однако, то, что при разрыве не возникнет катастрофических скачков или других резких изменений значений меняющихся масс. С точки зрения физики момент разрыва пространства ничем не примечателен.
Здесь возникают два вопроса. Во-первых, мы рассматривали разрывы структуры пространства в дополнительном шестимерном пространстве Калаби — Яу. Могут ли эти разрывы возникать в трёх наблюдаемых нами измерениях Вселенной? Почти наверняка могут. Пространство есть пространство, независимо от того, является оно туго скрученным в многообразие Калаби — Яу или развёрнутым до вселенских просторов, обширность которых мы понимаем, глядя лунной ночью на звёздное небо. На самом деле, как мы видели, привычные нам пространственные измерения могут сами быть свёрнуты в гигантскую фигуру, замыкающуюся саму на себя в направлении другого конца Вселенной, и поэтому само деление измерений на свёрнутые и развёрнутые несколько искусственно. Хотя наш анализ, как и анализ Виттена, опирался на определённые математические свойства многообразий Калаби — Яу, тот результат, что структура пространства может разрываться, несомненно, имеет более широкие рамки применимости.
Во-вторых, может ли разрыв с изменением топологии произойти сегодня или завтра? Мог ли он иметь место в прошлом? Да. Экспериментальные исследования показывают, что массы элементарных частиц довольно стабильны во времени. Но на ранних стадиях после Большого взрыва даже в теориях, отличных от теории струн, рассматриваются важные периоды, в течение которых массы элементарных частиц менялись. С точки зрения теории струн в эти периоды, несомненно, происходили переходы с изменением топологии, рассмотренные в этой главе. Говоря о временах более близких к настоящему моменту, наблюдаемая стабильность масс элементарных частиц означает, что если сейчас Вселенная находится на стадии перехода с изменением топологии, то он происходит настолько медленно, что влияние на массы элементарных частиц невозможно зарегистрировать на современных экспериментальных установках. Примечательно, что пока выполняется это условие, наша Вселенная может находиться в данный момент в кульминации пространственного разрыва. Если разрыв происходит достаточно медленно, мы даже не поймём, что он происходит. Это один из редких примеров в физике, когда отсутствие поразительного экспериментально наблюдаемого феномена есть повод для сильного возбуждения. Отсутствие наблюдаемых катастрофических последствий при таком экзотическом изменении геометрии демонстрирует, как далеко продвинулась теория струн по сравнению с ожиданиями Эйнштейна.
Глава 12. За рамками струн: в поисках M-теории
В долгих поисках единой теории Эйнштейн размышлял о том, «мог ли Бог сотворить мир другим, оставляет ли какую-то свободу требование логической простоты».{77} Это замечание Эйнштейна предвосхищает точку зрения, которой сегодня придерживаются многие физики: если у нас есть окончательная теория природы, то одним из самых убедительных аргументов в пользу её конкретной структуры является то, что теория не могла бы быть другой. Окончательная теория должна иметь тот вид, который она имеет, потому что она даёт уникальную формулировку, в рамках которой можно объяснить Вселенную, не натыкаясь на внутренние или логические противоречия. В подобной теории должно постулироваться, что всё вокруг устроено именно так потому, что оно должно быть устроено именно так. Любое сколь угодно малое расхождение приводит к теории, которая, подобно фразе «это предложение является ложным», содержит в себе семена своей собственной несостоятельности.
Установление такой неизбежности в структуре Вселенной потребует долгого пути и вплотную приведёт нас к разрешению глубочайших вопросов мироздания. Эти вопросы подчёркивают загадку: кто или что сделал выбор среди бессчётного числа вариантов? Неизбежность упраздняет эти вопросы путём отметания других возможностей. Неизбежность означает, что в действительности другого выбора нет. Неизбежность постулирует, что Вселенная не может быть иной. Как мы увидим в главе 14, нет причин, по которым Вселенная должна иметь такую жёсткую конструкцию. Тем не менее, поиск этой жёсткости законов природы лежит в основе программы объединения в современной физике.
К концу 1980-х гг. теория струн, по мнению физиков, хотя и приблизилась к построению единой картины Вселенной, но не выдержала экзамен на «отлично». На то были две причины. Во-первых, как вскользь отмечено в главе 7, физики обнаружили, что существует пять различных вариантов теории струн. Напомним, что их называют теориями типа I, типа IIA, типа IIB, а также теориями гетеротических струн на основе групп O(32) (O-гетеротические струны) и E8 E8 (E-гетеротические струны). Многие основные свойства этих теорий совпадают: колебательные моды определяют возможные массы и заряды, общее число требуемых пространственных измерений равно 10, их свёрнутые измерения должны быть многообразиями Калаби — Яу и т. д. Мы не говорили об их различиях в предыдущих главах, однако, как выяснилось в конце 1980-х гг., эти теории действительно отличаются друг от друга. В примечаниях в конце книги можно прочесть о свойствах этих теорий, но здесь для нас важно то, что в них по-разному реализуется суперсимметрия и есть существенные различия между допустимыми колебательными модами.{78} (Например, в теории струн типа I кроме обсуждаемых нами замкнутых струн имеются открытые струны.) Теоретики, занимавшиеся струнами, чувствовали себя неуютно: хоть и впечатляет иметь на руках серьёзную кандидатуру на окончательную единую теорию, но если таких кандидатур пять, непонятно, как распределить время на исследование каждой из них.
Вторая причина отклонения от неизбежности более тонкая. Чтобы понять её в полной мере, нужно признать, что все физические теории состоят из двух частей. Первая часть — это набор основных идей теории, выраженных, как правило, в виде математических уравнений. Вторая часть состоит из решений этих уравнений. Вообще говоря, одни уравнения допускают только единственное решение, а другие — более одного решения (возможно, много более). (Например, уравнение «2 умножить на некоторое число равно 10» имеет одно решение: 5. Однако уравнение «0 умножить на некоторое число равно 0» имеет бесконечно много решений, так как любое умноженное на 0 число даёт 0.) Тем самым, даже если получается строго определённая теория со строго определёнными уравнениями, искомая неизбежность ещё под вопросом, ибо уравнения могут иметь множество различных решений. В конце 1980-х гг. казалось, что ситуация в теории струн обстоит именно так. Когда физики начинали исследовать уравнения любой из пяти теорий, выяснялось, что у этих уравнений действительно много решений, например много возможных способов свёртывания дополнительных измерений, и каждое решение соответствует вселенной со своими свойствами. И хотя все эти вселенные возникали в качестве полноправных решений уравнений теории струн, большинство из них, казалось, не имеет никакого отношения к наблюдаемому нами миру.
Эти отклонения от неизбежности могли бы считаться досадным фундаментальным недостатком теории струн. Но исследования, начавшиеся в середине 1990-х гг., дали надежду на то, что этот недостаток есть просто следствие того, как физики теоретики подходят к анализу теории струн. В двух словах, дело в том, что уравнения теории струн настолько сложны, что никто даже не знает их точного вида. Физикам удалось найти лишь приближённый вид этих уравнений. Именно эти приближённые уравнения сильно отличаются для разных теорий струн. И именно они в любом из пяти подходов приводят к избытку решений, рогу изобилия лишних вселенных.
С 1995 г. (начало второй революции в теории суперструн) растёт число свидетельств в пользу того, что точные уравнения, вид которых до сих пор находится за пределами наших познаний, могут разрешить эти проблемы и, тем самым, придадут теории струн статус неизбежности. К удовлетворению большинства занимающихся теорией струн физиков уже доказано, что точные уравнения, когда их вид будет ясен, вскроют связь между всеми пятью теориями струн. Как лучи морской звезды, все они являются частями одного организма, который в настоящее время пристально исследуется теоретиками. Физики уверены, что вместо пяти различных теорий должна существовать одна, объединяющая все пять в рамках общего теоретического формализма. Эта теория приведёт к ясности, всегда возникающей при выявлении скрытых зависимостей между различными областями исследования, и даст новый мощный подход к пониманию структуры Вселенной в рамках теории струн.
Чтобы объяснить эти идеи, нам придётся воспользоваться рядом самых сложных и самых современных результатов теории струн. Необходимо понять суть приближений, используемых в теории струн, а также присущие им ограничения. Нам нужно ближе познакомиться с искусными методами, известными под собирательным названием дуальностей, которые физики применяют для выхода за рамки некоторых приближений. Затем мы должны по шагам разобраться в каждом этапе аргументации, опирающейся на эти методы, и прийти к указанным выше замечательным выводам. Но не нужно пугаться: вся действительно сложная работа уже выполнена теоретиками, а нам остаётся лишь проиллюстрировать их результаты.
Тем не менее есть множество, казалось бы, не связанных элементов, которые нам придётся исследовать и соединить воедино, поэтому в данной главе особенно просто не разглядеть за деревьями леса. Поэтому, если обсуждение в этой главе начнёт казаться слишком запутанным и возникнет желание пропустить её и перейти к чёрным дырам (главе 13) или космологии (главе 14), мы вам рекомендуем всё-таки вернуться к следующему параграфу, где сведены вместе ключевые идеи второй революции в теории суперструн.
Краткое изложение результатов второй революции в теории суперструн
Важнейший результат, полученный в ходе второй революции в теории суперструн, показан на рис. 12.1 и 12.2.
Рис. 12.1. Многие годы физики, работавшие с пятью теориями струн, думали, что они исследуют совершенно различные теории
На рис. 12.1 изображена ситуация до того, как стало возможным (частично) выйти за рамки приближённых методов, традиционно используемых физиками для исследований в теории струн. Однако, как показано на рис. 12.2, в свете последних результатов видно, что подобно лучикам морской звезды все теории струн рассмативаются сейчас как части единого целого.
Рис. 12.2. Результаты, полученные в ходе второй революции в теории суперструн, показали, что все пять теорий в действительности являются частью единого формализма, условно названного M-теорией
(К концу этой главы, на самом деле, станет ясно, что даже и шестая теория — шестой лучик звезды — будет вписана в это объединение.) Этот единый формализм по причинам, которые станут ясными в дальнейшем, условно назвали M-теорией. Рис. 12.2 иллюстрирует эпохальное достижение в поисках окончательной теории. Тропы исследований в теории струн, которые, казалось, ведут в разные стороны, слились в одну широкую дорогу — единую и всеохватывающую теорию, которая вполне может оказаться искомой «теорией всего».
Хотя предстоит проделать ещё много работы, две основные характеристики M-теории уже установлены физиками. Во-первых, M-теория рассматривает одиннадцать измерений (десять пространственных и одно временное). Подобно тому, как Калуца внезапно обнаружил, что одно дополнительное пространственное измерение можно использовать для объединения гравитации с электромагнетизмом, теоретики осознали, что одно дополнительное пространственное измерение в теории струн (помимо оставшихся девяти пространственных и одного временного, обсуждавшихся в предыдущих главах) позволяет осуществить более чем удовлетворительный синтез всех пяти вариантов теории струн. Кроме того, это дополнительное измерение возникает не из воздуха: теоретики обнаружили, что выводы о существовании одного временного и девяти пространственных измерений, сделанные в 1970-х и 1980-х гг., являются приближёнными, а точные вычисления показывают, что одно пространственное измерение в те годы осталось незамеченным.
Второе установленное свойство M-теории состоит в том, что она, кроме колеблющихся струн, включает и другие объекты: колеблющиеся двумерные мембраны и трёхмерные капли (последние называют 3-бранами), а также и многие другие составляющие. Это свойство, как и одиннадцатое измерение, возникает вследствие отказа от приближений, использовавшихся до середины 1990-х гг. Если не считать этих и ряда других результатов, полученных в последние годы, M-теория остаётся мистической (этим объясняется одно из предложенных толкований буквы «M» в её названии). Физики всего мира с большим энтузиазмом работают над тем, чтобы добиться полного понимания M-теории, и эта задача вполне может стать центральной проблемой физики XXI в.
Теория возмущений
Ограничения методов, с помощью которых физики пытались анализировать теорию струн, связаны с использованием теории возмущений. Теория возмущений — меткое название приближённой процедуры, в которой сначала пытаются найти грубый ответ, а затем поэтапно уточняют его с учётом всё большего числа подробностей, опущенных на предыдущих этапах. Теория возмущений играет важную роль во многих областях науки; она являлась существенным элементом в понимания теории струн, и, как мы сейчас покажем, прочно входит в круг житейских явлений.
Предположим, что в один прекрасный день машина вашего знакомого начинает барахлить, и он обращается в мастерскую, чтобы её проверить. Осмотрев машину, механик говорит, что дело плохо. Нужен новый блок двигателя, и обычно ремонт в таких случаях обходится примерно в $900 (включая стоимость деталей). Это примерная оценка, а более точная стоимость выяснится в ходе ремонта. Проходит несколько дней, и, проведя дополнительные проверки, механик сообщает более точную стоимость $950. Он объясняет, что необходим ещё и новый регулятор: это увеличит общую стоимость ремонта примерно на $50. Наконец, когда машина отремонтирована, вашему знакомому выставляется счёт на $987,93. В мастерской объясняют, что в него входят $950 за блок двигателя и регулятор, $27 за ремень вентилятора, $10 за кабель аккумулятора и $0,93 за изолированный болт. Примерная первоначальная стоимость $900 уточнялась с учётом всё более мелких деталей. На языке физики эти детали рассматриваются как возмущения исходной оценки.
При правильном использовании теории возмущений первоначальная оценка будет достаточно близка к окончательному ответу, и после учёта мелких подробностей, опущенных в исходной оценке, поправка будет невелика. Но иногда при оплате счёта выясняется, что конечная сумма ужасающе расходится с начальной оценкой. И хотя в этот момент в голову, возможно, приходят совсем другие слова, в математике это называется неприменимостью теории возмущений. Это означает, что исходное приближение было плохим прогнозом окончательного ответа, потому что поправки привели не к относительно малым отклонениям, а к сильным изменениям приближённой оценки. Как указывалось в предыдущих главах, наше обсуждение теории струн до этого места опиралось на теорию возмущений, в определённом смысле аналогичную той, которую использовал механик. Упоминавшееся время от времени «недостаточное понимание» теории струн так или иначе связано с применением этого приближённого метода. Чтобы лучше понять смысл последнего утверждения, рассмотрим теорию возмущений в контексте, менее абстрактном, чем в теории струн, но всё же более близком к этой теории, чем пример с механиком.
Классический пример использования теории возмущений даёт изучение движения Земли в Солнечной системе. На таких больших пространственных масштабах можно учитывать только гравитационное взаимодействие, однако, если не делать дополнительных приближений, возникающие уравнения будут крайне сложны. Вспомним, что и по Ньютону, и по Эйнштейну все тела оказывают гравитационное воздействие на все другие тела, так что попытка точной формулировки сразу приводит к математически неразрешимой задаче о «гравитационном перетягивании каната» Землёй, Солнцем, другими планетами и, если по-честному, всеми другими небесными телами. Как нетрудно сообразить, определить точное движение Земли с учётом всех влияний невозможно. На самом деле, уже в случае трёх небесных тел уравнения становятся настолько сложными, что никто не сумел полностью решить их.{79}
Тем не менее в рамках теории возмущений можно предсказать движение Земли в Солнечной системе с высочайшей точностью. Огромная масса Солнца по сравнению с массами всех других тел Солнечной системы, как и близость Солнца к Земле по сравнению с расстояниями от Земли до других звёзд, свидетельствуют о том, что Солнце оказывает доминирующее воздействие на движение Земли. Таким образом, в первом приближении можно учитывать только гравитационное воздействие Солнца. Для многих приложений этого вполне достаточно. Если окажется необходимым, можно уточнить это приближение, последовательно учитывая гравитационное воздействие следующих по степени влияния тел, например, Луны или тех планет, которые в данный момент проходят ближе всего к Земле. По мере того как паутина гравитационных взаимодействий будет становиться более запутанной, вычисления могут стать сложными, но это не должно затемнять смысл философии теории возмущений: гравитационное взаимодействие между Землёй и Солнцем даёт нам приближённое понимание движения Земли, а совокупность остальных гравитационных взаимодействий последовательно учитывается всё уменьшающимися поправками.
В этом примере подход в рамках теории возмущений применим, так как существует доминирующее физическое воздействие, допускающее сравнительно простое теоретическое описание. Это не всегда так. Например, если нужно рассчитать движение трёх сравнимых по массе звёзд, вращающихся в тройной системе одна вокруг другой, нельзя указать, взаимодействие каких звёзд будет доминирующим. Поэтому нельзя дать грубую оценку, к которой затем можно было бы делать малые поправки, обусловленные другими эффектами. Если попытаться использовать теорию возмущений и выбрать для грубой оценки, например, взаимодействие между двумя звёздами, быстро выяснится, что подход неприменим. Вычисленные «поправки» за счёт влияния третьей звезды будут не малыми, а столь же существенными, что и первое грубое приближение. Ситуация знакомая: движения трёх человек, танцующих танец «хора» мало напоминают движения пары, танцующей танго. Большие поправки означают, что исходное приближение было выстрелом мимо цели, а вся схема была карточным домиком. Важно понимать, что дело не просто в учёте большой поправки третьей звезды. Здесь действует эффект домино: большая поправка сильно влияет на движение двух звёзд, что, в свою очередь, сильно влияет на движение третьей звезды, которое опять-таки влияет на движение двух звёзд, и т. д. Все нити гравитационной паутины одинаково важны, и должны рассматриваться одновременно. Единственным спасением в таких случаях часто бывает метод грубой силы — компьютерное моделирование совместного движения.
Этот пример демонстрирует, насколько при использовании теории возмущений важно определить, является ли предполагаемое первое приближение действительно приближением, и, если оно им является, сколько и каких более точных деталей следует учитывать, для достижения требуемой точности. Как мы сейчас обсудим, эти вопросы особенно важны при применении теории возмущений к изучению физических процессов в микромире.
Использование теории возмущений в теории струн
Физические процессы в теории струн порождаются фундаментальными взаимодействиями между колеблющимися струнами. Как обсуждалось в главе 6[40], в эти взаимодействия входят распады и слияния струнных петель, подобные тем, которые изображены на рис. 6.7 и продублированы для удобства читателя на рис. 12.3.
Рис. 12.3. Струны взаимодействуют, соединяясь и разделяясь
Занимающиеся струнами теоретики показали, как схематическому изображению на рис. 12.3 поставить в соответствие точную математическую формулу, описывающую влияние каждой из сталкивающихся струн на движение другой. (Эта формула имеет разный вид в пяти теориях струн, но мы на время будем пренебрегать такими тонкостями.) Если бы не было квантовой теории, на этой формуле и заканчивалось бы изучение взаимодействия струн. Но в силу соотношения неопределённостей возникает микроскопический хаос, в котором происходит непрерывное рождение пар струна/антиструна (двух струн с противоположными колебательными модами) за счёт одолженной у Вселенной энергии, и быстрая аннигиляция этих пар, в результате которой одолженная энергия возвращается Вселенной. Такие пары струн, рождённые из квантового хаоса, живущие за счёт одолженной энергии и, следовательно, обязанные быстро слиться в одну петлю, называют парами виртуальных струн. И хотя их жизнь скоротечна, присутствие этих дополнительных пар виртуальных струн влияет на детальную структуру взаимодействия.
Схематически этот процесс изображён на рис. 12.4.
Рис. 12.4. Квантовый хаос приводит к рождению пары струна/антиструна (б) и её уничтожению (в), что усложняет взаимодействие
Две исходные струны сливаются вместе в точке а, образуя единую петлю. Некоторое время эта петля движется, но в точке б квантовые флуктуации приводят к рождению виртуальной пары струн, которая далее аннигилирует в точке в, и в результате снова получается одна петля. Наконец, в точке г эта струна отдаёт энергию, распадаясь на пару струн, которые разлетаются в разных направлениях. Из-за наличия одной петли в центре рис. 12.4 физики называют это «однопетлевым» процессом. Как и для взаимодействия, изображённого на рис. 12.3, для этой диаграммы можно выписать точную математическую формулу, в которой учитывается влияние рождения пары виртуальных струн на движение двух исходных.
Однако это ещё не всё: краткосрочные извержения виртуальных струн вследствие квантовых флуктуаций могут произойти любое число раз, что приведёт к рождению последовательных виртуальных пар. При этом получатся диаграммы с большим количеством петель, как показано на рис. 12.5.
Рис. 12.5. Квантовый хаос может привести к рождению и уничтожению длинных последовательностей пар струна/антиструна
Каждая диаграмма даёт простой и удобный способ описания соответствующего физического процесса. Налетающие струны сливаются, квантовый хаос вызывает раздвоение получившейся петли на виртуальную пару, струны этой пары движутся, затем аннигилируют с образованием одной петли, которая далее снова распадается на виртуальную пару и т. д. Как и для других диаграмм, для каждого из этих процессов есть математические формулы, в которых учитывается влияние на движение исходной пары струн.{80}
Более того, аналогично примеру с механиком, определившим конечную стоимость ремонта сложением его исходной оценки $900 с последующими поправками $50, $27, $10 и $0,93, и аналогично уточнению описания движения Земли при добавлении к влиянию Солнца меньшего влияния Луны и других планет, теоретики показали, что взаимодействие двух струн можно вычислить путём сложения математических выражений для диаграмм без петель (без пар виртуальных струн), с одной петлёй (одной парой виртуальный струн), с двумя петлями (двумя парами виртуальных струн) и т. д., как показано на рис. 12.6.
Рис. 12.6. Суммарное воздействие одной струны, налетающей на другую, есть результат сложения воздействий, включающих диаграммы с увеличивающимся числом петель
В точном расчёте требуется сложить математические выражения для всех этих диаграмм с растущим числом петель. Но так как диаграмм бесконечно много, а соответствующие математические вычисления с ростом числа петель усложняются, эта задача неразрешима. И здесь занимающиеся струнами теоретики берут на вооружение теорию возмущений, предполагая, что разумная грубая оценка даётся процессом без петель, а диаграммы с петлями дают поправки, значения которых уменьшаются по мере увеличения числа петель.
В действительности, почти всё, что мы знаем о теории струн, включая большую часть сведений из предыдущих глав, было открыто физиками при проведении подробных и тщательных вычислений по теории возмущений. Но чтобы удостовериться в точности полученных результатов, необходимо выяснить, являются ли грубые приближения, в которых учитывается только несколько первых диаграмм рис. 12.6, а все остальные диаграммы опущены, действительно хорошим приближением.
Приближает ли к ответу приближение?
Нельзя сказать заранее. Хотя математические формулы, соответствующие диаграммам, значительно усложняются при увеличении числа петель, теоретикам удалось установить одно очень важное свойство. Подобно тому, как вероятность разрыва каната на две части при сильном растяжении и раскачивании определяется его прочностью, вероятность распада струны с образованием виртуальной пары при квантовых флуктуациях также определяется некоторым параметром. Этот параметр называют константой связи струны (как мы вскоре увидим, в каждой из пяти теорий струн своя константа связи). Это название довольно наглядно: значение константы связи струны определяет, насколько сильно квантовые колебания трёх струн (исходной струны и двух виртуальных струн, на которые она распадается) зависят друг от друга, т. е. насколько сильно три струны связаны между собой. Вычисления показывают, что при больших значениях константы связи струны вероятность того, что квантовые флуктуации приведут к распаду струны (и её последующему воссоединению), становится больше, а при малых значениях константы связи вероятность такого краткосрочного образования виртуальных струн мала.
Немного ниже мы обсудим вопрос об определении константы связи струны в каждой из пяти теорий, однако сначала необходимо уточнить, что означают слова «большая»и «малая» применительно к константе связи. Оказывается, что с точки зрения математического формализма теории струн границей между областями «больших» и «малых» констант связи является число 1. Это означает, что при константах связи, меньших 1, молниеносное вырывание большого числа пар виртуальных струн становится крайне маловероятным. Однако если константа связи больше или равна 1, то краткосрочное появление на сцене таких виртуальных пар становится весьма вероятным и увеличивается с увеличением константы связи струны.[41] В итоге, при константах связи струны, меньших 1, вклады диаграмм с петлями при увеличении числа петель уменьшаются. Это как раз то, что нужно для подхода с использованием теории возмущений: уменьшение вкладов говорит о том, что мы получим достаточно точные результаты, если будем пренебрегать всеми вкладами, кроме вкладов диаграмм, содержащих лишь несколько петель. Но если константа связи струны больше 1, то по мере увеличения числа петель старшие петлевые вклады становятся всё более важными. Как и в случае тройной системы звёзд, теория возмущений здесь неприменима. И первое приближение, которое дают диаграммы без петель, приближением не является. (Всё это в равной мере относится к каждой из пяти теорий струн, так как применимость приближённого подхода с использованием теории возмущений к любой заданной теории определяется значением константы связи.)
Поэтому возникает ещё один важнейший вопрос: чему же равно значение константы связи (точнее, чему равны значения констант связи струны в каждой из пяти теорий струн)? Найти ответ до сих пор никому не удалось. Этот вопрос является одним из главных нерешённых вопросов в теории струн. Можно с уверенностью утверждать, что выводы, полученные в рамках теории возмущений, справедливы лишь в случае, если константа связи струны меньше единицы. Кроме того, точное значение константы связи струны непосредственно влияет на массы и заряды частиц, соответствующих её различным колебательным модам. Таким образом, значение константы связи струны определяет большинство физических свойств теории. Сейчас мы подробнее обсудим причины того, почему на вопрос о значении константы связи во всех пяти теориях струн до сих пор нет ответа.
Уравнения теории струн
Как и для определения взаимодействия между струнами, для поиска фундаментальных уравнений теории струн может использоваться теория возмущений. На самом деле, эти уравнения определяют то, как струны взаимодействуют между собой, и, наоборот, способ взаимодействия струн определяет уравнения теории.
В каждой из пяти теорий струн существует уравнение, с помощью которого можно вычислить значение константы связи в этой теории. Однако к настоящему времени для всех пяти теорий физикам удалось найти лишь приближённый вид этого уравнения, полученный в рамках теории возмущений путём вычисления небольшого числа определённых диаграмм. И во всех пяти теориях приближённый вид уравнения говорит лишь о том, что если умножить значение константы связи на нуль, должен получиться нуль. Результат крайне удручающий, так как любое число при умножении на нуль даёт нуль, и уравнению удовлетворяет любое значение константы связи струны. Поэтому во всех пяти теориях приближённые уравнения для определения константы связи не дают никакой информации о её значении.
Кроме того, в каждой из пяти теорий струн должно существовать уравнение, с помощью которого в принципе можно определить точный вид как протяжённых, так и свёрнутых пространственно-временных измерений. Известный на данный момент приближённый вид этого уравнения приводит к гораздо более жёстким ограничениям, чем вид уравнения для константы связи, но допустимых решений всё равно оказывается очень много. Например, допустимы решения с четырьмя протяжёнными и шестью свёрнутыми измерениями Калаби — Яу, но даже этим широким классом решений все они не исчерпываются: возможны и другие разбиения числа измерений на протяжённые и свёрнутые.{81}
Что означают эти результаты? Возможны три ситуации. В первом, наихудшем случае даже при наличии уравнений для определения константы связи струны, а также уравнений для определения размерностей и точного вида пространства-времени (этим не может похвастаться ни одна теория), до сих пор не найденные точные уравнения могут допускать широкий спектр решений, что значительно ослабляет их предсказательную силу. Если это так, это будет крахом гипотезы о том, что теория струн способна объяснить свойства природы без необходимости экспериментального определения этих свойств и более или менее произвольной подгонки теории под эти свойства. Мы вернёмся к анализу этого случая в главе 15. Во втором случае избыточная свобода выбора при решении приближённых уравнений теории струн может говорить об изъянах в нашей аргументации. Мы пытаемся использовать методы теории возмущений для определения значения самой константы связи струны. Но, как обсуждалось выше, методы теории возмущений имеют смысл лишь в случае, если константа связи меньше 1, и поэтому возможно, что при таких расчётах делается неоправданное предположение о самом результате, а именно, что этот результат будет меньше 1. Наша неудача вполне может объясняться неправильностью исходной предпосылки: в любой из пяти теорий струн константа связи может быть больше 1. Наконец, в третьем случае нежелательный произвол в решениях может быть просто следствием того, что мы используем приближённые, а не точные уравнения. Например, даже если константа связи в данной теории струн меньше 1, уравнения теории могут быть чувствительны к вкладам всех диаграмм. То есть учёт небольших поправок, соответствующих всем многопетлевым диаграммам, может быть важным для сведения приближённого уравнения, допускающего множество решений, к точному уравнению с ограниченным числом решений.
К началу 1990-х гг. анализ двух последних возможностей убедил большинство теоретиков в том, что повсеместное использование теории возмущений является помехой на пути прогресса. По мнению подавляющего большинства учёных, следующее серьёзное продвижение возможно лишь при использовании подхода, не скованного приближёнными методами и, следовательно, далеко выходящего за рамки теории возмущений. Ещё в 1994 г. разработка такого подхода казалась несбыточной мечтой. Однако иногда и такие мечты сбываются.
Дуальность
Сотни занимающихся теорией струн теоретиков из многих стран мира ежегодно съезжаются на конференцию, посвящённую обсуждению полученных за «отчётный» год результатов и оценке перспектив возможных направлений исследования. В зависимости от достигнутого в данном году прогресса обычно легко предугадать степень интереса и энтузиазм его участников. В середине 1980-х гг., в апогее первой революции в теории суперструн, на семинарах царила безграничная эйфория. Физиков окрыляла надежда на то, что скоро у них появится полное понимание теории струн, и она предстанет пред ними в качестве окончательной теории Вселенной. Сегодня это кажется наивным. Как выяснилось в следующие годы, для понимания многих глубоких и нетривиальных аспектов теории струн требуются длительные и напряжённые исследования. После того как далеко не всё сразу становилось на свои места, необоснованная первоначальная эйфория сменилась мёртвым сезоном, а многие исследователи впали в уныние. Конференции по струнам, проводившиеся в конце 1980-х гг., отражали скрытое разочарование: физики представляли интересные результаты, но в атмосфере конференции не чувствовалось вдохновения. Некоторые даже предлагали отменить ежегодную конференцию. Однако в начале 1990-х годов ситуация стала исправляться. После ряда значительных прорывов (некоторые из них обсуждались в предыдущих главах) теория струн вновь стала набирать свою силу, и у многих исследователей опять появился энтузиазм и оптимизм. Тем не менее, трудно было предположить то, что произойдёт на конференции по струнам, состоявшейся в марте 1995 г. в университете Южной Калифорнии.
Когда подошло время заявленного выступления Эдварда Виттена, он поднялся на кафедру и сделал доклад, который вызвал вторую революцию в теории суперструн. Вдохновлённый результатами более ранних работ Даффа, Халла и Таунсенда, а также замечательными идеями Шварца, Ашока Сена и других теоретиков, Виттен объявил о новой стратегии выхода за рамки теории возмущений в теории струн. Главным элементом этой стратегии было понятие дуальности.
Физики используют это понятие для описания теоретических моделей, которые кажутся различными, но приводят к идентичным физическим следствиям. Есть «тривиальные» примеры дуальности, в которых совершенно одинаковые теории могут казаться различными лишь вследствие того, как эти теории представлены. Человек, понимающий только английский язык, не поймёт, что речь идёт о теории относительности, если объяснять ему эту теорию на китайском языке. Однако физик, свободно владеющий обоими языками, легко переведёт её на свой язык и установит эквивалентность двух теорий. Мы называем этот пример «тривиальным», поскольку с точки зрения физики при переводе не обнаруживается ничего нового. Для владеющих разными языками теоретиков получить новый результат в теории относительности одинаково сложно вне зависимости от того, на каком языке эта теория сформулирована. Переход от английского к китайскому и обратно не приводит к появлению новых физических результатов.
Нетривиальными являются те примеры дуальности, в которых различные описания одной и той же ситуации приводят к различным взаимодополняющим физическим выводам и математическим методам исследования. На самом деле, выше мы уже дважды сталкивались с такими примерами. В главе 10 обсуждалось, что теория струн во вселенной с циклическим измерением радиусом R может быть с тем же успехом описана в рамках теории во вселенной с циклическим измерением радиусом 1/R. Геометрически два варианта различны, но физические явления оказываются совершенно идентичными. Второй пример — зеркальная симметрия. Имеются два различных многообразия Калаби — Яу в дополнительных шести пространственных измерениях, но две вселенные, кажущиеся на первый взгляд совершенно разными, имеют одни и те же физические свойства. Существенным отличием от перевода с одного языка на другой является то, что эти дуальные описания могут привести к новым физическим результатам, например, к предсказаниям минимального размера циклического измерения или переходов с изменением топологии в теории струн.
В своей лекции на конференции «Струны-95» Виттен привёл пример нового и фундаментального типа дуальности. Как кратко отмечено в начале этой главы, он предположил, что пять теорий струн, имеющих совершенно разную структуру, на самом деле являются лишь разными способами описания одного и того же физического мира. Работая с пятью теориями струн, мы просто смотрели в пять разных окон, обращённых в сторону одного теоретического фундамента.
До событий середины 1990-х гг. возможность существования дуальности такого масштаба была одной из лелеемых физиками идей, о которой можно было упоминать лишь шёпотом — настолько она представлялась фантастической. Если две теории существенно расходятся в деталях формулировки, трудно вообразить, что эти теории могут быть просто двумя разными описаниями одной и той же физической реальности, лежащей в основе. Тем не менее, с развитием теории струн появляются всё более убедительные свидетельства в пользу того, что все пять теорий струн являются дуальными. Кроме того, как будет пояснено ниже, из доводов Виттена следует, что в физике есть место и для шестой теории.
Эти результаты тесно переплетены с вопросами о применимости методов теории возмущений, обсуждавшихся в конце предыдущего пункта. Причина в том, что пять теорий струн сильно отличаются друг от друга, если в каждой из них предполагается наличие слабой связи, т. е. если константа связи меньше 1. Долгое время физики опирались на теорию возмущений, в рамках которой невозможна постановка вопроса о том, какими будут свойства любой из теорий, если окажется, что константа связи в этой теории больше 1, т. е. связь будет сильной. По утверждениям Виттена и других исследователей, сейчас можно ответить на этот важнейший вопрос. Их результаты убедительно свидетельствуют о том, что для сильной связи в каждой из теорий (включая шестую теорию, которую мы опишем ниже) есть дуальное описание в терминах слабой связи в другой теории, и наоборот.
Чтобы яснее понять смысл последнего утверждения, можно взять на вооружение следующую аналогию. Представим себе двух, мягко говоря, слегка чудаковатых индивидуумов. Один из них обожает лёд, но, как ни странно, никогда не видел воды. Второй обожает воду, но, что не менее странно, никогда не видел льда. Однажды они встречаются и решают отправиться в поход по пустыне. В начале похода каждый из них изумлён снаряжением другого. Любитель льда пленён гладкой поверхностью прозрачной жидкости, которую принёс с собой любитель воды, а любителя воды странным образом притягивают твёрдые кубики, принесённые любителем льда. Ни один из них и не подозревает о близком родстве между льдом и водой; для них эти субстанции совершенно различны. Но, продвигаясь по палящей жаре пустыни, они поражены тем, что лёд начинает медленно превращаться в воду. А позже, дрожа от дикого холода пустынной ночи, они столь же сильно поражены тем, что жидкая вода начинает медленно превращаться в твёрдый лёд. И тут до них доходит, что вода и лёд, которые они считали совершенно разными веществами, тесно связаны между собой.
Дуальность в пяти теориях струн в чём-то похожа на этот пример: грубо говоря, константы связи струны играют роль, аналогичную температуре в пустыне. Подобно воде и льду, любые две из пяти теорий с первого взгляда кажутся совершенно различными. Но при изменении соответствующих констант связи эти теории превращаются одна в другую. Так же, как лёд превращается в воду при увеличении температуры, одна из теорий переходит в другую при увеличении константы связи. Эта аналогия, в конце концов, может привести нас к выводу о том, что все теории струн являются дуальными описаниями единой структуры — аналога H2O для воды и льда.
Аргументация в пользу такого вывода почти целиком основана на принципах симметрии. Обсудим эти принципы.
Мощь симметрии
Никто и никогда даже не пытался изучить свойства любой из пяти теорий струн при больших значениях констант связи, потому что не было и намёка на то, как поступать вне рамок теории возмущений. Однако в конце 1980-х — начале 1990-х гг. физики начали делать первые, но твёрдые шаги к описанию конкретных свойств теорий (в частности, к вычислению отдельных масс и зарядов), проявляющихся в области физики сильной связи для данной теории, но всё же находящихся в пределах наших вычислительных возможностей. Такие вычисления, с необходимостью выходившие за рамки теории возмущений, сыграли главную роль во второй революции суперструн и стали возможными во многом благодаря соображениям симметрии.
Принципы симметрии дают мощные средства для изучения многих свойств реального мира. Мы уже упоминали о том, что хорошо подтверждающаяся уверенность в том, что законы физики не выделяют никакое конкретное место во Вселенной и никакой конкретный момент времени, позволяет нам предположить, что законы «здесь и сейчас» будут теми же самыми, что и «там и тогда». Это всеобъемлющий пример; но принципы симметрии могут с тем же успехом применяться в более скромных случаях. Например, если свидетель ограбления разглядел лишь правую половину лица преступника, в полиции его информация всё равно окажется ценной для составления фоторобота. Симметрия тому причиной. Хотя правая и левая половина лица отличаются, большинство лиц достаточно симметричны для того, чтобы отражённый образ одной половины лица можно было бы с успехом использовать в качестве приближения для другой половины.
В каждом из разнообразных применений роль симметрии состоит в возможности восстановления свойств по косвенным признакам, что часто гораздо проще прямого подхода. Для изучения законов физики в созвездии Андромеды можно было бы направить туда экспедицию, найти подходящую планету у одной из звёзд, построить там ускорители и проводить эксперименты, аналогичные экспериментам на Земле. Но косвенный подход с использованием симметрии при сдвиге места действия куда проще. Можно было бы в деталях ознакомиться с чертами левой половины лица грабителя, изловив преступника и отправив его в участок. Но часто гораздо проще сначала воспользоваться лево-правой симметрией человеческих лиц.[42]
Суперсимметрия принадлежит к более абстрактным типам симметрии, который связывает физические свойства элементарных объектов с различными спинами. Эксперимент даёт лишь косвенные намёки на то, что в микромире реализуется такой механизм симметрии, но по описанным выше причинам физики твёрдо убеждены, что он действительно реализуется. Естественно, этот механизм является неотъемлемой частью теории струн. В 1990-е гг. после пионерской работы Натана Зайберга из Института перспективных исследований физики осознали, что суперсимметрия даёт мощный инструмент, используя который можно косвенным методом ответить на ряд очень сложных и важных вопросов.
Одно то, что теория обладает суперсимметрией, позволяет даже без понимания всех тонкостей теории накладывать существенные ограничения на её допустимые свойства. Приведём пример из лингвистики. Пусть известно, что в некоторой последовательности букв буква «y» встречается ровно три раза, и задача состоит в том, чтобы угадать эту последовательность. Не имея дополнительной информации, невозможно найти однозначное решение: подойдёт любая последовательность с тремя буквами «y», например mvcfojziyxidqfqzyycdi и т. п. Но теперь допустим, что нам последовательно дают две подсказки: во-первых, ответ должен быть существующим английским словом, и, во-вторых, это слово должно содержать минимальное количество букв. Бесконечное количество первоначальных вариантов сокращается этими двумя подсказками сразу до одного кратчайшего английского слова с тремя «y»: syzygy (сизигия).
Суперсимметрия также даёт подсказки, позволяющие конкретизировать ситуацию в теориях, которым свойственны такие принципы симметрии. Чтобы понять это, представьте, что вы столкнулись с физической задачей, аналогичной только что описанной задаче из лингвистики. Внутри чёрного ящика находится нечто неопознанное с определённым зарядом. Заряд может быть электрическим, магнитным, или иметь иную природу; для определённости примем, что этот заряд равен трём единицам электрического заряда. Без дополнительной информации определить содержимое ящика невозможно. В нём могут находиться три частицы с зарядом 1, подобные позитронам или протонам, или четыре частицы с зарядом 1 и одна частица с зарядом 1 (например, электрон), или девять частиц с зарядом 1/3 (например, u-кварки) плюс любое число незаряженных частиц (например, фотонов) и т. д. Подходит любая комбинация частиц с суммарным зарядом 3. Как и в лингвистической задаче, где единственным условием было наличие трёх букв «y», число возможных вариантов содержимого чёрного ящика бесконечно.
Но теперь, как и в примере из лингвистики, предположим, что нам даны ещё две подсказки: во-первых, теория, описывающая мир (а, следовательно, и содержимое чёрного ящика) является суперсимметричной, и, во-вторых, содержимое чёрного ящика должно иметь минимальную массу. Пользуясь результатами работ Е. Богомольного, Маноджа Прасада и Чарльза Соммерфилда, физики показали, что такая жёсткая структура формализма (формализм суперсимметрии — аналог английского языка) и «условие минимальности» (минимальность массы с данным электрическим зарядом — аналог минимальной длины слова с данным числом букв «y») приводят к тому, что скрытое содержимое определяется однозначно. То есть требование минимальности массы содержимого чёрного ящика при условии, что заряд внутри него будет равен заданному, позволяет однозначно определить это содержимое. Состояния с данным значением заряда, в которых суммарная масса частиц минимальна, называют БПС-состояниями в честь трёх открывших эти состояния учёных.{82}
Важность БПС-состояний состоит в том, что их свойства однозначно, легко и точно определяются без привлечения теории возмущений. Это справедливо вне зависимости от значения констант связи. Даже если константа связи струны велика, и, следовательно, подход с использованием теории возмущений неприменим, всё равно можно вычислить точные параметры БПС-состояний. Эти параметры часто называют непертурбативными массами и зарядами, так как их значения вычислены вне рамок приближённого подхода по теории возмущений. Поэтому для читателя, владеющего английским языком, BPS можно расшифровать и как beyond perturbative states — состояния вне рамок теории возмущений.
БПС-свойства описывают лишь малую долю всех физических явлений в конкретной теории струн при больших константах связи, но эти состояния позволяют чётко прояснить некоторые характеристики теории в области сильной связи. При выходе константы связи струны за рамки применимости теории возмущений, привязка к БПС-состояниям позволяет расширить границы нашего понимания теории. Как и знание лишь нескольких выборочных слов в иностранном языке, эти состояния могут нам помочь продвинуться довольно далеко.
Дуальность в теории струн
Следуя Виттену, начнём с анализа одной из пяти теорий, например теории струн типа I, и предположим, что все её девять пространственных измерений являются плоскими и несвёрнутыми. Такое предположение, разумеется, совершенно нереалистично, но оно делает анализ проще; случай свёрнутых измерений будет рассмотрен немного ниже. Примем сначала, что константа связи струны много меньше 1. В этом случае справедливы методы теории возмущений, и многие конкретные характеристики теории могут быть (и были) изучены довольно точно. Если мы будем увеличивать константу связи, но следить, чтобы она оставалась гораздо меньше 1, методы теории возмущений будут оставаться справедливыми. Однако конкретные характеристики теории несколько изменятся. Например, численные параметры рассеяния двух струн станут немного иными, так как изображённые на рис. 12.6 диаграммы с петлями при увеличении константы связи дадут большие вклады. Несмотря на эти изменения численных параметров, физическое содержание теории останется неизменным, если величина константы связи соответствует области применимости теории возмущений.
Когда значение константы связи струны типа I превысит единицу, методы теории возмущений станут неприменимыми, так что мы сфокусируем наше внимание на ограниченном наборе масс и зарядов БПС-состояний, которые мы ещё будем в состоянии понять. Согласно гипотезе Виттена, подтверждённой затем в совместной работе с Джо Польчински из университета Санта Барбары, свойства теории струн типа I в области сильной связи в точности совпадут с известными свойствами теории O-гетеротической струны со слабой связью. Иными словами, если константа связи в теории струн типа I велика, конкретные массы и заряды, которые мы умеем вычислять, в точности совпадут с массами и зарядами в теории O-гетеротической струны с малой константой связи. Это явно указывает на то, что две теории струн, которые, подобно воде и льду, сначала казались совершенно разными, в действительности дуальны друг другу. При этом появляется убедительный довод в пользу того, что физические процессы в теории струн типа I для больших констант связи идентичны физическим процессам в теории O-гетеротической струны для малых констант связи. Схожие соображения наталкивают на мысль, что справедливо и обратное. Физические процессы в теории струн типа I для малых констант связи идентичны физическим процессам в теории O-гетеротической струны для больших констант связи.{83} Несмотря на то, что при анализе приближёнными методами теории возмущений две теории струн кажутся не связанными, при изменении констант связи поисходит переход одной из них в другую, подобный взаимным превращениям воды и льда.
Этот существенно новый результат — возможность описания физических свойств одной теории в области сильной связи в рамках другой теории в области слабой связи — называют дуальностью сильной и слабой связи. Как и рассмотренные выше примеры дуальности, эта дуальность показывает, что две теории на самом деле не являются разными. Точнее, они дают различные описания одной и той же лежащей в их основе теории. В отличие от «тривиальной» дуальности английского и китайского языков, дуальность сильной и слабой связи даёт мощный инструмент исследования теорий. Если константа связи в одной из двух теорий мала, можно анализировать физические свойства с помощью хорошо известных приёмов теории возмущений. Однако если константа связи велика, и теория возмущений неприменима, можно перейти к дуальной теории и вернуться к методам теории возмущений. Переход позволяет использовать количественные методы применительно к ситуациям, анализ которых, как казалось ранее, выходит за рамки наших возможностей.
Строгое доказательство того, что физические процессы в теории струн типа I для малых констант связи идентичны физическим процессам в теории O-гетеротической струны для больших констант связи и обратно, является очень сложной и до сих пор не решённой задачей. Одна из двух предположительно дуальных теорий не может быть исследована по теории возмущений, так как её константа связи слишком велика. Это не позволяет провести прямой расчёт многих физических характеристик теории. И именно этим объясняется мощный потенциал предполагаемой дуальности: если гипотеза дуальности верна, она даёт новый инструмент исследования теории в области сильной связи. Нужно лишь использовать теорию возмущений для дуальной теории в области слабой связи.
Даже если нельзя доказать, что две теории дуальны, полное согласие результатов, которые можно получить строго, является неоспоримым свидетельством в пользу гипотезы дуальности сильной и слабой связи теории типа I и теории O-гетеротической струны. Эта гипотеза проходила проверку с использованием всё более изощрённых вычислительных методов, и неизменно находила своё подтверждение. Большинство теоретиков, занимающихся струнами, убеждены в справедливости гипотезы дуальности.
Тем же самым методом можно изучить свойства других теорий струн, например, типа IIB. Согласно первоначальному предположению Халла и Таунсенда, которое затем было подтверждено исследованиями ряда физиков, в этой теории происходит нечто столь же необычное. При увеличении константы связи те физические свойства, которые ещё можно определить, начинают совпадать со свойствами той же теории струн типа IIB в области слабой связи. Другими словами, теория струн типа IIB является самодуальной.{84} Тщательный анализ показывает, что теория струн типа IIB с константой связи, большей 1, совершенно идентична той же теории струн с константой связи, обратной изначальной (и, следовательно, меньшей 1). Ситуация аналогична рассмотренному выше стягиванию циклического измерения до планковской длины: если уменьшать значение константы связи в теории типа IIB до значения, меньшего 1, то вследствие самодуальности мы придём к эквивалентной теории типа IIB с константой связи, большей 1.
Предварительные итоги
Итак, посмотрим, где мы находимся. К середине 1980-х гг. физики построили пять теорий суперструн. При исследовании приближёнными методами теории возмущений свойства пяти теорий казались различными. Однако эти приближённые методы применимы лишь тогда, когда константа связи струны меньше 1. Ожидалось, что константу связи в каждой теории можно будет вычислить точно, но из вида приближённых уравнений для констант стало ясно, что такое вычисление в настоящее время невозможно. Поэтому физики направили свои усилия на изучение всех пяти теорий в допустимых диапазонах соответствующих констант связи, как для констант, меньших 1, так и больших 1, т. е. при слабой и при сильной связи. Однако попытки определить свойства любой из этих теорий в области сильной связи на основе традиционных методов теории возмущений оказались тщетными.
В настоящее время физики научились рассчитывать определённые характеристики каждой теории струн в области сильной связи, используя мощный формализм суперсимметрии. Ко всеобщему изумлению всех теоретиков, свойства теории O-гетеротических струн в области сильной связи оказались идентичными свойствам теории струн типа I в области слабой связи, и наоборот. Более того, свойства теории струн типа IIB в области сильной связи оказались идентичными свойствам той же теории в области слабой связи. Эти неожиданные открытия побуждают нас, следуя Виттену, перейти к анализу двух оставшихся теорий струн, струн типа IIA и E-гетеротической струны, и выяснить, как эти теории вписываются в общую картину. И здесь нас ожидают ещё более удивительные неожиданности. Для того чтобы подготовиться к ним, необходимо совершить краткий исторический экскурс.
Супергравитация
В конце 1970-х — начале 1980-х гг., до всплеска бурного интереса к теории струн, многие физики-теоретики пытались объединить квантовую теорию, гравитацию и другие взаимодействия в формализме единой теории поля для точечных частиц. Они надеялись, что препятствия, возникающие при попытках объединить теории точечных частиц, включающие квантовую механику и гравитацию, будут устранены при исследовании теорий с высокой степенью симметрии. В 1976 г. сотрудники Нью-йоркского университета Стони Брук Дэниел Фридман, Серджо Феррара и Питер ван Ньювенхейзен обнаружили, что наиболее многообещающими являются теории на основе суперсимметрии, так как в них сокращения многих квантовых флуктуаций бозонов и фермионов помогают умиротворить хаос на микроскопических масштабах. В своей работе эти учёные дали название супергравитация суперсимметричным квантовым теориям, которые разрабатывались с целью включить общую теорию относительности в единый формализм. Попытки разработать такие теории не увенчались успехом. Тем не менее, как отмечено в главе 8, урок, предвосхитивший развитие теории струн, не прошёл даром.
Урок, смысл которого, вероятно, стал более ясен после работы сотрудников Парижской высшей технической школы Юджина Креммера, Бернара Джулиа и Шерка (1978 г.) состоял в том, что успешнее остальных оказались попытки построить теории супергравитации не в четырёх, а в большем числе измерений. А именно, наиболее перспективными оказались варианты теорий в десяти или одиннадцати измерениях, при этом число одиннадцать оказалось максимально возможным числом измерений.[43] Связь с четырьмя наблюдаемыми измерениями в этих теориях также обеспечивалась путём использования формализма Калуцы — Клейна: лишние измерения сворачивались. В десятимерных теориях, как и в теории струн, сворачивалось шесть измерений, а в 11-мерной теории сворачивалось семь измерений.
Когда в 1984 г. теория струн увлекла многих физиков, виды на будущее у теорий супергравитации для точечных частиц резко ухудшились. Как уже неоднократно подчёркивалось, при точности, доступной сегодня и в обозримом будущем, струны выглядят, как точечные частицы. Это неформальное замечание можно сформулировать и в строгой форме: при изучении низкоэнергетических процессов в теории струн, т. е. процессов, в которых энергии недостаточно велики для того, чтобы прощупать протяжённую ультрамикроскопическую структуру струны, можно аппроксимировать струну бесструктурной точечной частицей в формализме квантовой теории поля. Для процессов на малых расстояниях или процессов при больших энергиях такое приближение не подходит, так как мы знаем, что протяжённость струны является важнейшим свойством, позволяющим разрешить конфликты между общей теорией относительности и квантовой теорией, которые теория точечных частиц разрешить не в состоянии. Однако при достаточно низких энергиях или на достаточно больших расстояниях эти проблемы не возникают, и такое приближение часто делается для удобства вычислений.
Примечательно, что квантовой теорией поля, дающей наилучшее приближение теории струн в указанном смысле, является десятимерная теория супергравитации. Особые свойства этой теории, обнаруженные в 1970-х и 1980-х гг., теперь находят своё объяснение: они являются низкоэнергетическими отголосками свойств теории струн. Исследователи, изучавшие десятимерную супергравитацию, обнаружили лишь вершину огромного айсберга конструкции теории суперструн. В действительности оказывается, что существуют четыре различных теории десятимерной супергравитации, и эти теории отличаются в деталях конкретной реализации суперсимметрии. Три из них являются низкоэнергетическими приближениями струн типа IIA, типа IIB и E-гетеротических струн точечными частицами. Четвёртая теория является низкоэнергетическим пределом как струн типа I, так и O-гетеротических струн; в ретроспективе, этот факт был первым указанием на близость двух последних теорий.
Схема выглядит безупречной, вот только 11-мерная супергравитация осталась не у дел. В теории струн, которая формулируется в десяти измерениях, кажется, нет места для 11-мерной теории. На протяжении нескольких лет большинство физиков за редким исключением рассматривали 11-мерную супергравитацию в качестве математического курьёза, не имеющего никакого отношения к физике теории струн.{85}
Проблески M-теории
Сегодня точка зрения радикально изменилась. На конференции «Струны-95» Виттен сделал следующее утверждение: если взять теорию струн типа IIA с константой связи, много меньшей 1, и увеличивать константу связи до значения, много большего 1, то физические свойства, которые мы ещё способны анализировать (по существу, свойства насыщенных БПС-состояний), в низкоэнергетическом пределе будут соответствовать свойствам 11-мерной супергравитации.
Когда Виттен объявил о своём открытии, все присутствовавшие в аудитории потеряли дар речи, а позже весть об этом открытии громом пронеслась по всем институтам, где занимаются теорией струн. Почти для всех специалистов в этой области результат был полной неожиданностью. Первая реакция читателя этой книги, возможно, тоже будет напоминать реакцию большинства экспертов: какое отношение может иметь теория, характерная для одиннадцати измерений, к другой теории в десяти измерениях?
Ответ несёт в себе глубокий смысл. Чтобы понять его, нужно описать результат Виттена более точно. На самом деле, сначала проще обратиться к другому тесно связанному с этим результату, полученному чуть позже Виттеном и стажёром Принстонского университета Петром Хофавой для теории E-гетеротической струны. Для этой теории в области сильной связи ими также было найдено описание в терминах 11-мерной теории; это поясняется на рис. 12.7.
Рис. 12.7. При увеличении константы связи E-гетеротической струны появляется новое измерение, и сама струна вытягивается, принимая вид цилиндрической мембраны
Слева на этом рисунке схематически показана теория E-гетеротической струны с константой связи, много меньшей 1. Эта область констант связи рассматривалась в предыдущих главах и изучалась теоретиками на протяжении более десяти лет. При переходе вправо на рис. 12.7 значение константы связи постепенно увеличивается. До 1995 г. теоретикам было известно, что при этом вклады петлевых диаграмм (см. рис. 12.6) будут становиться всё более важными, и при дальнейшем увеличении константы связи весь формализм теории возмущений перестаёт быть справедливым. Но никто не мог даже вообразить того, что при увеличении константы связи проявится новое измерение! На рис. 12.7 это измерение соответствует вертикали. Нужно помнить, что двумерная сетка на рисунке, с которого мы начали обсуждение, представляет все девять пространственных измерений E-гетеротической струны. Новое измерение по вертикали будет десятым пространственным, так что вместе с временным измерением в сумме получается одиннадцать пространственно-временных измерений.
Кроме того, на рис. 12.7 иллюстрируется важнейшее следствие существования этого нового измерения. Структура E-гетеротической струны меняется по мере роста этого измерения. При увеличении константы связи из одномерной петли она растягивается в ленту, а затем — в деформированный цилиндр! Другими словами, E-гетеротическая струна становится двумерной мембраной, ширина которой (протяжённость по вертикали на рис. 12.7) определяется значением константы связи. Более десятилетия теоретики всегда использовали методы теории возмущений, основанные на предположении малости константы связи. Как показал Виттен, в этом предположении фундаментальные объекты микромира выглядят и ведут себя подобно струнам, даже если у них имеется скрытое второе пространственное измерение. Если отказаться от предположения о малости константы связи и рассмотреть физические характеристики E-гетеротической струны при больших константах связи, второе измерение станет явным.
Это утверждение не обесценивает ни одного из выводов предыдущих глав, но побуждает рассмотреть их в рамках нового формализма. Возникает, например, вопрос, как можно состыковать новые результаты с тем, что в теории струн требуется одно временное и девять пространственных измерений? Что же, как обсуждалось в главе 8, это ограничение возникает при расчёте числа различных направлений, в которых может колебаться струна, и число измерений выбирается так, чтобы квантово-механические вероятности гарантированно имели осмысленные значения. Новое измерение не является измерением, в котором может колебаться E-гетеротическая струна, так как оно зафиксировано в самой структуре «струны». Кроме того, в формализме теории возмущений, который использовался физиками для вывода ограничения на число пространственно-временных измерений, предполагалось, что константа связи E-гетеротической струны мала. И хотя это было осознано гораздо позднее, в таком предположении неявно используются два взаимосогласованных приближения: малая ширина мембраны на рис. 12.7, при которой она выглядит, как струна, и малый размер одиннадцатого измерения, не влияющий на вид уравнений теории возмущений. В рамках этой приближённой схемы мы вынуждены представлять себе Вселенную десятимерной и заполненной одномерными струнами. Теперь мы видим, что она 11-мерная и заполнена двумерными мембранами.
По техническим причинам, впервые Виттен столкнулся с одиннадцатым измерением при исследовании сильной связи струны типа IIA, для которой ситуация вполне аналогична. Как и в случае E-гетеротической струны, размер одиннадцатого измерения в случае струны типа IIA определяется значением её константы связи. При увеличении этого значения новое измерение расширяется. По мере расширения, однако, струна типа IIA превращается в «велосипедную камеру» (см. рис. 12.8), а не в ленту, как в случае E-гетеротической струны.
Рис. 12.8. По мере увеличения константы связи для струны типа IIA струны расширяются, превращаясь из одномерных петель в двумерные объекты, похожие на велосипедную камеру
И снова, согласно Виттену, традиционные представления физиков о струнах типа IIA как об одномерных объектах, имеющих длину, но не имеющих толщины, есть следствие использования ими формализма теории возмущений, в котором константа связи струны предполагается малой. Если законы природы требуют, чтобы константа связи действительно была малой, то это приближение оправдано. Однако результаты Виттена и других физиков, полученные в ходе второй революции в теории суперструн, убедительно свидетельствуют о том, что «струны» типа IIA и E-гетеротические «струны» имеют фундаментальную структуру двумерных мембран, живущих в 11-мерной вселенной.
Но что представляет собой 11-мерная теория? Согласно Виттену и другим исследователям, при низких (по сравнению с планковской) энергиях она аппроксимируется почти позабытой всеми 11-мерной квантово-полевой теорией супергравитации. А как же тогда описать эту теорию при высоких энергиях? Сейчас этот вопрос тщательно исследуется. Как показано на рис. 12.7 и 12.8, в такой 11-мерной теории существуют двумерные протяжённые объекты — двумерные мембраны. Как мы вскоре увидим, важную роль играют и протяжённые объекты других размерностей. Однако об этой 11-мерной теории ничего не известно, кроме набора разнородных фактов. Являются ли мембраны её фундаментальными объектами? Каковы её определяющие свойства? Благодаря каким её свойствам она может быть связана со знакомой нам физикой? Если соответствующие константы связи малы, то лучшие ответы, которые можно дать сейчас, уже описаны в предыдущих главах, так как при малых константах связи мы возвращаемся обратно к теории струн. Но для больших констант связи в настоящее время ответов не знает никто.
Для этой 11-мерной теории, что бы она собой ни представляла, Виттен придумал рабочее название: M-теория. Все расшифровывают это название по-разному. Вот примеры: мистическая теория, материнская теория («мать всех теорий»), мембранная теория (так как мембраны в любом случае играют в ней роль), матричная теория (после недавних работ Тома Бэнкса из университета Ратгерса, Вилли Фишлера из Техасского университета в Остине, Стивена Шенкера из университета Ратгерса, Сасскинда и других, предложивших новую интерпретацию теории). Однако и без точной расшифровки названия или знания её свойств уже сейчас ясно, что M-теория даёт основу для объединения всех пяти теорий струн.
Есть старая притча о трёх слепцах и слоне. Первый слепец ощупывает бивень слона и говорит, что чувствует что-то гладкое и твёрдое. Второй держится за ногу и описывает что-то шероховатое и мускулистое. Третий слепец держит слона за хвост и говорит о чём-то гибком и хилом. Слыша описания других слепцов, каждый из них думает, что держится за другое животное. Много лет физики были столь же слепы и думали, что разные теории струн действительно являются разными. Но теперь, благодаря второй революции в теории суперструн, наступило прозрение, и они поняли, что все пять теорий струн являются частями тела одного огромного «слона» — M-теории.
В этой главе мы обсудили, как изменилось наше понимание теории струн при выходе за рамки теории возмущений, неявно использовавшейся в предыдущих главах. На рис. 12.9 подведён итог тем взаимосвязям, которые обсуждались до этого момента. Стрелками на этом рисунке обозначены дуальные теории.
Рис. 12.9. Стрелки обозначают отношения дуальности для теорий
Видно, что мы имеем паутину взаимосвязей, но она соткана ещё не полностью. Включая дуальности из главы 10, можно довести дело до конца.
Вспомним о дуальности, возникающей при замене радиуса циклического измерения R на радиус 1/R. Выше мы слегка сгладили один аспект этой дуальности, но теперь его нужно рассмотреть подробнее. В главе 10 обсуждались свойства струн во вселенной с одним циклическим измерением; при этом не указывалось конкретно, с какой из пяти теорий струн мы работаем. Как утверждалось, взаимная замена колебательных мод струны на топологические позволяет переформулировать описание (в рамках теории струн) вселенной с циклическим измерением радиуса 1/R в терминах вселенной с циклическим измерением радиуса R. Факт, который был нами опущен, состоит в том, что теории струн типов IIA и IIB, а также теории E- и O-гетеротических струн в действительности не переходят сами в себя, а меняются местами при замене радиусов. Поэтому применительно к этим теориям точная формулировка дуальности при замене радиусов такова: законы физики в теории струн типа IIA во вселенной с циклическим измерением радиуса R идентичны законам физики в теории струн IIB во вселенной с циклическим измерением радиуса 1/R. Аналогичное утверждение справедливо для теорий E- и O-гетеротических струн. На выводах главы 10 такая формулировка не отражалась, но в данном обсуждении она играет важную роль.
Дело в том, что с учётом дуальности при замене радиусов в теориях струн типов IIA и IIB, а также с учётом той же дуальности для теорий O- и E-гетеротических струн можно достроить до конца паутину взаимосвязей, как показано на рис. 12.10 пунктирными линиями.
Рис. 12.10. С учётом дуальностей, включающих геометрию пространства-времени (как в главе 10) все пять теорий вместе с M-теорией связываются воедино паутиной дуальностей
Видно, что все пять теорий, а также M-теория, дуальны друг другу. Все они скреплены в единую теоретическую конструкцию и дают пять разных подходов для описания одной и той же физики, лежащей в основе этой формулировки. Для различных приложений может быть более удобным язык той или иной теории. Например, с теорией O-гетеротических струн в случае слабой связи работать гораздо удобнее, чем с теорией струн типа I в случае сильной связи. Тем не менее эти теории описывают одни и те же физические явления.
Общая панорама
Теперь становятся более понятными рис. 12.1 и 12.2, приведённые в начале этой главы для иллюстрации важнейших черт теории. Как видно из рис. 12.1, до 1995 г., в отсутствие каких-либо сведений о дуальности, было пять не связанных между собой теорий. Над каждой из них работало много физиков, но без привлечения аргументов о дуальных свойствах эти теории казались различными. У каждой теории был свой набор характеристик: своя константа связи, геометрическая структура, радиусы свёрнутых измерений и т. д. Физики надеялись (и продолжают надеяться) на то, что фундаментальные свойства должны определяться в рамках самой теории. Однако, не имея возможности определить их при помощи известных приближённых уравнений, теоретики, естественно, начали исследовать физические свойства во всех возможных диапазонах. Это показано на рис. 12.1, где каждая точка затушёванной области соответствует конкретному выбору константы связи и геометрии свёрнутых измерений. Без учёта дуальности при этом всё равно оставалось пять несвязанных (наборов) теорий.
Но сейчас, когда рассмотренные выше дуальности учтены, при изменении констант связи и геометрии можно переходить от одной теории к другой, если при этом включить в анализ и объединяющую их центральную область — M-теорию (рис. 12.2). И хотя наши познания в области M-теории очень скудны, приведённые косвенные соображения дают веские аргументы в пользу того, что M-теория является основой объединения пяти на первый взгляд различных теорий струн. Более того, выясняется, что M-теория тесно связана с шестой теорией — 11-мерной супергравитацией. Это отражено на рис. 12.11, более точном варианте рис. 12.2.[44]
Рис. 12.11. С учётом дуальностей все пять теорий струн, 11-мерная супергравитация и M-теория сливаются вместе в единую схему
Как показано на рис. 12.11, несмотря на то, что сегодня фундаментальные идеи и уравнения M-теории ещё мало исследованы, они объединяют все формулировки теории струн. Могущественная M-теория указала физикам дорогу к новой и гораздо более глубокой единой формулировке.
Когда на территории одного из пяти полуостровов на теоретической карте рис. 12.11 константа связи струны мала, фундаментальный объект в этой теории выглядит как одномерная струна. Сейчас, однако, у нас появилась новая точка зрения. Если начать двигаться из области E-гетеротических струн или струн типа IIA, увеличивая значения соответствующих констант связи, то постепенно мы сместимся к центру карты рис. 12.11, и объекты, казавшиеся одномерными струнами, начнут вытягиваться, превращаясь в двумерные мембраны. Более того, в результате более сложной последовательности преобразований дуальности, включающих как изменения констант связи струн, так и изменения вида свёрнутых измерений, можно беспрепятственно перейти из любой точки на рис. 12.11 к любой другой её точке. А так как двумерные мембраны, которые мы открыли, рассматривая E-гетеротические струны и струны типа IIA, нам будут сопутствовать при переходе к любой из трёх других формулировок, мы приходим к выводу, что двумерные мембраны на самом деле присущи любой из пяти формулировок теорий струн.
Возникают два вопроса. Во-первых, являются ли двумерные мембраны подлинно фундаментальными объектами теории струн? Во-вторых, если вспомнить о смелом рывке от нульмерных точечных частиц к одномерным струнам в 1970-х и начале 1980-х гг. и учесть только что обсуждённые результаты о существовании двумерных мембран в теории струн, возможно ли, что в теории присутствуют объекты старших размерностей? На момент написания этой книги точные ответы ещё не известны, но ситуация, похоже, следующая.
Чтобы разобраться в каждой из формулировок теории струн, не прибегая к теории возмущений, теоретики во многом опирались на принципы суперсимметрии. В частности, характеристики БПС-состояний, массы и заряды частиц в этих состояниях, однозначно определяются суперсимметрией, и это позволило понять некоторые свойства теории в области сильной связи без необходимости проведения прямых вычислений невообразимой сложности. На самом деле, благодаря пионерским работам Хоровица и Строминджера, а также последующей замечательной работе Польчински, о БПС-состояниях мы знаем даже больше. В частности, нам не только известны их заряды и массы, но имеется ясное представление о том, как эти состояния выглядят. И последнее, возможно, самое удивительное. Некоторые из БПС-состояний — одномерные струны. Другие представляют собой двумерные мембраны. Пока все действующие лица знакомы. И вот — сюрприз: некоторые состояния трёхмерны, четырёхмерны,… На самом деле диапазон возможных пространственных размерностей включает все значения до девяти включительно. Теория струн или теория, которую сейчас называют M-теорией (какое бы окончательное название ей ни дали), в действительности содержит протяжённые объекты целого ряда пространственных измерений. Протяжённые трёхмерные объекты физики назвали 3-бранами, протяжённые четырёхмерные — 4-бранами, и так далее до 9-бран (в общем случае для протяжённого объекта, имеющего p пространственных измерений, физики придумали не очень благозвучный термин p-брана). Иногда, используя эту терминологию, струны называют 1-бранами, а мембраны — 2-бранами. Тот факт, что все эти протяжённые объекты являются равноправными объектами теории, побудил Пола Таунсенда провозгласить «демократию бран».
Несмотря на «демократию бран», струны, т. е. протяжённые одномерные объекты, всё-таки уникальны по следующей причине. Физики показали, что массы протяжённых объектов любой размерности, кроме одномерных струн, обратно пропорциональны значению соответствующей константы связи струны, если мы работаем в рамках любой из пяти теорий струн на рис. 12.11. Это означает, что в пределе слабой связи во всех пяти формулировках все объекты, кроме струн, будут иметь огромные массы, на порядки превышающие планковскую. Поэтому из формулы E = mc2 следует, что для их рождения потребуются огромные энергии, и они будут оказывать ничтожное влияние на законы физики (но не на все, как будет показано в следующей главе). Однако если двигаться вглубь от полуостровных областей на рис. 12.11, то браны старших размерностей станут легче, и будут играть всё более важную роль.
Таким образом, следует представлять себе такую картину: в центральной области на рис. 12.11 фундаментальными объектами теории являются не только струны и мембраны, а «браны» различных размерностей, и все они более или менее равноправны. Сейчас у нас нет ясного понимания многих свойств этой богатой теории. Одно мы знаем твёрдо: при движении от центральной области в сторону любого из полуостровов только струны или свёрнутые мембраны в обличье струн (рис. 12.7 и 12.8) оказываются достаточно лёгкими, чтобы сохраниться и привести к известной нам физике — частицам из табл. 1.1 и четырём типам взаимодействий. Подход теории возмущений, который физики использовали почти два десятилетия, был недостаточно гибок для того, чтобы выявить существование протяжённых объектов огромной массы и других размерностей. Центральным объектом анализа были струны, и теория получила далеко не демократическое название теории струн. Отметим ещё раз, что в этих областях рис. 12.11 для большинства исследований можно с полным основанием пренебречь всеми объектами, кроме струн. По существу, в предыдущих главах этой книги мы так и поступали. Однако сейчас мы видим, что теория оказалась в действительности богаче, чем кто-либо ранее предполагал.
И да, и нет. Нам удалось достичь более глубокого понимания, освободившись от некоторых выводов, которые, как стало ясно теперь, были следствиями использования теории возмущений, а не истинных принципов теории струн. Однако в настоящее время методы, позволяющие работать вне рамок теории возмущений, весьма ограничены. Открытие замечательной системы дуальных связей позволяет глубже постичь теорию струн, но многие вопросы остаются неразрешёнными. Например, мы ещё не знаем, как выйти за рамки приближённых уравнений для определения значения константы связи струны. Как обсуждалось выше, эти уравнения слишком грубые, чтобы из них можно было извлечь хоть какую-то полезную информацию. Нет у нас и существенных продвижений по вопросам о том, почему протяжённых пространственных измерений именно три или каким должен быть точный вид многообразия для свёрнутых измерений. Для ответа на эти вопросы нужны более отточенные инструменты исследований вне рамок теории возмущений, чем те, которыми мы сегодня обладаем.
То, что действительно появилось, — это гораздо более глубокое понимание логической структуры и исследовательского диапазона теории струн. До открытий, итог которым подведён на рис. 12.11, поведение каждой теории струн в области сильной связи было полной загадкой. Как на средневековых картах, царство сильной связи было белым пятном, на которое, сообразно фантазии картографа, наносились изображения драконов и морских чудовищ. Но сейчас мы видим, что хотя путешествие в это царство может завести нас в неизведанные просторы M-теории, в конце концов мы снова выйдем в курортную зону слабой связи, где говорят на дуальном языке другой теории струн, ранее считавшейся совершенно непохожей.
Дуальность и M-теория объединяют пять теорий струн, подталкивая к важному выводу. Может оказаться и так, что нас больше не поджидают удивительные открытия, сравнимые с описанными выше. Как только картограф обозначил все точки на глобусе Земли, глобус готов, и география исчерпана. Это не означает, что разведка местности в Антарктиде или на необитаемых островах в Микронезии лишены всякой научной или культурной ценности. Это означает лишь, что век географических открытий подошёл к концу. И свидетельством тому — отсутствие белых пятен на карте. «Теоретическая карта» на рис. 12.11 имеет для теоретиков, занимающихся струнами, такое же значение. Она покрывает все сферы теории, в которые можно попасть, отправляясь из области любой из пяти формулировок струн. И хотя нам далеко до полного понимания неизведанной M-теории, на карте нет белых пятен. Как и картограф, теоретик может теперь со сдержанным оптимизмом заявить, что весь спектр логически обоснованных теорий, вбирающих в себя все важные открытия прошлого века — специальную и общую теории относительности, квантовую механику, калибровочные теории сильного, слабого и электромагнитного взаимодействий, суперсимметрию, дополнительные измерения Калуцы и Клейна, — уже нанесён на карту рис. 12.11.
Задача струнного теоретика (возможно, его уже нужно называть M-теоретиком) — показать, что некая точка на теоретической карте рис. 12.11 действительно описывает нашу Вселенную. Чтобы осуществить это, нужно найти исчерпывающие и точные уравнения, решения которых позволили бы поймать эту неуловимую точку на карте, а затем добиться понимания соответствующих физических явлений, достаточного для сравнения с экспериментом. По словам Виттена, «понимание того, чем в действительности является M-теория, т. е. какую физику она несёт в себе, повлияет на наше понимание природы не менее сильно, чем любое из главных научных потрясений прошлого».[45] В этом суть программы построения объединённой теории в XXI в.
Глава 13. Чёрные дыры с точки зрения теории струн и M-теории
Чёрные дыры и элементарные частицы
Противоречия между общей теорией относительности и квантовой теорией, существовавшие до эры теории струн, были оскорблением наших врождённых эстетических представлений о том, что законы природы должны складываться в безупречно стройную и целостную систему. Но суть этих противоречий не сводилась к вопиющему несоответствию абстрактных принципов. Существовавшие в момент Большого взрыва и существующие сейчас внутри чёрных дыр экстремальные физические условия нельзя объяснить без помощи квантовой формулировки гравитационного взаимодействия. С появлением теории струн появилась и надежда устранить глубокий антагонизм между квантовой теорией и гравитацией. В этой и следующей главах мы опишем, насколько далеко удалось продвинуться физикам в понимании чёрных дыр и проблемы происхождения Вселенной.