Стратегические игры. Доступный учебник по теории игр Диксит Авинаш
c) Если оставить контракт для типа 1 как в пункте а, при каком диапазоне контрактов (пар «образование / заработная плата») для типа 2 может быть достигнуто разделение?
d) Какой, по вашему мнению, из всех возможных разделяющих контрактов получит приоритет?
e) Кто выиграет или проиграет из-за асимметричности информации? В какой степени?
U12. «Господин Робинсон фактически приходит к выводу, что бизнес-школы — это своего рода инструменты отсева: степень MBA есть не что иное, как профсоюзный билет для яппи. Но, пожалуй, самый важный факт о Стэнфордской школе бизнеса состоит в том, что весь серьезный отсев происходит еще до начала первого занятия. В стенах учебного заведения не проводится грязная работа по прополке сорняков. “Они не хотят тебя проваливать. Они хотят, чтобы после выпуска ты со временем разбогател и пожертвовал своей альма-матер кучу денег”. Однако здесь возникает вопрос: если компании перекладывают на приемную комиссию Стэнфордской школы бизнеса ответственность за подбор молодых менеджеров, почему бы им просто не заменить сотрудников своего отдела управления персоналом членами приемной комиссии Стэнфорда и исключить это фиктивное образование? Неужели сам факт выбрасывания больших денег и двух лет жизни демонстрирует ту приверженность бизнесу, которую работодатели находят столь привлекательной?» (Из рецензии Майкла Льюиса на книгу Питера Робинсона Snapshots from Hell: The Making of an MBA («С “Поляроидом” в аду: как получают MBA»), опубликованной в разделе «Книжное обозрение» газеты New York Times 8 мая 1994 года.) Какой ответ на вопрос Льюиса вы можете дать с учетом анализа стратегий в ситуациях с асимметрией информации?
U13 (дополнительное упражнение; необходимо ознакомиться с приложением). Налоговый инспектор анализирует последнюю налоговую декларацию Ванды (см. упражнение S10), в которой она сообщает, что у нее выдался плохой год. Предположим, Ванда применяет равновесную стратегию и налоговый инспектор это знает.
a) С помощью правила Байеса найдите вероятность того, что у Ванды был хороший год, при условии, что в налоговой декларации указано обратное.
b) Объясните, почему вероятность, полученная в пункте а, больше или меньше исходной вероятности хорошего года, составляющей 0,6.
U14 (дополнительное упражнение; необходимо ознакомиться с приложением). Вернитесь к упражнению S14. Предположим (вполне обоснованно), что вероятность поломки «лимона» повышается с увеличением пройденного пути. В частности, пусть q = m / (m + 500), где m — длина пути в милях.
a) Найдите минимальное целое количество миль m, позволяющее предотвратить крах рынка «апельсинов». Другими словами, при каком минимальном значении m продавец «апельсина» готов его продать по рыночной цене на автомобили марки Citrus, успешно совершившие поездку? (Подсказка: не забудьте вычислить fуточ. и pуточ..
b) Какое минимальное целое количество миль m позволит добиться полного разделения действующих рынков сбыта «апельсинов» и «лимонов»? То есть при каком минимальном значении m владелец «лимона» так и не решится совершить такую поездку?
Приложение. Отношение к риску и теорема Байеса
В главе 2 мы указали на трудности с использованием вероятностей для вычисления среднего или ожидаемого выигрыша игроков в той или иной игре. Рассмотрим игру, участники которой получают или теряют деньги; предположим, выигрыш в ней равен определенной сумме. Если вероятность не получить ничего составляет 75 %, а вероятность получить 100 долларов — 25 %, то ожидаемый выигрыш рассчитывается как взвешенное по вероятности среднее; иными словами, он равен среднему значению различных выигрышей, рассчитанному с использованием вероятности в качестве веса. В данном случае мы имеем 0 долларов с вероятностью 75 %, что дает в среднем 0,75 0 = 0, и 100 долларов с вероятностью 25 %, что дает в среднем 0,25 100 = 25. Этот же выигрыш игрок получил бы в результате неслучайного исхода, гарантирующего ему 25 долларов каждый раз, когда он играет. Считается, что люди нейтральны по отношению к риску, если для них не имеет значения, что выбирать из различных вариантов с одинаковой денежной стоимостью, но разным уровнем риска. В нашем примере в одном варианте риск отсутствует (игрок получит 25 долларов в любом случае), тогда как другой вариант сопряжен с риском, обеспечивая 0 долларов с вероятностью 0,75 и 100 долларов с вероятностью 0,25, с тем же средним показателем 25 долларов. С другой стороны, есть люди, не расположенные к риску, то есть те, кто из двух вариантов с одинаковой средней денежной стоимостью выберет менее рискованный. В нашем примере они предпочли бы получить 25 долларов наверняка, чем сталкиваться с рискованной перспективой «100 долларов или ничего», и при наличии возможности выбора остановились бы на более безопасном варианте. Такая нерасположенность к риску встречается повсеместно, поэтому нам нужна теория принятия решений в условиях неопределенности, учитывающая этот факт.
В главе 2 мы также говорили, что незначительное изменение процедуры вычисления выигрышей позволяет обойти эту трудность. Мы сказали, что выигрыши можно измерять не в денежных суммах, а с помощью нелинейной шкалы денежных сумм. В данном приложении мы покажем, как составить такую шкалу и почему это решает нашу проблему.
Предположим, когда человек получает D долларов, мы исходим из того, что его выигрыш составляет не просто D, а, например, D. Тогда выигрыш от 0 долларов равен 0, а выигрыш от 100 долларов равен 10. Такое преобразование не меняет способа оценки двух выигрышей в размере 0 долларов и 100 долларов, а просто определенным образом меняет шкалу выигрышей.
Теперь проанализируем рискованную перспективу получения 100 долларов с вероятностью 0,25 и отсутствия какого бы то ни было выигрыша в противном случае. После изменения шкалы ожидаемый выигрыш (представляющий взвешенное по вероятности среднее двух выигрышей) составляет (0,75 0) + (0,25 10) = 2,5. Он эквивалентен квадратному корню из полученной денежной суммы. Поскольку 2,5 = 625, выигрыш человека, который наверняка получит 6,25 доллара, также составит 2,5. Другими словами, в случае применения шкалы выигрышей в виде квадратного корня человек был бы одинаково рад получить 6,25 доллара наверняка и 100 долларов с вероятностью 25 процентов. Подобное безразличие к гарантированным 6,25 доллара и 100 долларам в одном из четырех случаев свидетельствует о сильной нерасположенности к риску: этот человек готов пожертвовать разностью между 25 долларами и 6,25 доллара ради того, чтобы его избежать. На рис. 8П.1 показана эта нелинейная шкала (квадратный корень), ожидаемый выигрыш и безразличие человека к выбору между беспроигрышным и рискованным вариантом развития событий.
Рис. 8П.1. Вогнутая шкала: нерасположенность к риску
Но что если нелинейная шкала, используемая нами для изменения шкалы долларовых выигрышей, содержит кубический, а не квадратный корень? Тогда выигрыш от получения 100 долларов равен 4,64, а ожидаемый выигрыш от рискованного варианта составляет (0,75 0) + (0,25 4,64) = 1,16, то есть кубический корень из 1,56. Следовательно, человек с такой шкалой выигрышей наверняка получит только 1,56 доллара вместо рискованного варианта, обеспечивающего ему в среднем 25 долларов. Это означает, что у такого человека действительно очень высокий уровень нерасположенности к риску. (Для того чтобы понять, почему ситуация обстоит именно так, сравните график кубического корня из x с графиком квадратного корня из x.)
А что если изменение шкалы выигрышей, исчисляемых в x долларов, выполнить с помощью функции x2? Ожидаемый выигрыш от рискованного варианта составит (0,75 0) + (0,25 10 000) = 2500, что равно 50 в квадрате. Стало быть, при такой шкале выигрышей человеку будет безразлично, получит ли он 50 долларов в любом случае или рискнет с ожидаемой денежной стоимостью всего 25 долларов. Этот человек должен быть склонен к риску, поскольку не желает отдавать деньги в обмен на его снижение; напротив, ему необходимо дать дополнительных 25 долларов в качестве компенсации за потерю риска. На рис. 8П.2 изображена нелинейная шкала, которой соответствует функция x2.
Рис. 8П.2. Выгнутая шкала: склонность к риску
Таким образом, использование разных вариантов нелинейной шкалы выигрышей вместо чистых денежных выигрышей позволяет определить разные степени неприятия риска или склонности к нему. Вогнутая шкала (рис. 8П.1) соответствует нерасположенности к риску, а выгнутая (рис. 8П.2) — склонности к риску. Вы можете поэкспериментировать с другими простыми вариантами нелинейной шкалы (такими как логарифмы, экспоненциальные функции и другие корни и степени), чтобы выяснить, что они говорят об отношении к риску[148].
Этот метод оценки рискованных перспектив имеет давнюю традицию в теории принятия решений и обозначается термином «метод ожидаемой полезности». Нелинейная шкала, которая позволяет вычислить выигрыши как функцию денежной стоимости, называется функцией полезности; квадратный и кубический корни и квадрат — простые примеры такой функции. Математическое ожидание, или взвешенное по вероятности среднее значений полезности различных денежных сумм при случайном варианте развития событий, называется ожидаемой полезностью этого варианта. Различные случайные варианты сравниваются друг с другом по их ожидаемой полезности; варианты с более высокой ожидаемой полезностью считаются более приемлемыми чем варианты с более низкой ожидаемой полезностью.
Почти вся теория игр основана на методе ожидаемой полезности, и он действительно чрезвычайно полезен, хотя и не лишен недостатков. Мы возьмем его на вооружение в данной книге, а более подробный анализ оставим для научных трудов повышенного уровня сложности[149].
Когда участники игры владеют разным объемом информации, они попытаются использовать какой-то инструмент для выяснения личной информации соперника. Как мы говорили в разделе 3 данной главы, иногда непосредственная коммуникация позволяет достичь равновесия дешевого разговора. Но более типична ситуация, когда игрокам приходится определять информацию соперников посредством наблюдения за их действиями. В таком случае они должны оценить вероятность исходной информации с помощью этих действий или их наблюдаемых последствий. Такая оценка требует относительно сложных манипуляций с правилами исчисления вероятностей, и мы изучим этот процесс более подробно.
Правила вычисления вероятности событий, изложенные в приложении к главе 7, в частности правило определения комбинации вероятностей, весьма полезны для вычисления выигрышей в случаях, когда игроки располагают разным объемом информации. В играх с асимметричной информацией участники пытаются выяснить информацию, имеющуюся у соперников, посредством наблюдения за их действиями и последующих выводов (оценивания) вероятности исходной информации на основе наблюдаемых действий или их результатов.
Лучше всего это проиллюстрировать на примере. Предположим, у 1 % населения есть генетический дефект, который может вызвать определенное заболевание. Тест, позволяющий обнаружить этот дефект, имеет 99 % точности: при наличии дефекта тест не сможет его выявить в 1 % случаев, а при отсутствии может ошибочно найти в 1 % случаев. Другими словами, мы не можем непосредственно наблюдать этот дефект у человека (исходное условие), но можем наблюдать результаты теста на его наличие (последствия) — вот только тест не идеальный индикатор дефекта. В какой степени, учитывая наши наблюдения, мы можем быть уверены, что исходное условие действительно выполняется?
Для того чтобы ответить на этот вопрос в контексте нашего конкретного примера, мы можем произвести простые численные расчеты. Рассмотрим совокупность из 10 000 человек, в которой у 100 человек (1 %) есть дефект, а у 9900 — нет. Предположим, все они пройдут тест. Из 100 человек с дефектом тест даст правильный положительный результат у 99 человек. Из 9900 человек без дефекта тест покажет ошибочный положительный результат тоже у 99 человек. Итого будет получено 198 положительных результатов, из которых половина правильные и половина неправильные. Если человек получит положительный результат теста, это может произойти как потому, что тест действительно выявил патологию, так и по причине ошибки. Следовательно, риск того, что у человека с положительным результатом теста на самом деле есть дефект, составляет всего 50 %. (Именно поэтому тесты на обнаружение редких патологий необходимо разрабатывать так, чтобы они обеспечивали очень низкий коэффициент получения ложных положительных результатов.)
Для ответа на общие вопросы такого типа мы используем алгебраическую формулу под названием «теорема Байеса», которая позволяет поставить задачу и произвести необходимые вычисления. Для этого обобщим наш пример, допустив два варианта исходных условий, A и B (скажем, есть генетический дефект или нет), и два наблюдаемых последствия, X и Y (например, положительный или отрицательный результат теста). Предположим, что при отсутствии информации (по всей популяции) вероятность выполнения условия А равна p, а значит, вероятность выполнения условия B составляет (1 — p). В случае выполнения условия A вероятность наблюдения X равна a, стало быть, вероятность наблюдения Y составляет (1 — a). (В терминах, сформулированных нами в приложении к главе 7, a — это вероятность X при условии A, тогда как (1 — a) — это вероятность Y при условии A.) Аналогичным образом при выполнении условия B вероятность наблюдения X равна b, а вероятность наблюдения Y — (1 — b).
Это описание указывает на возможные четыре альтернативные комбинации событий: 1) выполняется A, наблюдается X; 2) выполняется A, наблюдается Y; 3) выполняется B, наблюдается X; 4) выполняется B, наблюдается Y. Модифицированное правило умножения позволяет определить вероятности этих четырех комбинаций: pa, p(1 — a), (1 — p)b и (1 — p)(1 — b) соответственно.
Теперь предположим, что наблюдается X: человек проходит тест на наличие генетического дефекта и получает положительный результат. Тогда мы фокусируемся на подмножестве вышеперечисленных возможностей, а именно на первой и третьей комбинации, включающих в себя наблюдение X. В этом подмножестве исходов с наблюдаемым X вероятность того, что A также выполняется, составляет pa, как показано выше. Таким образом, нам известно, с какой вероятностью мы можем наблюдать только X и с какой вероятностью — как X, так и A.
Но нас больше интересует определение вероятности того, что A выполняется при условии, что мы наблюдали X, то есть что у человека есть генетический дефект в случае положительного результата теста. Вычисление этой вероятности довольно сложное. Согласно модифицированному правилу умножения, вероятность того, что имеет место как A, так и X, равна произведению вероятности того, что имеет место X, на вероятность A при условии X. Нас интересует именно эта последняя вероятность. Воспользовавшись выведенными выше формулами для вычисления «A и X» и «только X», получим
Prob(A и X) = Prob(только X) Prob(A при условии X),
pa = [pa + (1 — p)b] Prob(A при условии X),
Формула дает оценку вероятности того, что A выполнялось при условии, что мы наблюдали X (и поэтому поставили все в зависимость от этого факта). Этот результат известен как теорема Байеса (а также как правило, или формула, Байеса).
В нашем примере с тестированием на наличие генетического дефекта были такие значения: Prob(A) = p = 0,01, Prob(X при условии A) = a = 0,99 и Prob(X при условии B) = b = 0,01. Мы можем подставить их в формулу Байеса и получим вероятность наличия дефекта при условии положительного результата теста = Prob(A при условии X)
Алгебраические операции с вероятностями, проведенные с помощью правила Байеса, подтверждают результат арифметических вычислений (основанных на перечислении всех возможных случаев), которые мы использовали выше. Преимущество формулы состоит в том, что ее можно применять механически, что позволяет избежать трудоемкого и подверженного ошибкам процесса перечисления всех возможных вариантов и определения всех необходимых вероятностей.
На рис. 8П.3 правило Байеса представлено в виде таблицы, так его легче запомнить и использовать, чем формулу. В строках таблицы отображаются истинные альтернативные условия, которые могут существовать, например «генетический дефект» и «отсутствие генетического дефекта». У нас всего два варианта, A и B, но этот метод можно обобщить на любое количество возможных исходов. В столбцах таблицы отображаются наблюдаемы события — например, «положительный результат теста» и «отрицательный результат теста».
Рис. 8П.3. Правило Байеса
В каждой ячейке таблицы представлена совместная вероятность соответствующей комбинации исходного условия и наблюдения; это и есть вероятности перечисленных выше четырех комбинаций возможных вариантов. В последнем столбце справа отображена сумма по первым двум столбцам каждой из верхних двух строк. Она представляет собой общую вероятность каждого истинного условия (так, например, вероятность A равна p, как мы уже видели). В последней строке отображена сумма первых двух строк в каждом столбце. Например, запись в последней строке столбца X — это общая вероятность наблюдения X, либо когда A — истинное условие (правильный положительный результат в примере с генетическим тестом), либо когда B — истинное условие (ошибочный положительный результат).
Для того чтобы вычислить вероятность того или иного условия с учетом определенного наблюдения, согласно правилу Байеса, необходимо взять запись из ячейки, соответствующей комбинации этого условия и наблюдения, и разделить данное значение на сумму по столбцу в последней строке этого наблюдения. В качестве примера можно привести
Prob(B при условии X) = (1 — p)b / [pa + (1 — p)b].
Оценка последствий на основании ожидаемых денежных выигрышей подразумевает нейтральное отношение к риску. Нерасположенность к риску можно учесть с помощью метода ожидаемой полезности, который требует использования функции полезности, представляющей вогнутую шкалу денежных выигрышей, а также принятия взвешенного по вероятности среднего значения в качестве меры ожидаемого выигрыша.
Если участники игры располагают асимметричной информацией, они могут попытаться вывести вероятности скрытых исходных условий посредством наблюдения за действиями или их последствиями. Теорема Байеса предоставляет формулу для определения таких вероятностей.
Нейтральное отношение к риску
Нерасположенность к риску
Ожидаемая полезность
Теорема Байеса
Функция полезности
Глава 9. Стратегические ходы
* * *
Игра определяется вариантами выбора, или ходами, доступными игрокам, и порядком (при его наличии) их выполнения, а также выигрышами, полученными в результате всех возможных комбинаций вариантов выбора, имеющихся у всех игроков. В главе 6 мы наблюдали, как изменение порядка ходов с последовательного на одновременный (или наоборот) может повлиять на исход игры. Использование или исключение доступных игроку ходов или изменение выигрышей в некоторых концевых узлах или ячейках таблицы игры также может сказаться на исходе игры. Если правила игры не зафиксированы извне, у каждого игрока есть стимул манипулировать ими, с тем чтобы обеспечить более выгодный для себя результат. Инструменты, позволяющие манипулировать игрой таким способом, называются стратегическими ходами; это и есть тема данной главы.
Стратегический ход меняет правила исходной игры в целях создания новой двухэтапной игры. В этом смысле стратегические ходы подобны прямому обмену информацией, рассмотренному в главе 8. Но в случае их применения второй этап и есть исходная игра, зачастую с некоторыми изменениями порядка ходов и выигрышей (в играх с непосредственной коммуникацией таких изменений нет). Различные действия, выполняемые на первом этапе, соответствуют разным стратегическим ходам; мы их разделим на три категории: обязательства, угрозы и обещания. Цель всех трех — изменить исход второго этапа игры в свою пользу. Какая из этих категорий согласуется с вашей целью, зависит от контекста. Но самое главное — все три категории обеспечивают требуемый результат, только если другой игрок убежден, что на втором этапе вы действительно сделаете то, о чем заявили на первом. Иными словами, достоверность стратегического хода находится под вопросом. Только достоверный стратегический ход может обеспечить требуемый результат, и, как мы убедились в главе 8, простых заявлений для этого недостаточно. На первом этапе вы должны предпринять ряд дополнительных действий, обеспечивающих достоверность заявленных вами действий на втором этапе игры. Мы проанализируем оба типа действий второго этапа, приносящих вам пользу, а также дополнительные ходы, которые делают их заслуживающими доверия.
По всей вероятности, вы знакомы с применением достоверных стратегических ходов в большей степени, чем вам кажется. Например, родители постоянно пытаются контролировать поведение детей, используя угрозы («никакого десерта, пока не съешь овощи») и обещания («в конце учебного года получишь новый гоночный велосипед, если заработаешь хотя бы средний балл»). Детям прекрасно известно, что многие из этих угроз и обещаний недостоверны: ребенок может избежать наказания за плохое поведение, мило пообещав больше этого не делать, даже если такое обещание не заслуживает доверия. Кроме того, когда дети взрослеют и начинают беспокоиться по поводу своей внешности, они дают себе слово заниматься физическими упражнениями и придерживаться правильного режима питания, но многие из этих обязательств тоже лишены достоверности. Все эти инструменты (обязательства, угрозы и обещания) — примеры стратегических ходов. Их цель — изменить действия другого игрока (возможно, даже вашего собственного будущего «я») на более позднем этапе игры. Однако они не достигнут поставленной цели, если не будут достоверными. В этой главе мы используем теорию игр, чтобы узнать, как применять такие стратегии и как сделать их достоверными.
Но имейте в виду, обеспечение достоверности — весьма тонкая и трудная задача. Мы предлагаем вам ряд общих принципов и общее понимание того, как работают стратегические ходы, то есть науку о стратегии. Но сможете ли вы действительно заставить их работать, зависит от адекватной оценки соответствующего контекста, причем ваш соперник может получить преимущество перед вами, если лучше поймет концепции, или этот контекст, или и то и другое. Следовательно, практическое применение стратегических ходов во многом сродни искусству. Кроме того, оно сопряжено с риском, особенно при использовании стратегии балансирования на грани, которая порой способна привести к катастрофе. Вы можете добиться успеха и хорошо провести время, пытаясь применить все эти идеи на практике, но примите к сведению наше предостережение: вы будете использовать такие стратегии на свой страх и риск.
1. Классификация стратегических ходов
Поскольку использование стратегических ходов в значительной мере зависит от порядка ходов, для их изучения необходимо уяснить, что означает «сделать первый ход». До сих пор мы считали эту концепцию самоочевидной, но теперь она требует уточнения. Данная концепция имеет две составляющие: во-первых, ваше действие должно поддаваться наблюдению другим игроком, во-вторых, оно должно быть необратимым.
Рассмотрим стратегическое взаимодействие между двумя игроками, А и Б, в котором игрок А ходит первым. Если действие игрока А не поддается наблюдению игроком Б, то игрок Б не может на него отреагировать, а значит, хронология действий сама по себе не имеет значения. Например, предположим, что А и Б — это компании, принимающие участие в аукционе. В понедельник в компании А проводится тайное совещание, чтобы определить размер своей заявки на торгах; компания Б проводит такое совещание во вторник. Запечатанные конверты с заявками отсылают по почте организатору торгов, и тот открывает их в пятницу. Когда компания Б принимает решение, она не знает о решении компании А, а следовательно, со стратегической точки зрения ходы обеих компаний такие же, как если бы они были одновременными.
Если бы ход игрока А был обратимым, то он мог бы сделать вид, что делает что-то одно, спровоцировать игрока Б на ответное действие, а затем изменить свое действие с выгодой для себя. Игрок Б должен предвидеть подобную уловку и не поддаваться на провокацию; в таком случае он не ответит на выбор игрока А. И снова в сугубо стратегическом смысле игрок А не делает первый ход.
Такие факторы, как наблюдаемость и необратимость, влияют на характер и типы стратегических ходов, а также на их достоверность. Мы начнем с систематизации стратегических ходов, доступных игрокам.
Предположим, именно игрок А делает стратегический (наблюдаемый и необратимый) ход на первом этапе игры. Он может заявить: «В предстоящей игре я выполню ход X». Это заявление говорит о том, что будущий ход игрока является безусловным, то есть игрок А сделает его независимо от действий игрока Б. Подобное заявление (если оно достоверно) равносильно изменению порядка игры на втором этапе таким образом, что игрок А ходит первым, а игрок Б — вторым, причем ход игрока А — это X. Данный стратегический ход называется обязательством.
Если правила игры на втором этапе уже предписывают игроку А сделать первый ход, тогда это заявление не играет никакой роли. Но если на втором этапе игры ходы делаются одновременно или игрок А должен ходить вторым, то такое заявление (в случае его достоверности) может изменить ее исход, поскольку меняет убеждение игрока Б в отношении последствий его действий. Следовательно, обязательство — это простое использование преимущества первого хода в случае, если таковое существует.
В игре «уличный сад» из главы 3 три женщины играют в игру с последовательными ходами, в которой каждая решает, вносить ли ей вклад в создание общественного сада на их улице; при этом для посадки красивого сада требуется вклад двух или более игроков. Анализ методом обратных рассуждений показывает, что первая участница игры (Эмили) предпочитает не вносить вклад, тогда как две ее соседки (Нина и Талия) его внесут. Однако взяв на себя достоверное обязательство не вносить вклад, Талия (или Нина) могла бы изменить исход игры. Хотя Талия и не может объявить о своем решении до тех пор, пока Эмили и Нина не огласят свои, она могла бы поставить всех в известность, что вложила все свои сбережения (и энергию) в крупный проект по ремонту дома, поэтому у нее совсем не осталось средств на сад. В таком случае Талия, по сути, возьмет на себя обязательство не вносить вклад независимо от выбора Эмили и Нины еще до того, как они его сделают. Другими словами, Талия меняет исходную игру на такую, в которой она, по сути, делает первый ход. Вы можете без труда проверить, что новый анализ методом обратных рассуждений дает такой результат: Эмили и Нина внесут вклад в создание сада; при этом равновесный выигрыш каждой из них составит 3, тогда как Талии — 4. Такой равновесный исход в игре может быть получен, если Талия ходит первой. Несколько более подробные примеры обязательств рассматриваются в следующих разделах.
На первом этапе игрок А может также заявить: «В предстоящей игре я отвечу на ваш выбор следующим образом: если вы выберете Y1, я выберу Z1, если вы сыграете Y2, то я Z2… То есть игрок А может применить ход, зависящий от действия игрока Б; мы называем такой тип ходов правилом ответа или функцией реакции. Заявление игрока А означает, что, хотя на втором этапе игры он будет ходить вторым, то, как именно он ответит на действия игрока Б в этот момент, уже предопределено его заявлением на первом этапе. Для того чтобы подобные заявления были значимыми, у игрока А должна быть физическая возможность повременить с выполнением хода на втором этапе до тех пор, пока он не увидит необратимый ход игрока Б. Иными словами, на втором этапе игрок Б должен иметь возможность сделать истинный первый ход в том смысле, о котором говорилось выше.
Условные стратегические ходы принимают разные формы в зависимости от того, на достижение какой цели они направлены и как должны обеспечить ее реализацию. Когда игрок А хочет помешать игроку Б что-то сделать, мы говорим, что игрок А пытается удержать игрока Б от совершения соответствующего действия, или обеспечить сдерживание. Когда игрок А хочет склонить игрока Б что-то сделать, мы говорим, что игрок А пытается принудить игрока Б к совершению соответствующего действия, или добиться принуждения. Мы вернемся к различию между этими ходами позже. А пока нас больше интересует метод, используемый для достижения любой из этих целей. Когда игрок А заявляет: «Если ваше действие (или бездействие, в зависимости от обстоятельств) не будет соответствовать моему желанию, я отвечу на это способом, который причинит вам вред», — это угроза. Когда игрок А говорит: «Если ваше действие (или бездействие, в зависимости от обстоятельств) будет соответствовать моему желанию, я отвечу на это способом, который обеспечит вам вознаграждение», — это обещание. «Вред» и «вознаграждение» оцениваются с точки зрения выигрышей в самой игре. Когда игрок А наносит вред игроку Б, он совершает действие, снижающее выигрыш игрока Б; когда игрок А вознаграждает игрока Б, он совершает действие, увеличивающее выигрыш игрока Б. Угрозы и обещания — два условных стратегических хода, на которых мы сфокусируем наш анализ.
Для того чтобы понять природу этих стратегий, рассмотрим ранее упомянутую игру «обед». В ней при естественном хронологическом порядке ходов ребенок сперва решает, съесть ли ему овощи, после чего родитель решает, давать ли ребенку десерт. Анализ методом обратных рассуждений показывает нам исход игры: ребенок отказывается есть овощи, зная, что родитель все равно даст ему десерт. Однако родитель, предвидя подобный исход, может попытаться изменить его, сделав начальный ход, а именно сформулировав правило условного ответного хода так: «Никакого десерта, пока не съешь овощи». Это заявление таит в себе угрозу. Это первый ход перед началом игры, который закрепляет ваш второй ход в предстоящей игре. Если ребенок вам поверит, это изменит его обратные рассуждения. В итоге он отсечет ту ветвь дерева игры, в которой родитель даст ему десерт, даже если он не съест овощи. Это может изменить поведение ребенка; родитель надеется, что это заставит ребенка вести себя в соответствии с его указаниями. Точно так же в игре «учеба» обещание купить велосипед может стимулировать ребенка учиться более усердно.
2. Достоверность стратегических ходов
Мы уже видели, что стратегический ход одного игрока может изменить выигрыши другого игрока, а как насчет выигрышей того, кто делает этот ход? Игрок А получает более высокий выигрыш, когда игрок Б действует в соответствии с его пожеланиями. Однако ответное действие игрока А может повлиять и на его собственный выигрыш. Что касается угрозы, ответное действие игрока А на отказ игрока Б сделать то, что хотел бы игрок А, может иметь определенные последствия и для выигрышей самого игрока А: родителя может расстроить вид несчастного ребенка, которому отказали в десерте. Аналогично обещание игрока А вознаградить игрока Б за выполнение действия, соответствующего его пожеланию, может повлиять на выигрыш игрока А: родителю, который вознаграждает ребенка за усердную учебу, придется потратить деньги на подарок, но зато радость ребенка от его получения доставит радость и родителю, что еще больше усиливает радость от успехов ребенка в школе.
Влияние стратегических ходов игрока А на его выигрыши влечет за собой одно важное следствие с точки зрения их эффективности. Рассмотрим в данном контексте угрозу. Если выигрыш игрока А действительно увеличивается в результате выполнения действия, которым он угрожает, то игрок Б приходит к выводу, что игрок А выполнит свою угрозу, даже если игрок Б удовлетворит его требования. Это лишает игрока Б стимула подчиняться желаниям игрока А, поэтому угроза А становится неэффективной. Например, если родитель — садист, которому нравится видеть страдания ребенка, оставшегося без десерта, ребенок рассуждает так: «Я все равно не получу сладкого, так зачем мне есть овощи?»
Таким образом, важным аспектом угрозы является то, что выполнение соответствующего действия должно дорого обходиться игроку, выдвигающему ее. В игре «обед» родитель должен предпочесть дать ребенку десерт. Угрозы в истинном стратегическом смысле, как правило, имеют определенные последствия и для высказывающего их человека, стало быть, их суть сводится к нанесению взаимного вреда.
В техническом отношении угроза закрепляет вашу стратегию в предстоящей игре. Стратегия должна оговаривать, что вы будете делать в случае каждого возможного варианта развития событий, присутствующего на дереве игры. Следовательно, фраза «никакого десерта, пока не съешь овощи» — не полное описание стратегии, и его следует дополнить фразой «и получишь десерт, если съешь овощи». В большинстве угроз вторая часть не озвучивается. Почему? Потому что она подразумевается автоматически, по умолчанию. Но для того чтобы угроза возымела действие, вторая часть стратегии (в данном случае подразумеваемое обещание) тоже должна быть автоматически достоверной.
Таким образом, угроза «никакого десерта, пока не съешь овощи» содержит подразумеваемое обещание «и получишь десерт, если съешь овощи». И чтобы оно возымело желаемый эффект, оно также должно быть достоверным. В нашем примере его достоверность подтверждается автоматически, когда родитель предпочитает видеть, как ребенок наслаждается десертом. Другими словами, подразумеваемое обещание автоматически воспринимается как достоверное именно потому, что выполнение угрозы обойдется родителю дорого.
Если сформулировать эту ситуацию несколько иначе, то угроза содержит такую оговорку: если обстоятельства сложатся так, что вам придется совершить определенное действие в случае, если ваше желание не будет выполнено, вы будете сожалеть об этом. Тогда зачем делать эту оговорку на первом этапе? Зачем связывать себе этим руки, тогда как, казалось бы, было бы лучше оставить себе свободу выбора? Дело в том, что в теории игр наличие большего количества вариантов не всегда предпочтительно. Что касается угрозы, отсутствие свободы выбора на втором этапе игры имеет стратегическое значение, поскольку это меняет ожидания другого игрока в отношении ваших будущих ответных действий и вы можете использовать такое изменение ожиданий себе во благо.
Аналогичный эффект возникает и в случае обещания. Если ребенок знает, что родителям нравится дарить ему подарки, он может рассчитывать на получение гоночного велосипеда по какому-либо иному поводу — например, на день рождения. Но в такой ситуации обещание подарить велосипед не усиливает мотивацию ребенка усерднее учиться. Для того чтобы обещание дало желаемый стратегический эффект, вознаграждение должно быть достаточно дорогостоящим, чтобы другой игрок не надеялся получить его в любом случае. (Это важный урок в плане применения стратегий, на который вы можете указать своим родителям: обещанное ими вознаграждение должно быть более крупным и дорогостоящим, чем то, что они подарили бы вам исключительно ради удовольствия видеть вас счастливыми.)
То же касается и безусловных стратегических ходов (обязательств). Например, во время переговоров другие участники знают, что если у вас есть свобода действовать, то есть и возможность капитулировать, так что обязательство «никаких уступок» позволит вам добиться более выгодной сделки. Если вы хотите получить 60 % «пирога», а другая сторона предлагает вам 55 %, у вас может возникнуть соблазн согласиться. Но если вы сумеете заранее достоверно заявить, что не примете меньше 60 %, такого искушения у вас не возникнет и в итоге вы сможете добиться большего.
Следовательно, сама природа стратегических ходов такова, что постфактум (то есть когда этого потребует игра на втором этапе) вы не захотите выполнять ранее заявленное действие. Это верно в отношении всех типов стратегических ходов, и именно это делает достоверность столь проблематичной. Для того чтобы ваш стратегический ход оказался эффективным, вы еще на первом этапе игры должны что-то предпринять для обеспечения достоверности — то, что покажет сопернику: вы ни при каких обстоятельствах не отступите от оговоренного действия. Именно поэтому отказ от свободы действий может быть стратегически выгоден. С другой стороны, достоверности можно достичь посредством изменения своих выигрышей на втором этапе игры таким образом, что выполнение заявленного действия становится для вас действительно оптимальным.
Стало быть, существует два общих способа обеспечить достоверность стратегических ходов: 1) исключить из набора будущих действий ходы, которые могут вызвать у вас искушение предпринять их; 2) уменьшить свои выигрыши от таких ходов с тем, чтобы оговоренный ход действительно был наилучшим. В следующих разделах мы прежде всего проанализируем принцип действия стратегических ходов, исходя из их достоверности, и по мере их изучения будем делать некоторые комментарии по поводу достоверности, однако ее общий анализ отложим до последнего раздела главы.
3. Обязательства
В главе 4 мы изучили игру в труса и нашли в ней два равновесия Нэша в чистых стратегиях. Каждый игрок предпочитает равновесие, в котором он едет прямо, а соперник сворачивает[150]. В главе 6 мы увидели, что если бы это была игра с последовательными, а не одновременными ходами, то игрок, делающий ход первым, выбрал бы «ехать прямо», предоставив другому игроку возможность извлечь из сложившейся ситуации максимальную пользу, применив стратегию «свернуть» и тем самым избежав столкновения. Теперь рассмотрим этот вопрос с иной позиции. Хотя сама игра сводится к одновременному выполнению ходов, если один игрок сможет сделать стратегический ход (создать первый этап, на котором он делает достоверное заявление о своем действии непосредственно в игре в труса, разыгрываемой на втором этапе), он получит такое же преимущество, как и при выполнения первого хода, взяв на себя обязательство действовать жестко (выбрать вариант «ехать прямо»).
Хотя это достаточно простая идея, мы проведем формальный анализ данной ситуации, что поможет вам углубить ее понимание и развить навыки, которые пригодятся в дальнейшем для анализа более сложных примеров. Вспомним, что герои игры Джеймс и Дин. Предположим, возможность сделать стратегический ход есть у Джеймса. (Дерево двухэтапной игры показано на рис. 9.1.) На первом этапе Джеймс должен решить, брать ли на себя обязательство. Согласно верхней ветви, исходящей из первого узла, он его не берет. В результате на втором этапе разыгрывается игра с одновременными ходами, таблица которой уже вам знакома по рис. 4.13 и рис. 6.6. В этой игре множество равновесий, но Джеймс получает максимальный выигрыш только в одном из них. Вторая ветвь дерева отображает ситуацию, когда Джеймс берет на себя обязательство, под которым в данном случае подразумевается его отказ от свободы выбора в том смысле, что стратегия «ехать прямо» остается для него единственно возможной на данном этапе. Таким образом, таблица игры на втором этапе содержит только одну строку Джеймса, соответствующую заявленному им выбору варианта «ехать прямо». Согласно этой таблице, наилучший ход Дина — «свернуть»; стало быть, такое равновесие обеспечивает Джеймсу максимальный выигрыш. Следовательно, на первом этапе Джеймс считает оптимальным взять на себя обязательство; этот стратегический ход гарантирует ему максимальный выигрыш, тогда как при отсутствии обязательства ситуация остается неопределенной.
Рис. 9.1. Игра в труса: обязательство в виде ограничения свободы действий
Как Джеймсу сделать это обязательство достоверным? Как и любой первый ход, на котором игрок связывает себя обязательством, он должен быть: 1) необратимым; 2) видимым для других игроков. Нам предлагали ряд экстремальных и забавных идей. Джеймс может отсоединить руль автомобиля и выбросить его в окно так, чтобы Дин видел, что Джеймс больше не может свернуть в сторону. (Джеймс мог бы просто привязать руль так, чтобы его нельзя было повернуть, но тогда ему было бы труднее продемонстрировать Дину, что руль действительно привязан и узел невозможно быстро развязать.) Такие уловки позволяют исключить вариант «свернуть» из совокупности стратегий, доступных Джеймсу на втором этапе игры, оставляя «ехать прямо» как единственное действие, которое он может предпринять.
Более правдоподобный сценарий выглядит так. Если эти игры еженедельно проводятся по выходным, Джеймс может создать себе репутацию храбреца, которая будет выступать гарантией его действий в любой день. Иными словами, Джеймс может изменить свой выигрыш от выбора варианта «свернуть», если вычтет из него величину, отражающую потерю репутации. Если эта величина достаточно большая (скажем, 3), то в игре на втором этапе, когда Джеймс берет на себя обязательство, таблица выигрышей будет другой. Полное дерево этой версии игры представлено на рис. 9.2.
Рис. 9.2. Игра в труса: обязательство в виде изменения выигрышей
Теперь, на втором этапе игры, для Джеймса, связавшего себя обязательством, вариант «ехать прямо» становится поистине оптимальным; фактически это его доминирующая стратегия на данном этапе. Соответственно, оптимальная стратегия Дина — «свернуть». Заранее предвидя этот исход на этапе 1, Джеймс понимает, что получит выигрыш 1, связав себя обязательством (изменив свои выигрыши на этапе 2), тогда как без обязательства он не может быть уверен в выигрыше 1 и получит гораздо худший результат. Таким образом, анализ методом обратных рассуждений показывает, что Джеймсу следует взять на себя обязательство.
В игру с обязательствами могут сыграть оба игрока (или все игроки), поэтому успех будет зависеть как от скорости, с которой вы сможете использовать преимущество первого хода, так и от достоверности, с которой вы сумеете сделать этот ход. Если два игрока делают наблюдения с задержкой, они рискуют связать себя несовместимыми обязательствами: каждый отсоединит руль и выбросит его в окно, тут же увидев руль, вылетающий из окна соперника, как следствие — столкновение неизбежно.
Даже если у одного из игроков есть преимущество во взятии обязательства, другой может сорвать его попытку это сделать, демонстративно исключив возможность «увидеть» обязательство первого игрока, например, прервав с ним все контакты.
Возможно, игра в труса — это анахронизм 1950-х годов, но наш второй пример более универсален и хорошо знаком. Преподаватель во время занятий может использовать две стратегии в отношении соблюдения сроков сдачи студенческих работ — мягкость или жесткость, при этом студенты могут уложиться в сроки или нет. На рис. 9.3 эта игра представлена в стратегической форме. Преподавателю не нравится быть жестким; для него лучший исход (с выигрышем 4) — когда студенты сдают работы вовремя, даже если он с ними не слишком строг, а худший (выигрыш 1) — когда он со студентами предельно принципиален, а они все равно задерживают сдачу. Из двух промежуточных стратегий преподаватель, осознавая важность пунктуальности, предпочитает «жесткость»/«вовремя» «мягкости» / «с опозданием». Студенты отдают предпочтение исходу «мягкость» / «с опозданием», позволяющему им почти все выходные развлекаться и при этом не понести никакого наказания за задержку работ. Худший вариант для студентов — «жесткость»/«вовремя», как и для преподавателя. Что касается промежуточных исходов, то они предпочитают «мягкость» / «с опозданием» варианту «жесткость»/«вовремя», поскольку у них повышается самооценка, когда они считают, что сдали работу вовремя по собственной воле, а не из-за угрозы наказания[151].
Рис. 9.3. Таблица выигрышей для игры в соблюдение сроков
Если игра проводится как игра с одновременными ходами или если преподаватель делает второй ход, его доминируемой стратегией становится «мягкость» и тогда студент выбирает «с опозданием». Равновесный исход представляет собой комбинацию стратегий «мягкость» / «с опозданием», а выигрыши составляют 2, 4. Однако преподаватель может добиться более благоприятного исхода, изначально связав себя обязательством придерживаться стратегии «жесткость». Мы не приводим здесь дерево этой игры, как делали на рис. 9.1 и рис. 9.2, поскольку оно очень похоже на дерево предыдущей игры в труса, и предоставляем вам возможность построить его самостоятельно. Без обязательства игра на втором этапе протекает так же, как и раньше, и преподаватель получает выигрыш 2. Когда преподаватель связан обязательством вести себя жестко, студенты понимают, что им лучше ответить стратегией «вовремя» на втором этапе, поэтому выигрыш преподавателя составит 3.
Преподаватель берет на себя обязательство совершить действие, отличающееся от того, что он бы сделал в игре с одновременными ходами, или от его наилучшего второго хода в случае, если бы сначала ходили студенты. Именно здесь на первый план выходит стратегическое мышление. Преподаватель ничего не выиграет, заявив, что будет придерживаться мягкой стратегии; студенты в любом случае рассчитывают на это и без заявлений. Для того чтобы добиться преимущества посредством выполнения стратегического хода, он должен связать себя обязательством не придерживаться стратегии, которая была бы равновесной в игре с одновременными ходами. Такой стратегический ход меняет ожидания студентов, а значит, и их действия. Как только они поверят в то, что преподаватель не шутит, они предпочтут уложиться в сроки выполнения заданий. Если бы студенты решили это проверить, сдав работы с опозданием, у преподавателя могло бы возникнуть искушение их простить, придумав себе в оправдание нечто вроде «только на этот раз». Именно существование соблазна отступить от взятого на себя обязательства делает его достоверность проблематичной.
Еще более неожиданно, что в данном случае преподавателю выгодно сделать стратегический ход, обязывающий его придерживаться доминируемой стратегии. Он связывает себя обязательством применить стратегию «жесткость», которая доминируема стратегией «мягкость». Если вы считаете парадоксальной ситуацию, в которой можно извлечь пользу из выбора доминируемой стратегии, значит, вы расширяете концепцию доминирования за надлежащие рамки ее применимости. Доминирование подразумевает любое из следующих двух предположений: 1) как я отреагирую на действие другого игрока и будет ли тот или иной вариант выбора наилучшим (или наихудшим) с учетом всех возможностей; 2) если другой игрок одновременно выполняет действие X, что для меня предпочтительнее (или хуже всего) и будет ли оно одним и тем же в случае всех действий X, которые может предпринять другой игрок? Ни одно из этих рассуждений не имеет значения, если вы ходите первым. Вместо этого вы должны заглянуть вперед и проанализировать вероятную реакцию другого игрока. Следовательно, преподаватель не сравнивает свои выигрыши в вертикальных смежных ячейках таблицы (с учетом возможных действий студентов по одному за раз), а вместо этого анализирует, как студенты отреагируют на его ходы. Если он связал себя обязательством придерживаться стратегии «жесткость», студенты будут придерживаться стратегии «вовремя», а если преподаватель привержен стратегии «мягкость» (или вообще не свяжет себя никакими обязательствами), они выберут «с опозданием». Следовательно, единственное уместное сравнение — верхняя правая и нижняя левая ячейки, из которых преподаватель предпочтет вторую.
Для того чтобы обязательство преподавателя было достоверным, оно должно касаться всего, что должен представлять собой первый ход. Во-первых, его необходимо взять до того, как другой игрок сделает свой ход. Преподаватель должен установить основные правила контроля за соблюдением сроков до того, как студенты получат задание. Во-вторых, обязательство должно быть наблюдаемым — студенты обязаны знать правила, которые следует соблюдать. Последнее и, пожалуй, самое важное: оно должно быть необратимым; студенты должны знать, что преподаватель ни при каких обстоятельствах не станет менять свою точку зрения и проявлять снисходительность. Преподаватель, который оставляет подобные лазейки и нечетко оговаривает непредвиденные ситуации, просто создает условия для изобретательных оправданий, которые сопровождаются неискренними извинениями и утверждениями «этого больше не повторится».
Преподаватель может обеспечить достоверность взятых на себя обязательств, сославшись на общие университетские правила, — это просто исключит вариант «мягкость» из совокупности стратегий, доступных ему на втором этапе игры. Или, как в случае игры в труса, он может создать себе репутацию жесткого человека, изменив свои выигрыши от стратегии «мягкость» посредством достаточно высоких издержек в связи с потерей репутации.
4. Угрозы и обещания
Обратите внимание, что угрозы и обещания — это правила ответа: ваше будущее фактическое действие зависит от того, что сделают другие игроки, но ваша свобода действий в дальнейшем ограничена обязательным соблюдением установленного правила. Еще раз повторяем: цель — изменить ожидания (а значит, и действия) других игроков с выгодой для себя. Связать себя правилом, которого вы не стали бы придерживаться при наличии полной свободы действий, — важный элемент данного процесса. Следовательно, первоначальное заявление о намерениях должно быть достоверным. На этот раз мы снова проанализируем ряд принципов обеспечения достоверности таких ходов, но хотим напомнить, что их фактическая реализация во многом остается искусством.
Вспомните классификацию стратегических ходов, представленную в разделе 1. Угроза — это правило ответа, приводящее к негативным последствиям для других игроков, если они действуют вопреки вашим интересам. Обещание — правило ответа, в соответствии с которым вы предлагаете обеспечить другим игрокам положительный исход, если их действия согласуются с вашими интересами. Каждый из этих ответов может либо удержать других игроков от действий, которые они стали бы делать (сдерживание), либо склонить их к действиям, которые они не совершили бы в противном случае (принуждение). Мы проанализируем эти свойства по очереди.
Наш пример связан с неизменной составляющей международной экономической политики США, а именно с торговыми трениями с Японией. Каждая страна может держать свои рынки либо открытыми, либо закрытыми для товаров другой страны. Но предпочтения двух стран относительно исходов этой игры несколько разнятся.
На рис. 9.4 представлена таблица выигрышей торговой игры. Для Соединенных Штатов наилучший исход (с выигрышем 4) — когда оба рынка открыты; это объясняется отчасти общей приверженностью США к рыночной системе и свободной торговле, а отчасти самими преимуществами от торговли с Японией: американские потребители получают высококачественные автомобили и бытовую технику, а производители США могут экспортировать сельскохозяйственную и высокотехнологичную продукцию. Худший исход для США (с выигрышем 1) — если оба рынка закрыты. Из двух исходов, в которых один рынок открыт, Соединенные Штаты предпочли бы, чтобы это был собственный рынок, поскольку японский рынок меньше, поэтому потеря доступа на него не столь важна, как потеря доступа к автомобилям Honda и видеоиграм.
Рис. 9.4. Таблица выигрышей в торговой игре между США и Японией
Что касается Японии, то в этом примере будем исходить из протекционистской, ориентированной на производителя торговой политики Японии, получившей в свое время прозвище Japan, Inc. Для Японии наилучший исход — когда рынок США открыт, а японский закрыт, а худший — когда складывается противоположная ситуация. Из двух оставшихся исходов Япония предпочитает тот, в котором оба рынка открыты, поскольку это обеспечивает ее производителям доступ к гораздо большему американскому рынку[152].
У обеих сторон есть доминирующие стратегии. Независимо от того, как проводится игра (одновременно или последовательно с любым порядком ходов), равновесный исход — «открытый американский рынок» / «закрытый японский рынок», а выигрыши 3, 4. Кроме того, такой исход соответствует общему представлению американцев о реальной торговой политике двух стран.
Япония уже получает свой лучший выигрыш в данном равновесии, поэтому ей не надо предпринимать каких бы то ни было стратегических ходов. А вот Соединенные Штаты могут побороться за выигрыш 4 вместо 3. Но в этом случае обычное безусловное обязательство не сработает. Каким бы оно ни было, наилучший ответ Японии — закрыть свой рынок. В таком случае для Соединенных Штатов лучше связать себя обязательством открыть свой рынок, а это и есть равновесие, полученное без всяких стратегических ходов.
Но допустим, США выберут следующее условное правило ответа: «Мы закроем свой рынок, если вы закроете свой». В результате мы получим двухэтапную игру, показанную на рис. 9.5. Если Соединенные Штаты не прибегнут к угрозе, второй этап будет таким же, как и раньше, и приведет к равновесию, в котором американский рынок останется открытым и США получат выигрыш 3, тогда как японский рынок будет закрыт и выигрыш Японии составит 4. Если Соединенные Штаты все же прибегнут к угрозе, то на втором этапе свобода выбора будет лишь у Японии; с учетом ее действий США просто предпримут действия, которых требует правило ответа. В связи с этим на данной ветви дерева мы отображаем только активного игрока и записываем выигрыши обеих сторон: если Япония закроет рынок, Соединенные Штаты также закроют, при этом США получат выигрыш 1, а Япония 2. Если Япония откроет рынок, значит, угроза Соединенных Штатов возымела действие, тогда США с радостью тоже откроют рынок и получат выигрыш 4, а Япония 3. Из этих двух сценариев второй для Японии предпочтительнее.
Рис. 9.5. Дерево торговой игры между США и Японией с применением угрозы
Теперь можем воспользоваться хорошо знакомым методом обратных рассуждений. Зная, какие результаты обеспечит второй этап во всех возможных случаях, Соединенным Штатам лучше применить угрозу на первом этапе. Она приведет к открытию Японией рынка, а США получат самый лучший исход.
Итак, описав механизм угрозы, теперь укажем на ряд ее важных свойств.
1. Когда Соединенные Штаты достоверно применят угрозу, Япония не будет следовать своей доминирующей стратегии «закрытый рынок». Еще раз напоминаем, что концепция доминирования применима только в контексте одновременных ходов или когда Япония делает второй ход. В данной ситуации Японии известно, что США предпримут действия, не соответствующие доминирующей стратегии. В таблице выигрышей у Японии только два варианта выбора — верхняя левая и нижняя правая ячейки, причем Япония отдаст предпочтение второму.
2. Достоверность угрозы проблематична, поскольку, если Япония попытается ее проверить и закроет рынок, у Соединенных Штатов возникнет соблазн отказаться от ее осуществления. Фактически, если бы действие, составляющее суть угрозы, было наилучшим ответом США постфактум, то не было бы необходимости заранее выдвигать эту угрозу (хотя США могли бы сделать предупреждение, чтобы убедиться, что японцы понимают сложившуюся ситуацию). Стратегический ход играет особую роль именно потому, что он заставляет игрока делать не то, что он хотел бы сделать на самом деле. Как говорилось ранее, выполнение угрозы в истинном стратегическом смысле обязательно должно дорого обходиться тому, кто ее выдвигает, а действие, составляющее суть угрозы, наносить взаимный вред.
3. Условное правило «Мы закроем свой рынок, если вы закроете свой» не полностью определяет стратегию США. Для того чтобы ее описание было полным, необходимо включить в него дополнительную оговорку о том, что именно предпримут Соединенные Штаты в ответ на открытый японский рынок: «…и откроем свой рынок, если вы откроете свой». Это дополнительное условие, представляющее собой подразумеваемое обещание, на самом деле часть угрозы, но его нет надобности формулировать в явном виде, поскольку его достоверность подтверждается автоматически. Учитывая выигрыши на втором этапе игры, в интересах США открыть рынок, если Япония откроет свой. Если бы это было не так, то есть если бы Соединенные Штаты ответили закрытием рынка даже при условии, что Япония откроет свой рынок, подразумеваемое обещание необходимо было бы сделать явным и каким-то образом обеспечить его достоверность. Иначе угроза США стала бы равносильна безусловному обязательству «Мы закроем свой рынок», что не вызвало бы требуемой реакции со стороны Японии.
4. Достоверное применение угрозы приводит к изменению действий Японии. Мы можем рассматривать это как сдерживание или принуждение, в зависимости от ситуации. Если японский рынок изначально открыт и японцы планируют переход к политике протекционизма, то угроза удержит их от этого действия. Но если японский рынок изначально закрыт, то угроза заставит их его открыть. Стало быть, будет стратегический ход сдерживающим или принуждающим, зависит от сложившегося положения вещей. Это различие может показаться вопросом семантики, но в действительности оно оказывает большое влияние на достоверность стратегического хода и способ его реализации. Мы вернемся к этому вопросу чуть ниже.
5. Вот несколько способов, позволяющих Соединенным Штатам сделать свою угрозу достоверной. Во-первых, США могут принять закон, требующий ее выполнения при определенных обстоятельствах. Это исключает действие, которое может стать соблазном для США, из совокупности доступных вариантов выбора на втором этапе. Такой результат обеспечивают некоторые положения о взаимности, содержащиеся в соглашениях Всемирной торговой организации, но используемые при этом процедуры очень медленные и неопределенные. Во-вторых, Соединенные Штаты могут делегировать полномочия по выполнению угрозы Министерству торговли США, находящемуся под влиянием американских производителей, ратующих за закрытие рынка США, чтобы тем самым ослабить конкурентное давление на себя. Это изменит выигрыши США на втором этапе (место истинных выигрышей США займут выигрыши Министерства торговли) и приведет к тому, что действие, составляющее суть угрозы, станет на самом деле оптимальным. (Опасность состоит в том, что Министерство торговли будет сохранять протекционистскую позицию, даже если Япония откроет рынок; а это означает, что обеспечение достоверности угрозы может обусловить потерю достоверности подразумеваемого обещания.)
6. Если угроза обеспечивает требуемый результат, ее не нужно приводить в исполнение. В действительности риск возможной ошибки в расчетах или в выполнении действия, составляющего суть угрозы, даже если другой игрок подчинится вашим требованиям, — веское основание воздержаться от использования более серьезных, чем необходимо, угроз. Для того чтобы выразить эту мысль в более резкой форме, Соединенные Штаты могли бы пригрозить выйти из оборонительного союза с Японией, если она откажется покупать американский рис и полупроводники, но эта угроза слишком «большая» и опасная, чтобы США вообще когда-либо воплотили ее в жизнь, поэтому она недостоверна. Если единственная возможная угроза кажется «слишком большой», игрок может уменьшить ее размер, поставив ее реализацию в зависимость от обстоятельств. Вместо того чтобы говорить Японии: «Если вы не откроете рынки, мы откажемся защищать вас в будущем», Соединенные Штаты могут сказать: «Если вы не откроете рынки, отношения между нашими странами ухудшатся до той степени, когда Конгресс может отказать вам в помощи, если на вас будет совершено нападение, даже несмотря на наличие соглашения». На самом деле Соединенные Штаты могут намеренно способствовать распространению таких настроений, которые повысят вероятность того, что Конгресс поступит именно так, с тем чтобы японцы острее ощутили возможную опасность. Подобная угроза, создающая риск, но не определенность неблагоприятного исхода, называется балансированием на грани. Это чрезвычайно тонкий и весьма опасный вариант стратегического хода. В главе 14 мы рассмотрим его подробнее.
7. Когда Соединенные Штаты прибегают к угрозе, Япония получает более неблагоприятный исход, чем при ее отсутствии, поэтому она хотела бы предпринять стратегические действия, предотвращающие попытки США использовать угрозу. Например, предположим, что в настоящее время японский рынок закрыт и США пытаются применить такой стратегический ход, как принуждение. Японцы в принципе могут уступить, но на практике пытаться сорвать план другой стороны, ссылаясь на неизбежные задержки в связи с формированием политического консенсуса, чтобы на законодательном уровне закрепить решение об открытии рынка, затем на промедление в связи с подписанием административных нормативных актов, необходимых для обеспечения выполнения соответствующего закона, и т. д. Поскольку Соединенные Штаты не спешат с выполнением своей угрозы, в каждом из этих случаев у них возникает соблазн принять такое промедление. Или Япония может заявить, что ее внутренняя политика не позволяет полностью открыть все рынки, поэтому не согласятся ли Соединенные Штаты на то, чтобы Япония защитила несколько отраслей своей промышленности? Затем Япония постепенно начнет расширять этот список, но предпринятого в какой-то момент небольшого дополнительного шага недостаточно для того, чтобы США развязали торговую войну. Такой способ преодоления принуждающей угрозы посредством мелких шагов, или «ломтик за ломтиком», называется тактикой салями.