Стратегические игры. Доступный учебник по теории игр Диксит Авинаш
a) Ходы делаются одновременно.
b) Бейкер ходит первым.
c) Катлер ходит первым.
d) Является ли эта игра дилеммой заключенных? Почему да или почему нет?
U2. Рассмотрим небольшой городок, жители которого очень любят пиццу, но в нем можно разместить только две пиццерии, Deep Dish Донны и Pizza Pies Пирса. Каждый торговец должен выбрать цену на свою пиццу, но для простоты предположим, что доступны только две цены: высокая и низкая. При высокой цене торговцы могут получить прибыль 12 долларов на одну пиццу, при низкой — 10 долларов. У каждой пиццерии есть круг лояльных клиентов, которые покупают 3000 штук пиццы в неделю независимо от назначенной пиццерией цены. Существует также плавающий спрос в размере 4000 пицц в неделю. Но их покупатели чувствительны к ценам и пойдут в заведение с более низкой ценой. Если обе пиццерии установят одинаковую цену, они разделят этот спрос пополам.
a) Составьте таблицу выигрышей для этой игры в ценообразование между пиццериями, воспользовавшись прибылью каждой пиццерии за неделю (в тысячах долларов). Найдите в игре равновесие Нэша и объясните, почему это дилемма заключенных.
b) Теперь предположим, что у Deep Dish Донны гораздо больше лояльных клиентов, которые гарантированно покупают 11 000 (а не 3000) пицц в неделю. Размер прибыли и уровень плавающего спроса остаются теми же. Составьте таблицу выигрышей в новой версии игры и найдите равновесие Нэша.
c) Как наличие более крупной базы лояльных клиентов у Deep Dish «решает» дилемму, возникшую у этих двух пиццерий?
U3. Городской совет состоит из трех членов, которые ежегодно голосуют за повышение собственной заработной платы. Для принятия такого решения требуются два голоса «за». Каждый член совета хотел бы повышения, но при этом ему выгоднее голосовать против, поскольку это бонус в глазах избирателей. Выигрыши каждого члена городского совета таковы:
решение о повышении принято, свой голос «против»: 10;
решение о повышении не принято, свой голос «против»: 5;
решение о повышении принято, свой голос «за»: 4;
решение о повышении не принято, свой голос «за»: 0.
Все три члена городского совета голосуют одновременно. Составьте трехмерную таблицу выигрышей и покажите, что в случае равновесия Нэша решение о повышении заработной платы не может быть единогласным. Проанализируйте, как повторяющееся взаимодействие между членами совета может обеспечивать им ежегодное повышение заработной платы, если 1) каждый член совета занимает эту должность на протяжении трех лет; 2) каждый год в рамках ротации один из них должен быть переизбран; 3) у горожан короткая память, поэтому они помнят результаты голосования о повышении заработной платы членов городского совета только за прошлый, но не за предыдущие годы.
U4. Рассмотрим игру, которую проводит нейтральный судья, разработанную Джеймсом Андреони и Хэлом Вэрианом из Мичиганского университета[178]. В ней участвуют два игрока — Строка и Столбец. Судья дает каждому из них две карточки: 2 и 7 Строке и 4 и 8 Столбцу. Эта информация доступна всем участникам игры. Затем игрокам, играющим одновременно и независимо друг от друга, предлагают отдать судье карточку либо с большим, либо с меньшим числом. Судья раздает выигрыши в долларах (взятых из общего фонда, а не из кармана игроков), размер которых зависит от того, какие карточки он собирает. Если Строка выберет карточку с меньшим числом 2, ее выигрыш составит 2 доллара; если Строка отдаст карточку с большим числом 7, тогда Столбец получит 7 долларов. Если Столбец отдаст карточку с меньшим числом 4, то он получает 4 доллара; если Столбец выберет карточку с большим числом 8, то Строка получит 8 долларов. Выигрыши от других вариантов сочетаний карточек показаны в таблице выигрышей.
a) Покажите, что полная таблица выигрышей в этой игре выглядит следующим образом.
b) Найдите равновесие Нэша в этой игре. Определите, будет ли она дилеммой заключенных.
Теперь предположим, что игра состоит из следующих этапов. Судья раздает карточки, как и раньше, и информация о них известна всем. На этапе 1 каждый игрок из собственного кармана может выделить определенную сумму, которая будет храниться у судьи на счете условного депонирования; сумма может быть нулевой, но не отрицательной. Когда оба игрока сделают выбор на этапе 1, эта информация обнародуется. Далее на этапе 2 оба игрока снова выбирают карточки одновременно и независимо друг от друга. Судья раздает выигрыши из общего фонда, как и в случае одноэтапной игры. Кроме того, он распоряжается средствами, находящимися на счете условного депонирования, следующим образом. Если Столбец выберет карточку с большим числом, судья отдаст ему сумму, которую дала на хранение Строка; если Столбец выберет карточку с меньшим значением, выделенная Строкой сумма вернется к ней. Сумма, которую внес на счет условного депонирования Столбец, распределяется по аналогичному принципу, в зависимости от того, какую карточку выберет Строка. Эти правила известны всем участникам игры.
c) Найдите равновесие обратных рассуждений (совершенное равновесие подыгры) в этой двухэтапной игре. Решает ли оно дилемму заключенных? Какова роль счета условного депонирования?
U5. Компании Glassworks и Clearsmooth конкурируют на местном рынке ремонта ветровых стекол. Размер рынка (общий объем прибыли этих компаний) составляет 10 миллионов долларов в год. Каждая компания решает, размещать ли ей рекламу на местном телевидении. Если компания решит размещать рекламу в том или ином году, это обойдется ей в 3 миллиона долларов. Если одна компания разместит рекламу, а другая нет, то первая захватит весь рынок. Если рекламу разместят обе компании, они поделят рынок поровну. Если обе решат не размещать рекламу, они также поделят рынок поровну.
a) Допустим, обе компании знают, что будут конкурировать всего один год. Составьте матрицу выигрышей в этой игре. Найдите стратегии, образующие равновесие Нэша.
b) Предположим, компании играют в эту игру пять лет подряд и знают, что к концу пятилетнего периода обе планируют выйти из бизнеса. Найдите совершенное равновесие подыгры в этой игре из пяти периодов. Обоснуйте свой ответ.
c) В чем состояла бы стратегия «око за око» в игре, описанной в пункте b?
d) Представим, что компании будут играть в эту игру неопределенное время и что их будущая прибыль дисконтируется по ставке 20 % в год. Можете ли вы найти совершенное равновесие подыгры, обеспечивающее более высокие годовые выигрыши, чем равновесие, найденное в пункте b? Если да, объясните, какие стратегии в него входят. Если нет, обоснуйте свой вывод.
U6. Вернитесь к пиццериям Deep Dish Донны и Pizza Pies Пирса, о которых шла речь в упражнении U2. Предположим, они не ограничены выбором из двух возможных цен и могут выбрать конкретное значение цены, обеспечивающей максимальную прибыль. Допустим также, что приготовление одной пиццы обходится в 3 доллара (в каждой пиццерии), а опыт или результаты изучения рынка показали наличие такой зависимости между объемом продаж (Q) и ценой (P):
QПирс = 12 — PПирс + 0,5PДонна.
Тогда прибыль каждой компании за неделю (Y, в тысячах долларов) составит:
YПирс = (PПирс — 3)QПирс = (PПирс — 3)(12 — PПирс + 0,5PДонна),
YДонна = (PДонна — 3)QДонна = (PДонна — 3)(12 — PДонна + 0,5PПирс).
a) С помощью этих функций прибыли определите правило наилучших ответов каждой компании, как показано в главе 5, и используйте эти правила для поиска равновесия Нэша в данной игре. Какие цены выберут компании в случае равновесия? Какую прибыль получит каждая компания за неделю?
b) Если компании поддерживают сотрудничество и выбирают общую наилучшую цену P, то прибыль каждой компании составит:
YДонна = YПирс = (P — 3)(12 — P + 0,5P) = (P — 3)(12 — 0,5P).
Какую цену выберут компании, чтобы максимизировать общую прибыль?
c) Представим, что две пиццерии поддерживают повторяющееся взаимодействие, пытаясь сохранить рассчитанные в пункте b общие цены, максимизирующие прибыль. Они печатают новое меню каждый месяц, тем самым связывая себя обязательствами на весь этот период. На протяжении любого месяца одна из компаний может отказаться от этих обязательств. Если одна пиццерия сохранит цену на согласованном уровне, при какой цене другой выгоднее отказаться от дальнейшего сотрудничества? Какую прибыль получат обе пиццерии в итоге? При каких значениях процентной ставки сговор между ними будет устойчивым благодаря стратегии бесповоротного наказания?
U7. Давайте расширим анализ, представленный в упражнении S7, допустив возможность отказа от сотрудничества в триополии, построенной на сговоре. В упражнении S9 в главе 5 мы нашли основанный на равновесии Нэша исход игры в случае триополии на рынке производства танкеров класса VLCC, в состав которой входят Корея, Япония и Китай.
a) Теперь найдите исход этой игры, основанный на сговоре. То есть определите, какое количество танкеров VLCC должны выпускать три страны, чтобы обеспечить максимальную общую прибыль.
b) Предположим, в случае построенного на сговоре исхода игры, найденного в пункте а, эти три страны производят равное количество танкеров VLCC, а значит, каждая из них получает равную долю в общей прибыли. Какой будет прибыль каждой страны? Сравните ее с объемом прибыли, которую получит каждая страна в случае равновесия Нэша.
c) Теперь представим, что эти страны поддерживают повторяющееся взаимодействие. Один раз в год они определяют объем производства, причем каждая страна знает, сколько танкеров выпустили конкуренты в предыдущем году. Эти страны хотят сотрудничать, чтобы получать основанные на сговоре уровни прибыли, рассчитанные в пункте b. На протяжении любого года одна из стран может нарушить соглашение. Если две другие страны, как предполагается, должны обеспечить свою долю предусмотренного сговором результата, вычисленного в пунктах а и b, то какое количество танкеров лучше всего построить стране, отказавшейся от дальнейшего сотрудничества? Какую прибыль она в итоге получит, если выпустит оптимальное количество танкеров, тогда как две другие страны произведут столько, сколько было оговорено?
d) Безусловно, через год после отказа одной из стран от дальнейшего сотрудничества оба ее конкурента также его прекратят. Все три страны вернутся к исходу, основанному на равновесии Нэша (навсегда, в случае применения стратегии бесповоротного наказания). Какой выигрыш получит страна, переставшая сотрудничать с конкурентами, за один год отказа от основанного на сговоре исхода? Какие убытки понесет за каждый последующий год страна, отказавшаяся от сотрудничества, в связи с получением прибыли согласно равновесию Нэша, вместо прибыли, предусмотренной сговором?
e) При каких значениях процентной ставки сговор между тремя странами будет устойчивым благодаря стратегии бесповоротного наказания? Они выше или ниже значений, найденных в случае дуополии в пункте e упражнения S7? Почему?
Приложение. Бесконечные суммы
Для вычисления приведенной стоимости необходимо определить текущую стоимость суммы денег, которая будет получена в будущем. Как мы видели в разделе 2, приведенная стоимость суммы денег (скажем, суммы x), которая будет получена через n месяцев начиная с текущего момента, рассчитывается по формуле x / 1 + r)n, где r — соответствующая месячная норма прибыли. Однако суммарную приведенную стоимость суммы денег, которая будет получена в следующем месяце и в каждом последующем месяце в обозримом будущем, определить труднее. В этом случае платежи делаются на протяжении неопределенного периода, а значит, не существует заданного предела суммы значений приведенной стоимости, которую необходимо определить. Для того чтобы вычислить текущую стоимость такого потока платежей, нужно знать математические правила суммирования бесконечных рядов.
Рассмотрим игрока, который в текущем месяце получит прибыль 36 долларов за счет отказа от сотрудничества, а затем ежемесячно будет терять по 36 долларов в связи с дальнейшим выбором этой стратегии, за что соперник будет его наказывать (применяя стратегию равноценных ответных действий). За первый из будущих месяцев (первый месяц, на протяжении которого игрок понесет убытки и за который необходимо дисконтировать значения стоимости) приведенная стоимость убытка игрока составит 36/(1 + r); за второй будущий месяц — 36/(1 + r)2; за третий месяц — 36/(1 + r)3. Иными словами, за каждый из n будущих месяцев, на протяжении которых игрок будет нести убытки в связи с отказом от сотрудничества, его убыток составит 36/(1 + r)n.
Общую приведенную стоимость всех будущих убытков этого игрока можно записать в виде суммы с бесконечным количеством членов ряда
Эту же сумму можно записать с помощью специального обозначения со знаком суммы
Это выражение эквивалентно предыдущему и читается так: «Сумма от n равно 1 до n равно бесконечности дробей с 36 в числителе и (1 + r) в n-й степени в знаменателе». Поскольку 36 — это общий множитель (он присутствует во всех членах суммы), его можно вынести за знак суммы. Поэтому текущую стоимость можно записать так:
Теперь, чтобы вычислить фактическую приведенную стоимость, нам необходимо найти значение суммы, которая содержится в этом выражении для приведенной стоимости. Для этого упростим запись, подставив коэффициент дисконтирования вместо 1/(1 + r). Тогда сумма, оценка которой нас интересует, равна
Здесь важно отметить, что 1/(1 + r) < 1, поскольку значение r строго положительное.
Взглянув на последнюю сумму, специалист по бесконечным суммам[179] сказал бы, что она сходится к конечной величине /(1 + ). Такая сходимость обеспечивается за счет того, что все большие степени числа, меньшего 1 (в данном случае ), становятся все меньше и меньше, приближаясь к нулю по мере стремления n к бесконечности. При этом последние члены выражения, описывающего приведенную стоимость, уменьшаются до тех пор, пока не станут настолько маленькими, что весь ряд приблизится к определенному значению суммы, но сугубо формально никогда его не достигнет. Для того чтобы сделать вывод о том, что сходящееся значение суммы составляет /(1 + ), понадобятся более сложные математические выкладки. Тем не менее достаточно просто доказать, что это правильный ответ.
Чтобы доказать истинность нашего утверждения, мы используем один простой прием. Возьмем сумму первых m членов ряда и обозначим ее как Sm. Таким образом получим
Теперь умножим эту сумму на (1 — ), чтобы получить следующее выражение: (1 — )Sm = + 2 + 3 + … + m — 1 + m — 2 — 3 — 4 — … — m — m + 1 = — m + 1.
Разделив обе стороны на (1 — ), имеем
И наконец, возьмем предел этой суммы в случае приближения m к бесконечности, чтобы определить значение исходной бесконечной суммы. По мере стремления m к бесконечности значение m+1 приближается к нулю, поскольку очень большие и увеличивающиеся степени числа, меньшего 1, становятся все меньше, но остаются неотрицательными. Таким образом, когда m стремится к бесконечности, правая сторона представленного выше уравнения приближается к / (1 — ), а значит, это и есть предел Sm, когда m стремится к бесконечности. Что и требовалось доказать.
Для того чтобы использовать полученный ответ для вычисления значений текущей стоимости в играх с дилеммой заключенных, необходимо восстановить значение r. Поскольку = 1/(1 + r), из этого следует, что
В таком случае текущая стоимость бесконечного потока убытков в размере 36 долларов, понесенных в каждом месяце, начиная со следующего, составляет
Это и есть значение, использованное нами для определения того, стоит ли игроку навсегда отказываться от сотрудничества, в разделе 2. Обратите внимание, что введение вероятности продолжения p 1 в вычисление дисконтированных значений ничего не меняет в примененной здесь процедуре суммирования. В представленных выше вычислениях мы вполне могли бы подставить R вместо r, а p вместо коэффициента дисконтирования .
Не забывайте, что вам нужно искать приведенную стоимость только тех убытков (или прибылей), которые будут понесены (или получены) в будущем. Приведенная стоимость 36 долларов, потерянных сегодня, составляет просто 36 долларов. Следовательно, если бы вам потребовалось вычислить приведенную стоимость последовательности убытков по 36 долларов каждый, начиная с текущего дня, вы взяли бы 36 долларов, потерянных сегодня, и прибавили бы к ним приведенную стоимость последовательности убытков, понесенных в будущем. Мы только что вычислили, что она равна 36/r. Стало быть, приведенная стоимость последовательности убытков в размере 36 долларов, в том числе 36 долларов, потерянных сегодня, составила бы 36 + 36/r, или 36[(r + 1)/r], что эквивалентно 36/(1 — ). Аналогично, если бы вам понадобилось проанализировать последовательность значений прибыли игрока в случае применения определенной условной стратегии в дилемме заключенных, вам не нужно было бы дисконтировать объем прибыли, полученной за самый первый период; достаточно было бы дисконтировать только те показатели прибыли, которые представляют собой деньги, полученные в будущие периоды.
Глава 11. Коллективные игры
* * *
В играх и стратегических ситуациях, рассмотренных в предыдущих главах, как правило, участвовало всего два или три игрока, поддерживающих взаимодействие. Такие игры распространены в нашей академической, деловой, политической и личной жизни, а значит, их очень важно осмыслить и проанализировать. Тем не менее немало случаев социального, экономического и политического взаимодействия представляют собой стратегические ситуации с одновременным участием множества игроков. Стратегии построения карьеры, инвестиционные планы, маршруты передвижения на работу и обратно в часы пик и даже обучение — все это сопряжено с преимуществами и издержками, зависящими от действий многих людей. Если вы были в одной из этих ситуаций, то, скорее всего, ловили себя на мысли, что что-то здесь не так: например, слишком много студентов, инвесторов и пассажиров толпились именно там, куда нужно было и вам. Или наоборот: желающих поучаствовать в каком-либо благотворительном проекте оказывалось слишком мало, хотя вы и прилагали максимум усилий, чтобы их привлечь. Иными словами, игры со многими участниками, которые ведутся в обществе, часто приводят к результату, не удовлетворяющему большинство, а то и всех его членов. В данной главе мы рассмотрим такие игры с точки зрения уже разработанной нами теории. Это поможет вам понять, что именно в подобных играх идет не так и как с этим бороться.
В самом общем виде игры с участием множества игроков касаются проблем коллективного действия. Лучший способ достижения целей общества в целом или отдельного коллектива — выполнение их членами определенного действия или действий, хотя эти действия не всегда отвечают интересам отдельных людей. Иными словами, наиболее благоприятный для общества исход не обеспечивается автоматически в виде равновесия Нэша. Поэтому мы должны определить, как игра может быть изменена, чтобы она приводила к оптимальному исходу или как минимум улучшала неудовлетворительный исход в случае равновесия Нэша. Но для этого сперва следует понять природу таких игр. Их три типа, и вы с ними уже знакомы: дилемма заключенных, игра в труса и игра в доверие. Несмотря на то что в этой главе основное внмание уделяется играм с одновременным участием множества игроков, мы начнем с уже хорошо знакомых вам игр между двумя участниками.
1. Коллективные игры с двумя участниками
Представьте, что вы фермер и для вас и соседнего фермера несомненную пользу принесет строительство системы орошения и противопаводковой защиты. Вы можете объединить усилия по реализации этого проекта с соседом или сделать все самостоятельно. Однако после завершения строительства другой фермер автоматически извлечет из него выгоду. Другими словами, каждый из вас заинтересован переложить всю работу на другого. В этом и состоит суть вашего стратегического взаимодействия и проблема коллективного действия.
В главе 4 мы уже встречались с подобной игрой, когда каждая из трех соседок принимала решение об инвестициях в уличный сад, которым бы наслаждались все трое. Эта игра стала дилеммой заключенных, и все три ее участницы попытались уклониться от решения вносить вклад; в данной главе анализируется более общий диапазон возможных вариантов структуры выигрышей. Кроме того, в игре «уличный сад» мы оценивали ее исходы по шкале от 1 до 6; в процессе описания общих игр мы рассмотрим и более общие формы преимуществ и издержек в случае каждого игрока.
Наш ирригационный проект имеет две важные характеристики. Во-первых, его преимущества относятся к категории неисключаемых благ: человеку, который не внес вклад в его реализацию, нельзя помешать извлекать из него выгоду. Во-вторых, к категории неконкурентных благ: использование этих преимуществ одним человеком не мешает другому тоже ими пользоваться. Экономисты называют эти проекты чистым общественным благом; в качестве примера такого блага часто приводится национальная система обороны. Напротив, чистое частное благо — полностью исключаемое и конкурентное: тот, кто не платит за него, не может воспользоваться его преимуществами, а если такое благо получает один человек, больше к нему никто не имеет доступа. Буханка хлеба — хороший пример чистого частного блага. Большинство благ попадают в двумерный диапазон различных степеней исключаемости и конкурентности. Мы не будем углубляться в эту классификацию, но упомянули о ней, чтобы помочь вам соотнести наше обсуждение с тем, что вы можете встретить в других курсах и книгах[180].
Издержки и преимущества, связанные со строительством оросительной системы, так же как издержки и преимущества всех коллективных действий, зависят от того, кто принимает участие в проекте. В свою очередь, относительный объем затрат и выгод определяет структуру игры, которая при этом ведется. Предположим, каждый из вас в одиночку мог бы завершить проект за 7 недель, тогда как при объединении усилий это потребовало бы от каждого всего по 4 недели. Кроме того, качество проекта с участием двух человек выше; от его реализации в одиночку фермер получает выгоду, эквивалентную 6 неделям работы, тогда как совместная реализация обеспечивает каждому выгоду, эквивалентную 8 неделям работы.
В более общем плане мы можем выразить преимущества и издержки в виде функций от количества участников игры. Таким образом, ваши издержки в связи с решением строить оросительную систему зависят от того, будете вы это делать в одиночку или с чьей-то помощью. Стало быть, издержки можно записать как C(n), где C зависит от количества игроков n, участвующих в реализации проекта. Тогда C(1) — это ваши расходы в связи со строительством оросительной системы только своими силами, C(2) — вместе с соседом. В данном примере C(1) = 7, а C(2) = 4. Аналогичным образом выгода (B) от готовой оросительной системы может зависеть от числа участников (n) ее строительства. В нашем примере B(1) = 6, а B(2) = 8. Обратите внимание, что, учитывая характер проекта, обеспечивающего создание социального блага, преимущества каждого фермера одинаковы, независимо от степени участия в его реализации.
В данной игре каждый фермер должен решить, участвовать ему в строительстве оросительной системы или нет, то есть попытаться уклониться. (Предполагается, что работу необходимо выполнить в сжатые сроки, и вы могли бы сделать вид, что вас в последнюю минуту отвлекли какие-то важные семейные дела; так же может поступить и ваш сосед.) На рис. 11.1 представлена таблица выигрышей в этой игре, исчисляемых в неделях работы. Значения выигрышей определены на основании разности между издержками и преимуществами, связанными с каждым действием. Таким образом, выигрыш при выборе стратегии «строить» составит B(n) — C(n) при n = 1, если вы реализуете проект в одиночку, и n = 2, если ваш сосед также выберет «строить». Выигрыш от применения стратегии «не строить» равен просто B(1), если ваш сосед сыграет «строить», поскольку в случае отказа от участия в проекте вы не несете никаких издержек.
Рис. 11.1. Коллективное действие в контексте дилеммы заключенных: версия I
Учитывая структуру выигрышей, представленную на рис. 11.1, ваш наилучший ответ в случае, если сосед откажется участвовать в проекте, — также отказаться: ваш выигрыш от реализации проекта в одиночку (6) меньше понесенных вами издержек (7), то есть ваш чистый выигрыш составит 1, тогда как отказ от участия в проекте обеспечит выигрыш 0. Аналогичным образом, если ваш сосед решит участвовать в проекте, вы сможете извлечь для себя выгоду (6) из его работы без всяких затрат со своей стороны; для вас это лучше, чем работать самому, чтобы получить более крупное преимущество от проекта с участием двух человек (8), но при этом понести издержки в связи с выполнением работы (4), что обеспечивает чистый выигрыш 4. Общее свойство этой игры состоит в том, что для вас лучше не участвовать в строительстве оросительной системы, что бы ни сделал ваш сосед; та же логика справедлива и в его случае. (В данном примере каждый фермер выступает в качестве безбилетника — человека, который перекладывает всю работу на соседа, а затем все равно пожинает ее плоды.) Таким образом, «не строить» — доминирующая стратегия каждого игрока. Однако совместная работа над проектом принесла бы обоим фермерам больше пользы (выигрыш 4), чем в случае отказа от его реализации (выигрыш 0). Следовательно, это игра категории «дилемма заключенных».
В ней мы видим одну из основных проблем, возникающих в играх с коллективным действием. Выбор, оптимальный для каждого игрока в отдельности (в данном случае — не принимать участия в строительстве независимо от решения соседа), может не быть оптимальным с точки зрения всей группы, даже если эта группа состоит из двух фермеров. Социальный оптимум в игре с коллективным действием достигается, если общая сумма выигрышей ее участников максимизируется. В данной дилемме заключенных социальный оптимум сводится к исходу «строить» / «строить». Однако поведение игроков в соответствии с равновесием Нэша не всегда обеспечивает социально оптимальный исход. Именно поэтому изучение игр с коллективным действием сфокусировано на методах улучшения наблюдаемого (как правило, соответствующего равновесию Нэша) поведения в целях обеспечения наиболее благоприятных для всего общества исходов. Как мы увидим, противоречие между такими исходами, как равновесие Нэша и социальный оптимум, присутствует во всех версиях игр с коллективным действием.
Теперь давайте проанализируем, как будет выглядеть эта игра, если слегка изменить показатели. Предположим, что выгоды от проекта с участием двух человек ненамного превышают выгоды от проекта с участием одного человека: 6,3 недели работы для каждого фермера. При этом каждый получит 6,3–4 = 2,3, если оба решат строить. Полученные в итоге выигрыши представлены в таблице на рис. 11.2.Эта игра по-прежнему остается дилеммой заключенных и приводит к равновесному исходу «не строить» / «не строить». Тем не менее, если оба фермера решают строить, их общий выигрыш составит всего 4,6. Социальный оптимум наблюдается в случае, когда один из них принимает участие в строительстве, а другой нет, что обеспечивает обоим выигрыш 6 + (–1) = 5. Есть два возможных способа получить такой исход, но тогда достижение социального оптимума поднимает новую проблему: кто должен реализовывать проект и получить выигрыш 1, если другой может выступить в роли «безбилетника» и иметь выигрыш 6?
Рис. 11.2. Коллективное действие в контексте дилеммы заключенных: версия II
Еще одно изменение показателей исходной дилеммы заключенных (см. рис. 11.1) меняет сам характер игры. Допустим, издержки в связи с выполнением работы сократятся до уровня, при котором вам лучше самому построить систему орошения, если этого не сделает сосед. В частности, предположим, что реализация проекта одним человеком требует 4 недели работы, а значит, C(1) = 4, а двумя людьми — по 3 недели на каждого, то есть C(2) = 3 (для каждого участника проекта); преимущества те же, что и раньше. На рис. 11.3 представлена матрица выигрышей с учетом этих изменений. Теперь ваш наилучший ответ сводится к уклонению от выполнения работы, если ваш сосед работает, и работе, если сосед уклоняется от нее. По своей структуре эта игра напоминает игру в труса, где уклонение от работы равносильно стратегии «ехать прямо» (жесткая, или некооперативная, стратегия), а выполнение — стратегии «свернуть» (примирительная, или кооперативная, стратегия).
Рис. 11.3. Коллективное действие в контексте игры в труса: версия I
Если данная игра приведет к формированию одного из равновесий в чистых стратегиях, сумма выигрышей двух игроков составит 8, что меньше общего исхода, который они могли бы получить, если бы оба занялись строительством. Иными словами, ни одно из равновесий Нэша не обеспечивает всей группе такой выигрыш, как скоординированный исход, подразумевающий применение обоими фермерами стратегии «строить». Социальный оптимум дает общий выигрыш 10. Если исход этой игры в труса представляет собой равновесие в смешанных стратегиях, то два фермера окажутся в еще худшем положении, чем в случае любого из равновесий в чистых стратегиях: их общий выигрыш будет меньше 8 (а если точнее, 4).
Игра в труса, основанная на коллективном действии, может иметь еще одну структуру, если внести дополнительные изменения в выигрыши от реализации проекта. Как и в случае со второй версией дилеммы заключенных, допустим, что проект с участием двух человек ненамного лучше проекта с участием одного человека. Тогда каждый фермер получит от проекта с двумя участниками выгоду B(2), составляющую всего 6,3, а проект с участием одного человека по-прежнему обеспечит каждому из них выгоду B(1) = 6. Мы предлагаем вам применить полученные навыки и самостоятельно составить таблицы выигрышей в этой игре. Вы увидите, что это по-прежнему игра в труса (назовем ее игрой в труса II) и в ней, как и в предыдущей версии, есть два равновесия Нэша в чистых стратегиях, в каждом из которых только один фермер выбирает стратегию «строить», но сумма выигрышей в случае, если оба фермера выбирают «строить», равна всего 6,6, тогда как сумма выигрышей при выборе стратегии «строить» только одним фермером равна 8. Социальный оптимум сводится к тому, что реализовывать проект должен только один фермер. При этом каждый фермер предпочитает равновесие, при котором строит не он. Это может привести к новой динамической игре, в которой каждый фермер ждет, чтобы оросительную систему построил сосед. Или же исходная игра может обусловить равновесие в смешанных стратегиях с его низкими ожидаемыми выигрышами.
И наконец, давайте внесем несколько иные изменения в исходную дилемму заключенных, оставив преимущества от реализации проекта с участием двух человек на прежнем уровне и сократив выгоду от проекта с участием одного человека до B(1) = 3. Такое изменение настолько снижает ваши выгоды как «безбилетника», что если теперь ваш сосед выберет стратегию «строить», то ваш наилучший ответ — тоже «строить». На рис. 11.4 представлена таблица выигрышей в этой версии игры. Это игра в доверие с двумя равновесиями в чистых стратегиях: одно — когда вы совместно реализуете проект, а другое — когда оба этого не делаете.
Рис. 11.4. Коллективное действие в контексте игры в доверие
Как и во второй версии игры в труса (II), оптимальный для всей группы исход представляет собой одно из двух равновесий Нэша. Но есть одно отличие. В версии игры в труса II игроки отдают предпочтение разным равновесиям, любое из которых обеспечивает социальный оптимум. В игре в доверие оба игрока предпочитают одно и то же равновесие, и это единственный исход, оптимальный для всей группы. Поэтому достичь социального оптимума в игре в доверие легче, чем в игре в труса.