Стратегические игры. Доступный учебник по теории игр Диксит Авинаш
Такое соответствие между равновесием Нэша в рациональной игре и устойчивыми исходами игры с аналогичной структурой выигрышей в игре по эволюционным правилам — общая норма; мы увидим ее общий характер ниже в разделе 6. В действительности эволюционная устойчивость обеспечивает дополнительное обоснование для выбора одного из множества равновесий Нэша в играх, основанных на концепции рационального поведения игроков.
При анализе игры в труса с рациональной точки зрения равновесие в смешанных стратегиях казалось несколько озадачивающим. Оно оставляло лазейку для ошибок, которые могли обойтись очень дорого. Каждый игрок ехал прямо в одном случае из двух, а значит, в одном случае из четырех автомобили сталкивались. Равновесие в чистых стратегиях позволяло избежать таких столкновений. В то время это могло навести вас на мысль, что в равновесии в смешанных стратегиях есть нечто нежелательное; может, вы даже задавались вопросом, зачем вообще мы тратим на него время. Теперь вы понимаете причину. На первый взгляд странное равновесие возникает как устойчивый результат естественного динамического процесса, в ходе которого каждый игрок пытается улучшить свой выигрыш в популяции, которой он противостоит.
4. Игра в доверие
Из всех широких классов стратегических игр, представленных в главе 4, мы с эволюционной точки зрения рассмотрели дилемму заключенных и игру в труса. Осталась только игра в доверие. В главе 4 мы проиллюстрировали этот тип игры на примере двух студентов, Гарри и Салли, которые решают, где встретиться, чтобы выпить кофе. В эволюционном контексте каждому игроку свойственна врожденная симпатия либо к Starbucks, либо к Local Latte, а в состав популяции входит определенное число игроков каждого типа. Мы будем исходить из того, что пары игроков, которые мы разделяем на генетические категории мужчин и женщин, каждый день выбираются случайным образом для участия в данной игре. Обозначим стратегии как S (Starbucks) и L (Local Latte). На рис. 12.8 представлена таблица выигрышей при случайном отборе пар игроков; выигрыши те же, что и в таблице на рис. 4.11.
Рис. 12.8. Таблица выигрышей игры в доверие
Если бы это была игра с участием игроков, делающих рациональный выбор, в ней было бы два равновесия в чистых стратегиях: (S, S) и (L, L), причем второе лучше для обоих игроков. Если игроки общаются и координируют свои действия в явной форме, им не составит труда достичь этого равновесия. Однако если они делают выбор независимо друг от друга, им необходимо скоординировать действия посредством сходимости ожиданий, другими словами, отыскав фокальную точку.
В рациональной игре есть третье равновесие — в смешанных стратегиях, которое мы нашли в главе . В нем каждый игрок выбирает Starbucks с вероятностью 2/3 и Local Latte с вероятностью 1/3; ожидаемый выигрыш каждого игрока составляет 2/3. Как было показано в главе 7, этот выигрыш хуже выигрыша в случае менее привлекательного равновесия в чистых стратегиях (S, S), поскольку независимое смешивание стратегий зачастую приводит игроков к противоречивому или плохому выбору. Здесь же вероятность неблагоприятного исхода (выигрыш 0) равна 4/9: два игрока отправляются в разные места почти в половине случаев.
Что происходит в эволюционной игре? Каждый член большой популяции запрограммирован на выбор либо S, либо L. Произвольно отобранным парам таких игроков дается задание попытаться встретиться. Предположим, x — это доля в популяции игроков типа S, а (1 — x) — доля игроков типа L. Тогда уровень приспособленности определенного игрока типа S (его ожидаемый выигрыш от случайной встречи такого рода) составляет x 1 + (1 — x) 0 = x. Аналогично, уровень приспособленности каждого игрока типа L равен x 0 + (1 — x) 2 = 2(1 — x). Следовательно, уровень приспособленности типа S выше при х > 2(1 — x) или x > 2/3, а типа L — при x < 2/3. В равновесной точке x = 2/3 оба типа в равной степени приспособлены.
Как и в игре в труса, те же значения вероятности, которые относятся к равновесию в смешанных стратегиях, полученному в результате рационального выбора, появляются и при ведении игры по эволюционным правилам в виде соотношения типов в популяции при полиморфном равновесии. Однако теперь это смешанное равновесие неустойчиво. Малейшее случайное отклонение доли х от равновесной точки 2/3 запустит кумулятивный процесс, который сместит комбинацию типов в популяции далеко от равновесной точки. Если значение x превысит 2/3, уровень приспособленности игроков типа S повысится и он станет еще быстрее расти количественно, еще больше увеличивая значение x. Если значение x окажется меньше 2/3, уровень приспособленности игроков типа L повысится и он станет еще быстрее расти количественно, еще больше снижая значение x. В итоге значение x либо повысится до 1, либо упадет до 0, в зависимости от вида отклонения. Особенность ситуации состоит в том, что в игре в труса каждый тип был более приспособленным при меньшей доле в популяции, поэтому соотношение типов в ней стремилось от экстремальных значений в равновесной точке, попадающей в средний диапазон. Напротив, в игре в доверие уровень приспособленности каждого типа выше при большем количестве членов соответствующего типа в популяции; риск не встретиться с другим игроком снижается по мере увеличения доли игроков того же типа, поэтому соотношение типов в популяции стремится к экстремальным значениям.
На рис. 12.9, очень похожем на рис. 12.7, представлены графики уровня приспособленности и равновесия в игре в доверие. Две линии отображают приспособленность двух типов в зависимости от их соотношения в популяции. Пересечение линий образует равновесную точку. Единственное отличие — при удалении от равновесной точки более многочисленный тип становится более приспособленным, тогда как на рис. 12.7 это был менее многочисленный тип.
Рис. 12.9. Графики уровня приспособленности, а также равновесия в игре в доверие
Поскольку каждый тип менее приспособлен при небольшой численности, только две крайние мономорфные конфигурации популяции могут находиться в эволюционно устойчивом состоянии. Легко убедиться, что оба исхода — это эволюционно устойчивые стратегии согласно статическому критерию: захват другого типа небольшой популяцией мутантов сойдет на нет, потому что у немногочисленных мутантов более низкий уровень приспособленности. Таким образом, в играх в доверие, или координационных играх, в отличие от игры в труса, эволюционный процесс не сохраняет неблагоприятное равновесие, при котором существует положительная вероятность выбора игроками конфликтующих стратегий. Тем не менее эта динамика не гарантирует сходимости к более благоприятному из двух равновесий, если игра начинается с произвольной исходной комбинации фенотипов, — к чему придет популяция, зависит от того, с чего она начнет.
5. Три фенотипа в популяции
При существовании только двух возможных фенотипов (стратегий) мы можем выполнить проверку на наличие эволюционно устойчивой стратегии путем их сравнения с мутантом одного типа. Динамику популяции в эволюционной игре можно проиллюстрировать с помощью графиков, аналогичных представленным на рис. 12.4, рис. 12.7 и рис. 12.9. Мы покажем, как эти идеи и метод могут быть использованы, когда есть три (или более) возможных фенотипа, а также посмотрим, какие новые особенности при этом возникают.
А. Проверка стратегий на эволюционную устойчивость
Давайте еще раз проанализируем трижды повторяющуюся дилемму заключенных из раздела 12.2.А.II и рис. 12.3 посредством включения третьего возможного фенотипа. Эта стратегия, обозначенная как Н, означает «никогда не отказываться от сотрудничества». На рис. 12.10 приведена таблица приспособленности с тремя стратегиями: В («всегда отказ от сотрудничества»), О («око за око») и Н («никогда не отказываться от сотрудничества»).
Рис. 12.10. Трижды повторяющаяся дилемма заключенных с тремя типами (выигрыши исчисляются в сотнях долларов)
Для того чтобы проверить, будет ли одна из этих стратегий эволюционно устойчивой, проанализируем, могут ли популяцию, состоящую из игроков только одного типа, захватить мутанты одного из двух других типов. Например, популяцию из игроков типа В не могут захватить мутанты типа Н или О, а значит, тип В — это эволюционно устойчивая стратегия. Но популяцию из игроков типа Н мутанты типа В захватить могут; при этом тип Н позволяет одурачить себя трижды (какой позор!). Следовательно, Н не может быть эволюционно устойчивой стратегией.
А как насчет типа О? Популяция только из игроков типа О не может быть захвачена типом В. Однако в противостоянии с мутантами типа Н тип О может оказаться на равных: обратите внимание, что в четырех ячейках таблицы у типов О и Н одинаковые выигрыши. В такой ситуации мутанты типа Н не будут размножаться, но и не вымрут. Небольшая доля мутантов может сосуществовать с популяцией, почти полностью состоящей из игроков типа О. Таким образом, тип О не удовлетворяет ни одному из критериев эволюционно устойчивых стратегий, но демонстрирует некоторую способность сопротивляться захвату.
Мы учитываем способность к адаптации, демонстрируемую типом О в нашем примере, и вводим концепцию нейтральной эволюционно устойчивой стратегии[217]. В отличие от стандартной эволюционно устойчивой стратегии, в которой член основной популяции должен однозначно быть более приспособленным, чем мутант, в популяции с небольшой долей мутантов нейтральная устойчивость требует, чтобы член основной популяции имел как минимум такой же уровень приспособленности, как и мутант. Тогда доля мутантов не увеличивается, а может оставаться на исходном низком уровне. Это и есть случай, когда популяцию только из игроков типа О захватывает небольшое количество мутантов типа Н. В игре на рис. 12.10 присутствует одна стандартная эволюционно устойчивая стратегия (стратегия В) и одна нейтральная эволюционно устойчивая стратегия (стратегия О).
Далее проанализируем ситуацию, в которой популяцию из игроков типа О захватывают мутанты типа Н. Если доля мутантов достаточно мала, оба типа могут благополучно сосуществовать. Однако если количество мутантов составляет слишком большой процент в общей популяции, ее могт захватить мутанты В-типа: игроки типа В добиваются высоких результатов в противостоянии с типом Н, но плохо справляются с типом О. Для большей точности рассмотрим популяцию с долей x игроков типа Н и долей (1 — x) игроков типа О. Уровень приспособленности каждого из этих типов составляет 972. Уровень приспособленности мутанта типа В в этой популяции равен 936(1 — x) + 1080x = 144x + 936. Это больше 972, если 144x > 972–936 = 36, или x > 1/4. Таким образом, тип О может быть нейтральной эволюционно устойчивой стратегией, сосуществующей с небольшой долей мутантов типа Н, но только до тех пор, пока их доля меньше 25 %.
Б. Динамика
Для того чтобы наглядно объяснить динамику в играх с тремя возможными фенотипами, обратимся к еще одной хорошо известной игре «камень, ножницы, бумага» (КНБ). В версии этой игры, основанной на концепции рационального поведения игрока, все участники одновременно выбирают одно из трех возможных действий: камень (сложить кулак), бумага (расправить ладонь) или ножницы (сделать движение двумя пальцами, напоминающее ножницы). Правила игры гласят, что камень побеждает («разбивает») ножницы, ножницы побеждают («режут») бумагу, бумага побеждает («обертывает») камень; при одинаковых движениях будет ничья. Если игроки выбирают разные действия, победитель получает выигрыш 1, а проигравший выигрыш 1; в случае ничьей выигрыш обоих игроков составляет 0.
В качестве примера эволюционной игры рассмотрим ситуацию, с которой сталкиваются пятнистобокие игуаны, обитающие на побережье Калифорнии. Для этого вида характерны три типа поведения самцов при спаривании, причем каждый тип поведения ассоциируется с окраской горла самца. Синегорлые самцы (стражи) охраняют небольшое количество самок и отражают попытки желтогорлых самцов (тихони) прокрасться и спариться с самкой, оставшейся без защиты. Такая стратегия желтогорлого самца эффективна против оранжевогорлых самцов (агрессоров), которые держат большие гаремы и часто преследуют других самцов, как правило, синегорлых, которых оранжевогорлые самцы могут одолеть благодаря своей агрессивности[218]. Взаимодействие между тремя типами самцов можно смоделировать посредством структуры выигрышей игры КНБ, представленной на рис. 12.11, где показаны только выигрыши игрока, которому соответствуют строки. Мы включаем в таблицу столбец для q-комбинации, что позволит нам проанализировать эволюционный эквивалент равновесия в смешанных стратегиях в этой игре, то есть комбинацию типов в популяции[219].
Рис. 12.11. Выигрыши в эволюционной игре с тремя фенотипами
Допустим, q1 — доля желтогорлых игуан в популяции, q2 — доля синегорлых игуан, а (1 — q1 — q2) — доля оранжевогорлых игуан. В правом столбце таблицы показаны выигрыши каждого игрока строки в противостоянии с такой комбинацией фенотипов, то есть это уровень приспособленности игроков, которым соответствуют строки. Предположим, что в популяции пятнистобоких игуан доля каждого типа увеличивается, когда его приспособленность имеет положительное значение, и уменьшается в случае отрицательного значения[220]. Тогда q1 повышается только при выполнении условия
— q2 + (1 — q1 — q2) > 0,
q1 + 2q2 < 1.
Доля желтогорлых игуан в популяции увеличивается, когда q2 (доля синегорлых игуан) небольшая или (1 — q1 — q2) (доля оранжевогорлых игуан) большая. Это имеет смысл: желтогорлые самцы не особо успешны в противостоянии с синегорлыми, но весьма хороши в противоборстве с оранжевогорлыми самцами. Аналогичным образом q2 повышается только при выполнении условия
q1 — (1 — q1 — q2) > 0,
2q1 + q2 > 1.
Синегорлые самцы добиваются лучших результатов, когда доля желтогорлых соперников большая или оранжевогорлых малая.
Графики на рис. 12.12 наглядно демонстрируют динамику популяции и полученных в итоге равновесий в этой игре. Треугольный сегмент, ограниченный осями координат и линией q1 + q2 = 1, содержит все возможные равновесные комбинации q1 и q2. В нем есть также две прямые линии. Первая линия (более пологая) — это q1 + 2q2 = 1, равновесная линия для q1; если комбинация q1 и q2 ниже этой линии, q1 (доля желтогорлых самцов) возрастает; если комбинация q1 и q2 выше этой линии, q1 сокращается. Вторая линия (линия с большим наклоном) — это линия 2q1 + q2 = 1, равновесная линия для q2. Справа от нее (когда 2q1 + q2 > 1) q2 возрастает; слева (когда 2q1 + q2 < 1) q2 сокращается. Стрелками обозначены направления изменения соотношений типов в популяциях; серые линии соответствуют типичным динамическим путям. Общая идея та же, что и на рис. 12.10.
Рис. 12.12. Динамика популяции в эволюционной версии игры КНБ
На каждой из двух серых линий один из показателей q1 и q2 не возрастает и не уменьшается. Следовательно, их пересечение образует точку, в которой q1, q2, а значит, и (1 — q1 — q2) — постоянные. Это означает, что эта точка соответствует полиморфному равновесию. Несложно проверить, что в данном случае q1 = q2 = 1 — q1 — q2 = 1/3. Эти доли типов в популяции эквивалентны вероятностям стратегий в равновесии со смешанными стратегиями в рациональной версии игры КНБ.
Устойчив ли этот полиморфный исход? В общем мы не можем дать однозначного ответа. Динамика указывает на наличие путей (обозначенных на рис. 12.12 в виде эллипса), которые формируются вокруг данного исхода. Разворачиваются ли они по убывающей спирали по направлению к точке пересечения (в таком случае можно говорить об устойчивости) или по расходящейся спирали (что указывает на неустойчивость), зависит от конкретной реакции соотношения типов в популяции на изменение уровня приспособленности. Эти пути могут даже проходить по траектории, изображенной на рис. 12.12, не приближаясь и не отдаляясь от равновесия.
Фактические данные говорят о том, что популяция пятнистобоких игуан вращается вокруг точки полиморфного равновесия с равным соотношением типов; при этом один тип на какой-то период становится более распространенным, но затем более сильный соперник берет над ним верх. Вопрос о том, приближается ли этот цикл к устойчивому равновесию, остается темой дальнейшего изучения. Как минимум один пример такого же взаимодействия, как и в случае КНБ, относится к трем штаммам кишечной палочки, вызывающей пищевые отравления. Каждый штамм бактерии вытесняет любой другой, но вытесняется третьим, как и в игре с тремя типами, о которой шла речь выше. Ученые, изучающие соперничество между тремя штаммами кишечной палочки, доказали, что полиморфное равновесие может быть устойчивым, если взаимодействие между парами остается локальным, а небольшие колонии каждого тамма постоянно перемещаются[221].
6. Игра «ястреб — голубь»
Игра «ястреб — голубь» стала первой изученной биологами в процессе разработки теории эволюционных игр. В ней есть полезные параллели с дилеммой заключенных и игрой в труса, поэтому мы описываем ее здесь, чтобы закрепить и углубить ваше понимание соответствующих концепций.
В игре участвуют не птицы этих двух видов, а двое животных одного и того же вида, а «ястреб» и «голубь» — просто названия их стратегий. Суть игры — соперничество за ресурс. Стратегия «ястреб» агрессивна и направлена на получение всего ресурса стоимостью V. Стратегия «голубь» компромиссна и сводится к готовности разделить ресурс и избежать драки. Когда два игрока типа «ястреб» противостоят друг другу, они вступают в драку. Каждое животное с одинаковой вероятностью (равной 1/2) может либо победить и получить V, либо проиграть, получить травмы и — C. Следовательно, ожидаемый выигрыш каждого игрока равен (V–C)/2. Когда в игру вступают два «голубя», они без драки делят между собой ресурс, поэтому выигрыш каждого из них составляет V/2. Когда игрок типа «ястреб» вступает в противостояние с игроком типа «голубь», последний спасается бегством и получает выигрыш 0, тогда как первый — выигрыш V. На рис. 12.13 представлена таблица выигрышей в этой игре.
Рис. 12.13. Таблица выигрышей для игры «ястреб — голубь»
Анализ этой игры аналогичен анализу дилеммы заключенных и игры в труса, только в ней числовые выигрыши заменены алгебраическими символами. Мы сопоставим равновесия в этой игре, когда игроки рационально выбирают стратегию «ястреб» или «голубь», после чего сравним исходы игры, когда игроки действуют автоматически, а успех вознаграждается более быстрым воспроизводством.
А. Рациональный стратегический выбор и равновесие
1. Если V > C, то это дилемма заключенных, в которой стратегия «ястреб» соответствует стратегии «отказ от сотрудничества», а стратегия «голубь» — стратегии «сотрудничать». Стратегия «ястреб» — доминирующая для каждого игрока, но комбинация стратегий «голубь»/«голубь» — более благоприятный исход для обоих игроков.
2. Если V < C, тогда это игра в труса. Теперь (V–C)/2 < 0, а значит, «ястреб» больше не доминирующая стратегия. В игре два равновесия Нэша в чистых стратегиях: «ястреб»/«голубь» и «голубь»/«ястреб». В игре также есть равновесие в смешанных стратегиях, при котором вероятность p выбора игроком Б стратегии «ястреб» имеет такое значение, которое поддерживает безразличие игрока А в отношении выбора стратегий:
Б. Эволюционная устойчивость при V > C
Начнем с популяции, состоящей преимущественно из «ястребов», и проверим, могут ли ее захватить мутанты типа «голубь». Придерживаясь условных обозначений для подобных игр, мы могли бы выразить долю мутантного фенотипа в популяции как m (от слова «mutant»), но для ясности будем использовать для мутанта типа «голубь» обозначение d (от «dove»). Таким образом, доля «ястребов» в популяции составляет (1 — d). Тогда в противостоянии со случайно выбранным соперником «ястреб» будет встречаться с «голубем» в d случаях и получит V в каждом из них, а также встретится с другим «ястребом» в (1 — d) случаях и получит (V–C)/2 в каждом. Следовательно, уровень приспособленности «ястреба» равен [dV + (1 — d)(V–C)/2]. Аналогичным образом уровень приспособленности одного из мутантов типа «голубь» составляет [d(V/2) + (1 — d)0]. Поскольку V > C, отсюда следует, что (V–C)/2 > 0. Кроме того, V > 0 подразумевает, что V > V/2. В таком случае при любом значении d от 0 до 1 имеем
Стало быть, у «ястреба» более высокий уровень приспособленности, поэтому мутанты типа «голубь» не могут захватить популяцию. Стратегия «ястреб» эволюционно устойчива, а популяция мономорфна (все «ястребы»).
То же самое верно и для любой доли «голубей» в популяции при всех значениях d. Следовательно, какой бы ни была исходная комбинация типов, доля «ястребов» будет расти и они будут доминировать. Кроме того, если исходная популяция состоит только из «голубей», мутанты типа «ястреб» могут ее захватить. Таким образом, эта динамика говорит о том, что «ястреб» — единственная эволюционно устойчивая стратегия. Данный алгебраический анализ подтверждает и обобщает сделанный ранее вывод в числовом примере дилеммы заключенных в контексте игры в ценообразование (см. рис. 12.1).
В. Эволюционная устойчивость при V < C
Если исходная популяция преимущественно «ястребы» с небольшой долей d мутантов типа «голубь», то у каждого из них такая же функция уровня приспособленности, как и функции, выведенные в разделе 6.Б. Однако когда V < C, (V–C)/2 < 0. Мы по-прежнему имеем V > 0, а значит, V > V/2. Но поскольку значение d очень маленькое, сравнение этих членов с (1 — d) играет гораздо более важную роль, чем сравнение с d, поэтому
Следовательно, уровень приспособленности мутантов типа «голубь» выше уровня приспособленности доминирующего типа «ястреб», поэтому мутанты типа «голубь» могут захватить популяцию.
Однако если исходная популяция почти полностью состоит из «голубей», мы должны проанализировать, может ли небольшая доля h мутантов типа «ястреб» захватить ее. (Обратите внимание, что, поскольку мутант теперь относится к типу «ястреб», мы использовали символ h (hawk) для обозначения доли мутантов-захватчиков.) Уровень приспособленности мутантов типа «ястреб» [h(V–C)/2 + (1 — h)V] сопоставим c [h 0 + (1 — h)(V/2)] в случае мутантов типа «голубь». И снова V < C подразумевает, что (V–C)/2 < 0, а V > 0 подразумевает, что V > V/2. Но когда значение h небольшое, получаем
Это неравенство показывает, что уровень приспособленности «ястребов» выше, поэтому они захватят популяцию «голубей». Таким образом, мутанты каждого типа могут захватить популяцию другого типа. Поэтому она не может быть мономорфной и ни один чистый фенотип не может быть эволюционно устойчивой стратегией. Алгебраические расчеты снова подтверждают сделанный ранее вывод в числовом примере дилеммы заключенных в контексте игры в труса (см. рис. 12.6 и рис. 12.7).
А что происходит в популяции, когда V < C? Существуют два сценария. В первом каждый игрок придерживается чистой стратегии, но в популяции наблюдается устойчивая комбинация игроков, использующих разные стратегии. Это полиморфное равновесие, сформировавшееся в игре в труса, о которой шла речь в разделе 3. Второй сводится к применению каждым игроком смешанной стратегии. Мы начнем с полиморфного случая.
Г. V < C: устойчивая полиморфная популяция
Когда доля «ястребов» в популяции равна h, уровень их приспособленности составляет h(V–C)/2 + (1 — h)V, а уровень приспособленности «голубя» — h 0 + (1 — h)(V/2). Уровень приспособленности «ястреба» выше, если
Это неравенство можно упростить:
V — hC > 0,
В таком случае уровень приспособленности типа «голубь» выше, когда h > V/C, или когда (1 — h) < 1 — (V/C) = (C–V)/C. Стало быть, каждый тип более приспособлен, если его численность меньше. Следовательно, мы имеем устойчивое полиморфное равновесие в равновесной точке, в которой доля «ястребов» в популяции составляет h = V/C. Это и есть рассчитанная в разделе 6.А вероятность, с которой каждый отдельный игрок выбирает стратегию «ястреб» в равновесии Нэша в смешанных стратегиях данной игры при условии рационального поведения игроков. К тому же мы также получили эволюционное «обоснование» исхода в виде смешанной стратегии в игре в труса.
Мы предоставляем вам возможность построить для этого случая график, аналогичный представленному на рис. 12.7. Для этого вам понадобится определить динамику, в соответствии с которой доли каждого типа в популяции сходятся к устойчивой равновесной комбинации.
Д. V < C: каждый игрок смешивает стратегии
Вспомните рассчитанную в разделе 6.А равновесную смешанную стратегию в рациональной игре, где p = V/C — вероятность выбора стратегии «ястреб», а (1 — p) — вероятность выбора стратегии «голубь». Есть ли параллель в эволюционной версии игры, когда фенотип выбрал бы смешанную стратегию? Проанализируем такую возможность. У нас по-прежнему есть игроки типа Я, использующие чистую стратегию «ястреб», и игроки типа Г, использующие чистую стратегию «голубь». Но теперь может существовать еще и третий фенотип С, применяющий смешанную стратегию, включая в нее стратегию «ястреб» с вероятностью p = V/C и стратегию «голубь» с вероятностью 1 — p = 1 — (V/C) = (C–V)/C.
Когда Я или Г встречает С, их ожидаемый выигрыш зависит от p — вероятности того, что С выберет стратегию Я, и от (1 — p) — вероятности того, что С выберет стратегию Г. Тогда каждый игрок получает p, умноженное на его выигрыш в игре против Я, плюс (1 — p), умноженное на его выигрыш в игре против Г. Таким образом, когда Я противостоит С, его ожидаемый выигрыш составит
А когда Г противостоит С, его выигрыш равен
Уровни приспособленности двух типов одинаковы. Это не должно стать неожиданностью: соотношение чистых стратегий должно обеспечивать именно такое равенство. Тогда игрок типа С в противостоянии с другим игроком типа С получит тот же ожидаемый выигрыш. Для того чтобы было проще ссылаться на него в дальнейшем, обозначим его символом K, где K = V(C–V)/2C.
Но такое равенство создает проблему при проверке стратегии С на эволюционную устойчивость. Предположим, популяция целиком состоит из игроков типа С и в нее вторгаются мутанты типа Я, составляющие совсем малую долю h от общей численности популяции. Тогда типичный мутант получит ожидаемый выигрыш h(V–C)/2 + (1 — h)K. Для того чтобы вычислить ожидаемый выигрыш игрока типа С, необходимо учесть, что он противостоит другому игроку типа С в (1 — h) случаях и каждый раз получает выигрыш K. Далее он вступает в противостояние с игроком типа Я в h взаимодействиях и в их ходе использует стратегию Я в p случаях и получает выигрыш (V–C)/2 и стратегию Г в (1 — p) случаев и получает выигрыш 0. Таким образом, общий ожидаемый выигрыш (уровень приспособленности) игрока типа С составляет
Поскольку у h очень малое значение, приспособленность игроков типа С и мутантов типа Я почти эквивалентна. Дело в том, что, когда мутантов очень мало, игроки как типа Я, так и типа С в основном противостоят только игрокам типа С и, как мы только что выяснили, в этом взаимодействии у обоих типов одинаковый уровень приспособленности.
Эволюционная устойчивость зависит от того, будет ли исходная популяция типа С более приспособленной, чем мутант типа Я, когда каждый из них противостоит одному из немногочисленных мутантов. В алгебраической форме тип С более приспособлен, чем тип Я, в противоборстве с другими мутантами типа Я, когда pV(C–V)/2C = pK > (V–C)/2. В нашем примере это условие выполняется, так как V < C, то есть (V–C) имеет отрицательное значение, а K имеет положительное значение. На интуитивном уровне это условие говорит нам о том, что мутант типа Я всегда будет получать более низкие результаты в противостоянии с другим мутантом типа Я из-за высоких издержек в связи с дракой, но тип С вступает в драку только иногда, а значит, несет такие издержки лишь в p случаях. В целом тип С добивается большего в противостоянии с мутантами.
Аналогично успех вторжения типа Г в популяцию С зависит от сравнения уровня приспособленности мутанта типа Г с уровнем приспособленности мутанта типа С. Как и раньше, мутант противостоит другому игроку типа Г в d случаях, а игроку типа С в (1 — d) случаях. Тип С также противостоит другому игроку типа С в (1 — d) случаях, однако в d случаях С противостоит Г и использует стратегию Я в p из этих случаев, получая при этом выигрыш pV, а также применяет стратегию Г в (1 — p) случаях, получая при этом выигрыш (1 — p)V/2. Из этого следует, что уровень приспособленности типа «голубь» составляет [dV/2 + (1 — d)K], тогда как уровень приспособленности типа С равен d [pV+(1 — p)V/2] + (1 — d)K. Последние члены выражений, описывающих уровни приспособленности, идентичны, а значит, вторжение «голубей» может быть успешным, только если V/2 больше pV + (1 — p)V/2. Это условие не выполняется: последнее выражение содержит взвешенное среднее V и V/2, которое больше V/2 при V > 0. Таким образом, вторжение мутантов типа «голубь» не может завершиться успехом.
Этот анализ говорит о том, что С — эволюционно устойчивая стратегия. Следовательно, если V < C, популяция может продемонстрировать любой из двух эволюционно устойчивых исходов. Один подразумевает смешение типов (устойчивый полиморфизм), а другой — присутствие в популяции только одного типа, смешивающего стратегии в том же соотношении, которое определяет полиморфизм.
Е. Немного общей теории
Теперь обобщим идеи, представленные в данном разделе, чтобы получить теоретическую основу и набор инструментов для дальнейшего использования. Такое обобщение неизбежно требует несколько более абстрактных обозначений и немного алгебры. В связи с этим мы рассмотрим только мономорфные равновесия в одном виде. Читатели, которые владеют математикой на должном уровне, смогут по аналогии описать полиморфные случаи с двумя видами. Читатели, которые не готовы к восприятию данного материала или для них он не представляет интереса, могут пропустить этот раздел без ущерба для целостности изложения материала[222].
Проанализируем взаимодействие между случайно отобранными из одного вида парами, популяции которого доступны стратегии I, J, K, …, среди которых могут быть как чистые, так и смешанные. Каждый отдельный член популяции запрограммирован на использование только одной из этих стратегий. Обозначим E(I, J) выигрыш игрока I от одного взаимодействия с игроком J. Выигрыш игрока I в противостоянии с другим представителем своего типа составляет E(I, I) в той же системе обозначений. Пусть W(I) — уровень приспособленности игрока I. Это просто его ожидаемый выигрыш в противостоянии с произвольно выбранными соперниками, когда вероятность встретить игрока определенного типа равна долеэтого типа в популяции.
Допустим, популяция состоит только из игроков типа I. Проанализируем, может ли такая конфигурация быть эволюционно устойчивой. Для этого представим, что популяцию захватывают несколько мутантов типа J; значит, доля m мутантов в популяции очень маленькая. Уровень приспособленности типа I составляет
W(I) = mE(I, J) + (1 — m) E(I, I).
Уровень приспособленности мутанта равен
W(J) = mE(J, J) + (1 — m) E(J, I).
Следовательно, разница между уровнями приспособленности основного и мутантного типов популяции определяется формулой
Поскольку m очень маленькое, уровень приспособленности основного типа будет выше по сравнению с приспособленностью мутанта, если вторая часть представленного выражения имеет положительное значение, то есть
W(I) > W(J), если E(I, I) > E(J, I).
В таком случае основной тип в популяции не может быть захвачен; он более приспособлен, чем мутантный тип, когда каждый противостоит члену основного типа. Это и есть первичный критерий эволюционной устойчивости. Напротив, если W(I) < W(J) — тогда E(I, I) < E(J, I) — вторжение мутантов типа J будет успешным, поэтому популяция, полностью состоящая из игроков типа I, не может быть эволюционно устойчивой.
Однако возможна ситуация, когда E(I, I) = E(J, I), как и происходит на самом деле, если популяция изначально состоит из одного фенотипа, смешивающего чистые стратегии I и J (мономорфное равновесие со смешанной стратегией), как было в последнем варианте игры «ястреб — голубь» (раздел 6.Д). Тогда разность между W(I) и W(J) зависит от того, насколько успешно оба типа противостоят мутантам[223]. Когда E(I, I) = E(J, I), получаем W(I) > W(J), если E(I, J) > E(J, J). Это вторичный критерий эволюционной устойчивости, который следует применять, только если первичный критерий не позволяет сделать однозначный вывод, то есть если E(I, I) = E(J, I).
При применении вторичного критерия — поскольку E(I, I) = E(J, I) — существует вероятность того, что он также не позволит сделать однозначный вывод. Другими словами, возможно, что E(I, J) = E(J, J). Это случай нейтральной устойчивости, о которой шла речь в разделе 5. Если ни первичный, ни вторичный критерий не обеспечивают убедительных результатов, то I считается нейтральной эволюционно устойчивой стратегией.
Обратите внимание, что у первичного критерия есть одна особенность. Он гласит, что если стратегия I эволюционно устойчива, то для всех остальных стратегий J, которые может попробовать применить мутант, E(I, I) E(J, I). Это означает, что стратегия I — наилучший ответ на саму себя. Иными словами, если бы члены этой популяции вдруг начали играть как придерживающиеся рационального поведения игроки, применение ими всеми стратегии I было бы равновесием Нэша. Таким образом, эволюционная устойчивость подразумевает наличие равновесия Нэша в соответствующей рациональной игре![224]
Это поразительный результат. Если вас не удовлетворяло предположение о рациональном поведении, лежащее в основе теории равновесий Нэша, представленной в предыдущих главах, и вы обратились к эволюционной теории в поисках более подходящего объяснения, то теперь вы убедились, что она дает те же результаты. Поистине занимательное биологическое описание (фиксированное не максимизирующее поведение, но при этом выбор в ответ на полученный в итоге уровень приспособленности) не обеспечивает новых исходов, а, скорее, предоставляет косвенное обоснование равновесия Нэша. Когда в игре есть несколько равновесий Нэша, эволюционная динамика может даже предоставить хороший аргумент для выбора одного из них.
Тем не менее ваша укрепившаяся уверенность в равновесии Нэша должна быть взвешенной. Наше определение эволюционной устойчивости скорее статично, чем динамично. Оно лишь позволяет проверить, что конфигурация популяции (мономорфная или полиморфная с надлежащим соотношением типов), которую мы тестируем на наличие равновесия, не может быть захвачена небольшой популяцией мутантов. Такая проверка не поможет определить, исчезнут ли все нежелательные типы и будет ли достигнута равновесная конфигурация в случае произвольной исходной комбинации типов в популяции. Кроме того, проверка проводится в отношении конкретных классов мутантов, которые считаются логически возможными, но если теоретик некорректно выполнит эту классификацию и в действительности может появиться тип мутантов, который он не учел, этот мутант может совершить успешное вторжение и разрушить предполагаемое равновесие. В конце анализа дилеммы заключенных с двумя повторениями, о которой шла речь в разделе 2.А, мы предупреждали о подобной вероятности, и в упражнениях вы увидите, как такое может произойти. И наконец, в разделе 5 мы убедились, что эволюционная динамика может вообще не гарантировать сходимости к более благоприятному из двух равновесий.
7. Взаимодействие всех членов популяции и между разными видами
До сих пор мы фокусировались на ситуациях, в которых каждая игра проводится между двумя игроками, отобранными из популяции случайным образом. Однако нередки случаи, когда все члены популяции играют одновременно или взаимодействуют два разных вида; они требуют специального анализа, и мы представим его в данном разделе.
А. Игра по всему полю
В ходе эволюционного взаимодействия встречаются ситуации, когда все члены популяции играют одновременно, а не парами. В биологии стадо животных с определенной комбинацией различных, заданных на генетическом уровне моделей поведения может бороться за тот или иной ресурс или территорию. В экономике или бизнесе многие компании, стратегии которых продиктованы корпоративной культурой, могут конкурировать все со всеми.
Такие эволюционные игры находятся в той же зависимости с рациональными коллективными играми из главы 11, что и парные эволюционные игры, представленные в предыдущих разделах, с рациональными играми с двумя участниками, о которых шла речь в главах 4–7. Подобно тому как мы преобразовали графики ожидаемых выигрышей из этих глав в диаграммы уровней приспособленности на рис. 12.4, рис. 12.7 и рис. 12.9, мы можем преобразовать графики для игр с коллективным действием (см. рис. 11.6–11.8) в графики приспособленности в эволюционных играх.
Рассмотрим в качестве примера вид животных, все члены которого приходят на общее пастбище. В этом виде есть два фенотипа: один агрессивно борется за пищу, а другой бродит вокруг и пытается подобрать то, что удается. Если доля агрессивных особей небольшая, для них это лучше, но если их слишком много, выиграют тихони, которые смогут добыть себе больше пищи, игнорируя постоянные схватки сородичей. По сути, это коллективная игра в труса, в которой был бы точно такой же график приспособленности, как и на рис. 11.7. Поскольку здесь не требуется никаких новых принципов или методов, мы предоставляем вам возможность самостоятельно развить эту идею.
Б. Взаимодействие между видами
Теперь рассмотрим последний тип эвоюционного взаимодействия, а именно тот, который происходит между членами не одного и того же, а разных видов. Во всех предыдущих случаях у игроков из определенной популяции были одинаковые предпочтения. Например, в игре в доверие из раздела 4 игроки типа L от рождения отдавали предпочтение кафе Local Latte, а игроки типа S — кафе Starbucks, однако уровень приспособленности каждого типа был выше, когда встреча происходила в Local Latte. Структура игры «битва полов» (единственный класс игр, который мы еще не проанализировали) подразумевает иную схему выигрышей. Хотя участники такой игры по-прежнему заинтересованы встретиться либо в Starbucks, либо в Local Latte (если они не встретятся, выигрыш каждого составит 0), теперь каждый тип предпочитает другое кафе. Это предпочтение позволяет выделить два типа. На языке биологии их больше нельзя рассматривать как случайно выбранные из однородной популяции животных[225]. Они, скорее, должны принадлежать к разным видам.
Для изучения таких игр с эволюционной точки зрения расширим нашу методику на случай, когда пары образуются из спонтанным образом выбранных представителей разных видов. Предположим, существует большая популяция «мужчин» и большая популяция «женщин». Из них в случайном порядке выбирается по одному игроку, которым предлагают попытаться встретиться[226]. Все мужчины договариваются между собой о выигрышах при выборе кафе Starbucks, Local Latte и отсутствии встречи. Все женщины договариваются о том же. Но в каждой популяции есть как противники компромисса, так и его сторонники. Противник компромисса всегда будет выбирать любимое кафе своего вида. Сторонник компромисса, понимая, что члены другого вида хотят противоположного, отправится именно в это место.
Если в случайно отобранную пару попадает противник компромисса из одного вида и сторонник компромисса из другого, в итоге будет получен исход, которому отдает предпочтение противник компромисса. Если пару образуют два противника компромисса, встреча так и не состоится; как ни странно, аналогичный результат будет получен в случае двух сторонников компромисса, поскольку каждый из них отправится в любимое кафе другого. (Не забывайте, что игроки должны делать выбор независимо друг от друга и не могут договориться о месте встречи. Возможно, даже если бы у них и получилось собраться вместе заранее, они бы попали в тупиковую ситуацию: «Нет, я настаиваю на том, чтобы уступить твоим предпочтениям».)
Мы изменим таблицу выигрышей на рис. 4.12 так, как показано на рис. 12.14, — то, что раньше было вариантами выбора, теперь выступает в качестве действий, которые предопределяет тип (противник или сторонник компромисса).
Рис. 12.14. Выигрыши в игре «битва полов»
В сравнении со всеми эволюционными играми, которые мы анализировали до этого, у данной игры есть новое свойство: игрок строки и игрок столбца — представители разных видов. Хотя каждый вид представляет собой однородную совокупность противников и сторонников компромисса, их соотношение не обязательно должно быть одинаковым в обоих видах. Следовательно, нам необходимо ввести две переменные, описывающие эти две комбинации, и изучить динамику в обоих случаях.
Пусть x — доля противников компромисса среди мужчин, а y — среди женщин. Рассмотрим конкретного противника компромисса из числа мужчин. Встречаясь с женщиной — противницей компромисса в y случаях, он получает выигрыш 0, а при встрече с женщиной — сторонницей компромисса в остальных случаях — выигрыш 2. Следовательно, его ожидаемый выигрыш (уровень приспособленности) составляет y 0 + (1 — y) 2 = 2(1 — y). Аналогично уровень приспособленности мужчины — сторонника компромисса равен y 1 + (1 — y) 0 = y. Таким образом, из всех участников игры уровень приспособленности противников компромисса выше, когда 2(1 — y) > y, или y < 2/3. Будучи более приспособленными, мужчины из числа противников компромисса будут воспроизводиться быстрее; другими словами, x увеличивается, когда y < 2/3. Обратите внимание на новый и на первый взгляд неожиданный аспект полученного исхода: уровень приспособленности каждого типа в пределах соответствующего вида зависит от доли типов в других видах. В этом нет ничего удивительного, поскольку теперь каждый вид ведет игры против другого вида[227].
Проанализировав аналогичным образом другой вид, получим результат, согласно которому уровень приспособленности у противников компромисса из числа женщин выше, а значит, y увеличивается при x < 2/3. Для того чтобы понять этот результат на интуитивном уровне, обратите внимание на то, что противники компромисса каждого вида добиваются более весомых результатов, когда у другого вида своих противников компромисса не особо много, поскольку при этом они достаточно часто встречались бы со сторонниками компромисса другого вида.
На рис. 12.15 показана динамика конфигураций двух видов. Переменные x и y могут принимать значения от 0 до 1, поэтому мы получили график в виде единичного квадрата с x и y на их обычных осях. Вертикальная линия AB содержит все точки, где x = 2/3 — равновесная точка, в которой значение y не увеличивается и не уменьшается. Если текущие доли типов в популяции находятся слева от этой линии (то есть x < 2/3), значение y увеличивается (смещая долю женщин — противниц компромисса в вертикальном восходящем направлении). Если текущие доли находятся справа от линии AB (x > 2/3), значение y уменьшается (движение в вертикальном нисходящем направлении). Аналогично горизонтальная линия CD отображает все точки, где y = 2/3, то есть равновесную точку для x. Когда доля женщин — противниц компромисса находится ниже этой линии (то есть когда y < 2/3), доля мужчин — противников компромисса (x) увеличивается (движение по горизонтали направо), а когда над этой линией, уменьшается, то есть при y > 2/3 (движение по горизонтали налево).
Рис. 12.15. Динамика популяций в игре «битва полов»
Объединив движение x и y, мы сможем отследить их динамические пути, чтобы определить местоположение равновесия популяции. Например, начиная с исходной точки в нижнем левом квадранте эта динамика подразумевает увеличение значений как x, так и y. Это общее перемещение (в верхний правый угол) продолжается до тех пор, пока либо x = 2/3 и y начнет уменьшаться (движение происходит в правый правый угол), либо y = 2/3 и x начнет уменьшаться (перемещение направлено в верхний левый угол). Аналогичные процессы в каждом квадранте позволяют получить криволинейные динамические пути, показанные на рис. 12.5; их подавляющее большинство ведет либо в нижний правый, либо в верхний левый угол диаграммы, то есть они сходятся в точке (1, 0) или в точке (0, 1). Таким образом, в большинстве случаев эволюционная динамика приводит к конфигурации, в которой один вид состоит только из противников компромисса, а другой — только из его сторонников. Каким будет тип того или иного вида, зависит от исходных условий. Обратите внимание, что динамический путь популяции, начиная с малого значения x и большего значения y, с большей вероятностью сперва пересечет линию CD и направится к точке (0, 1) (все члены популяции женщины — противницы компромисса, y = 1), чем сначала пересечет линию AB и направится к точке (1, 0). Те же результаты будут получены в случае исходной позиции с малым значением y и большим значением x. Вид, который начинает игру с большей долей противников компромисса, имет преимущество в том смысле, что к ее концу будет состоять только из них и получит выигрыш 2.
Если исходные доли правильно сбалансированы, динамика популяции может привести к полиморфной точке (2/3, 2/3). Но в отличие от полиморфного исхода в игре в труса, полиморфизм в игре «битва полов» неустойчив. Большинство случайных переходов запустят кумулятивный процесс, который приведет к одному из крайних равновесий; это и есть две эволюционно устойчивые стратегии в данной игре. Это общее свойство: игры с участием разных видов могут иметь только эволюционно устойчивые стратегии, мономорфные для каждого вида.
8. Эволюция сотрудничества и альтруизма
Теория эволюционных игр основана на двух фундаментальных идеях: во-первых, что отдельные организмы ведут игры с другими организмами своего вида или с членами других видов; во-вторых, что количество генотипов, которые приводят к образованию стратегий, обеспечивающих более высокий выигрыш (более высокий уровень приспособленности), увеличивается, тогда как доля остальных в популяции сокращается. Эти идеи подразумевают ожесточенную борьбу за выживание в том виде, в каком ее подают некоторые интерпретаторы теории Дарвина, которые понимают «выживание самых приспособленных» в буквальном смысле и создали образ «природы с ее законом когтей и клыков». На самом деле в природе немало примеров сотрудничества (когда отдельные животные ведут себя таким образом, что это приносит пользу всей группе) и даже альтруизма (когда отдельные животные несут значительные издержки ради других членов группы). Пчелиный рой и колония муравьев — самые наглядные примеры. Можно ли такое поведение согласовать с эволюционными играми?
Биологи используют классификацию из четырех (фенотипов или генотипов) способов формирования сотрудничества и альтруизма у эгоистичных животных. Ли Дугаткин выделяет четыре категории: 1) семейная динамика; 2) взаимовыгодные сделки; 3) эгоистичное групповое взаимодействие; 4) групповой альтруизм[228].
Поведение муравьев и пчел — пожалуй, самый доступный для понимания пример семейной динамики. Отдельные члены муравьиной колонии или пчелиного роя близкие родственники, поэтому у них достаточно большое количество общих генов. Все рабочие муравьи в колонии — полные сестры, а значит, у них половина общих генов; выживание и размножение двух сестер способствует размножению генов одного муравья в такой же мере, как и его собственное выживание. Все рабочие пчелы одного роя — полусестры, то есть у них четверть общих генов. Отдельный муравей или пчела не вычисляют, стоит ли рисковать собственной жизнью ради двух сестер, но базовый генотип групп, которые демонстрируют такое поведение (фенотип), будет разрастаться. Мысль о том, что по большому счету эволюция происходит на уровне генов, оказала огромное влияние на биологию, хотя многие неправильно ее истолковали, как произошло в свое время с исходной идеей естественного отбора Дарвина[229]. Интересна идея о том, что так называемый эгоистичный ген может процветать благодаря неэгоистичному поведению в более крупных генных структурах, таких как клетка. Точно так же клетка и ее гены могут процветать за счет кооперативного участия в работе организма и выполнения возложенных на нее задач.
Взаимный альтруизм может возникнуть и между не состоящими в родстве членами одного или разных видов. Такое поведение — это, по сути, пример решения дилеммы заключенных посредством повторения игры, в ходе которой ее участники используют стратегии, поразительно напоминающие стратегию «око за око». Например, некоторые мелкие рыбы или креветки питаются паразитами, которые собираются на зубах и жабрах более крупной рыбы; крупная рыба позволяет мелким рыбешкам заплывать к себе в рот и выполнять «работу чистильщика», не причиняя им вреда. Еще более поразительный, хотя и жуткий пример связан с летучими мышами-вампирами, которые делятся выпитой кровью с теми, у кого охота не задалась. Во время эксперимента, в ходе которого летучих мышей из разных мест обитания объединили в одну группу и некоторых из них лишили пищи, «только летучим мышам, оказавшимся на грани голодания (то есть которые могли погибнуть без пищи в течение двадцати четырех часов), дали свою кровь другие мыши, принимавшие участие в эксперименте. Однако, что еще примечательнее, особи получали кровь только от летучих мышей из своего места обитания… Кроме того, вампиры гораздо чаще отрыгивали кровь, чтобы поделиться ею именно с теми особями из своего места обитания, которые пришли им на помощь, когда они сами в этом нуждались»[230]. Опять же, не следует думать, что каждое животное сознательно вычисляет, что отвечает его собственным интересам — продолжение сотрудничества или отказ от него. Напротив, такое поведение носит инстинктивный характер.
Эгоистичное групповое взаимодействие возникает тогда, когда каждый отдельный организм заинтересован в сотрудничестве, если остальные делают то же самое. Другими словами, этот тип кооперативного поведения применим в случае выбора благоприятного исхода в играх в доверие. По мнению Дугаткина, в агрессивной среде популяции более склонны к эгоистичному групповому взаимодействию, чем в более умеренной среде. В неблагоприятных условиях отказ любого члена группы от сотрудничества может закончиться катастрофой для всей группы, в том числе и для уклониста. При таких условиях каждое животное играет важнейшую роль в выживании, поэтому ни один член группы не уклоняется от сотрудничества, если другие несут свою часть общего бремени. В более благоприятной среде каждый может рассчитывать воспользоваться преимуществами, созданными усилиями других членов группы, не подвергая риску выживание всей группы, в том числе и себя самого.
Следующая категория выходит за рамки биологии и распространяется на социологию: организм (а также его клетки и в конечном счете гены) может извлечь пользу из кооперативного поведения в рамках совокупности организмов, а именно общества. Это приводит нас к идее группового альтруизма, которая подразумевает, что определенный уровень сотрудничества должен присутствовать даже между отдельными членами группы, которые не являются близкими родственниками. Нам действительно известны случаи такого поведения. Наглядным примером могут служить группы хищников, таких как волки, и группы человекообразных обезьян, которые часто ведут себя как большие семьи. Сотрудничество возникает даже среди потенциальных жертв, когда отдельные рыбы в косяке по очереди высматривают хищников. Сотрудничество возможно также между разными видами.
Общая идея состоит в том, что группа, члены которой демонстрируют кооперативное поведение, с большей вероятностью добьется успеха во взаимодействии с другими группами, чем группа, члены которой стремятся сыграть роль «безбилетника». Когда в каком-то конкретном контексте эволюционной динамики межгрупповой отбор более сильный фактор, чем внутригрупповой, мы можем наблюдать групповой альтруизм[231].
Инстинкт заложен в мозге отдельного организма на генетическом уровне, однако взаимность и сотрудничество могут возникнуть как результат целенаправленного мышления или экспериментирования в рамках группы или распространиться не посредством генетики, а путем социализации (с помощью наглядного обучения или наблюдения за действиями старших). Разным видам и ситуациям свойственна своя относительная важность этих двух каналов — природы и воспитания. Можно было бы ожидать, что социализация более важна у людей, но есть примеры ее важной роли и у других животных. Мы хотим привести особенно поразительный пример. В экспедиции Роберта Скотта (1911–1912 годы) на Южный полюс участвовали собаки породы сибирская лайка. Эти собаки, собранные в одну группу и специально подготовленные, за несколько месяцев сформировали поразительную систему сотрудничества и поддерживали ее с помощью схем наказания. «Они чрезвычайно эффективно объединили усилия, направленные против любого члена группы, не желавшего тянуть свою часть ноши, или против того, кто тянул слишком сильно… их методы наказания всегда были неизменны и заканчивались, если их не сдерживать, тем, что они сами, вероятно, назвали бы справедливостью, а мы называем убийством»[232].
Этот воодушевляющий рассказ о том, как кооперативное поведение можно совместить с теорией эволюционных игр, позволяет сделать вывод, что дилемма эгоистичных действий преодолима. На самом деле ученые, изучающие альтруистическое поведение, не так давно сообщили об экспериментальном подтверждении существования такого альтруистического наказания, или сильной взаимности (в отличие от взаимного альтруизма), у людей. Полученные экспериментальные данные свидетельствуют о том, что люди готовы наказывать тех, кто не выполняет свою часть обязанностей в коллективной среде, даже если это сопряжено с определенными издержками и не сулит будущей выгоды. Такая склонность к сильной взаимности может даже помочь объяснить возникновение человеческой цивилизации, если группы с этим качеством обладали более сильной способностью к выживанию в условиях войны и прочих катастроф[233]. Однако, несмотря на все эти выводы, сильная взаимность может не получить широкого распространения в животном мире. «По сравнению с непотизмом, объясняющим сотрудничество муравьев и любого другого существа, заботящегося о подрастающем поколении, примеры взаимности оказались весьма немногочисленными. Вероятно, это вызвано тем, что она требует не только многократных взаимодействий, но и способности распознавать других индивидов, а также “ведения счета” их поступкам»[234]. Другими словами, те самые условия, которые, согласно нашему теоретическому анализу, приведенному в разделе 2.Г главы 10, необходимы для решения повторяющейся дилеммы заключенных, по всей вероятности, актуальны и в контексте эволюционных игр.
Резюме
Биологическая теория эволюции в некорых аспектах пересекается с теорией игр, используемой социологами. Эволюционные игры разыгрываются поведенческими фенотипами с генетически предопределенными, а не рационально выбранными стратегиями. В эволюционных играх фенотипы с более высоким уровнем приспособленности выдерживают несколько повторных взаимодействий с другими игроками, с тем чтобы воспроизвести и увеличить свою представленность в популяции. Популяция, содержащая один или более фенотипов в определенных пропорциях, называется эволюционно устойчивой, если ее не могут захватить другие, мутантные, фенотипы или если это ограничивающий исход динамики увеличения численности более приспособленных фенотипов. Если фенотип продолжает доминировать в популяции при столкновении с вторжением мутантного типа, его называют эволюционно устойчивой стратегией, а популяция, состоящая только из этого фенотипа, демонстрирует признаки мономорфизма. Если два или более фенотипа сосуществуют в эволюционно устойчивой популяции, она демонстрирует признаки полиморфизма.
Когда теория эволюционных игр применяется к небиологическим играм, стратегии, которых придерживаются отдельные игроки, считаются стандартными рабочими процедурами или эмпирическими правилами, а не заложенными на генетическом уровне. Процесс воспроизводства выступает в качестве более общих методов передачи информации, таких как социализация, обучение и имитация, а мутации представляют собой экспериментирование с новыми стратегиями.
Эволюционные игры могут иметь структуру выигрышей, аналогичную той, о которой шла речь в главе 4 и главе 7, в том числе в дилемме заключенных и игре в труса. В каждом из этих случаев эволюционно устойчивая стратегия отображает либо равновесие Нэша в чистых стратегиях в соответствующей игре, либо соотношение чистых стратегий в равновесной комбинации в такой игре. В дилемме заключенных эволюционно устойчивая стратегия — «всегда отказ от сотрудничества»; в игре в труса у типов всегда наблюдается более высокий уровень приспособленности, когда их количество ограниченно, поэтому наблюдается полиморфное равновесие; в игре в доверие у немногочисленных типов более низкий уровень приспособленности, поэтому полиморфная конфигурация неустойчива, а равновесия представляют собой крайние варианты. Когда в игру вступают два разных типа представителей каждого из двух разных видов, для определения равновесий используется более сложный анализ, хотя и аналогичным образом структурированный.
Игра «ястреб — голубь» — классический биологический пример; ее анализ сходен с анализом эволюционных версий таких игр, как дилемма заключенных и игра в труса; эволюционно устойчивые стратегии зависят от особенностей структуры выигрышей. Данный анализ можно также выполнить в случае, когда во взаимодействие вступают больше двух типов или когда игра формулируется в общих категориях. Эта теория показывает, что для достижения эволюционной устойчивости необходима равновесная стратегия, эквивалентная равновесию Нэша, которого достигают рациональные игроки.
Ключевые термины
Вторичный критерий
Генотип
Игра «ястреб — голубь»
Игра по всему полю
Мономорфизм
Мутация
Нейтральная эволюционно стабильная стратегия
Отбор
Первичный критерий
Полиморфизм
Приспособленность
Фенотип
Эволюционная стабильность
Эволюционно стабильная стратегия
Упражнения с решениями
S1. Два путешественника покупают одинаковые сувениры ручной работы, упаковывают их в свои чемоданы и отправляются в обратный путь. К сожалению, авиакомпания теряет оба чемодана. Поскольку авиакомпания не знает стоимости потерянных сувениров, она просит путешественников независимо друг от друга ее назвать и соглашается выплатить каждому из них сумму, эквивалентную меньшей из двух названных. Если одно значение будет выше другого, авиакомпания взыщет штраф 20 долларов с того путешественника, который озвучил более высокую цену, и отдаст 20 долларов путешественнику, назвавшему меньшую сумму. Если указанные суммы окажутся равными, не будет ни вознаграждения, ни штрафа. Никто из путешественников не помнит, сколько заплатил за сувенир, поэтому сама цена не имеет значения; каждый просто называет ту, которую предписывает его тип.
Существует два типа путешественников. Тип «высокая стоимость» всегда называет сумму 100 долларов, а тип «низкая стоимость» — 50 долларов. Пусть h — доля в популяции игроков типа «высокая стоимость».
a) Составьте таблицу выигрышей для игры между двумя путешественниками, выбранными из популяции случайным образом.
b) Постройте график уровня приспособленности типа «высокая стоимость», отобразив значения h на горизонтальной оси. На том же рисунке разместите график уровня приспособленности типа «низкая стоимость».
c) Опишите все равновесия в этой игре. По каждому равновесию укажите, оно мономорфное или полиморфное и устойчиво ли оно.
S2. В разделе 5.А шла речь о проверке на наличие эволюционно устойчивой стратегии в трижды повторяющейся дилемме заключенных в контексте игры в ценообразование в ресторанах.
a) Воспользовавшись рис. 12.10, дайте исчерпывающее объяснение того, почему популяция, состоящая только из игроков типа В, не может быть захвачена ни мутантами типа Н, ни мутантами типа О.
b) Объясните, почему популяция, состоящая только из игроков типа Н, может быть захвачена мутантами типа В и в какой степени ее могут захватить мутанты типа О. Соотнесите это объяснение с представленной в данной главе концепцией нейтральной устойчивости.
c) И наконец, объясните, почему популяция только из игроков типа О не может быть захвачена мутантами типа В, но может быть захвачена мутантами типа Н.
S3. Рассмотрите популяцию, в которой есть два фенотипа: один прирожденный коллективист (ни за что не сознается), второй прирожденный индивидуалист (охотно сознается). При случайном выборе членов этой популяции они получают те же выигрыши в однократной игре, что и выигрыши в представленной ниже дилемме заключенных из главы 4 в игре с участием мужа и жены. В повторяющемся взаимодействии популяции доступны две стратегии, такие же как в разделе 2: В (всегда сознаваться) и О (использовать стратегию «око за око», начав с отказа от признания вины).
a) Предположим, пара игроков разыгрывает эту дилемму два раза подряд. Составьте для этой дважды повторяющейся дилеммы заключенных таблицу выигрышей.
b) Найдите все эволюционно устойчивые стратегии в этой игре.
c) Теперь прибавьте третью стратегию Н — «никогда не сознаваться». Составьте таблицу выигрышей для этой дважды повторяющейся дилеммы заключенных с тремя возможными стратегиями и найдите все эволюционно устойчивые стратегии новой версии этой игры.
S4. В игре в доверие («место встречи») в данной главе выигрыши отражали некую материальную ценность, получаемую игроками в случае различных исходов; например, это могли быть призы за успешно состоявшуюся встречу. Другие представители этой же популяции, наблюдая за ожидаемыми выигрышами (уровнем приспособленности) двух типов, могли определить, какой из них выше, и со временем имитировать стратегию, обеспечивающую более высокий уровень приспособленности. В итоге соотношение типов в популяции изменилось бы. Однако мы можем представить биологическую интерпретацию этой игры. Предположим, игроки столбца — всегда женского пола, а игроки строки — мужского. Когда два таких игрока встречаются, они вступают в брак, и их дети относятся к тому же типу, что и родители. Таким образом, эти типы могут размножаться или вымереть в зависимости от того, смогут они встретиться или нет. Формальная математика новой версии игры превращает ее в игру между двумя видами (хотя в биологии этого не происходит). Следовательно, доля игроков женского пола типа S (обозначим ее как x) необязательно должна быть равной доле игроков мужского пола типа S (назовем ее y).
a) Проанализируйте динамику изменения значений x и y с помощью методов, аналогичных использованным в данной главе в контексте игры «битва полов».
b) Найдите устойчивый исход или исходы этого динамического процесса.
S5. Вспомните о двух путешественниках из упражнения S1, которые должны назвать цену утерянных сувениров. Допустим, в популяции есть еще и третий фенотип путешественника. Он всегда смешивает стратегии, то есть использует смешанную стратегию, в одних случаях указывая стоимость сувенира 100 долларов, а в других 50 долларов.
a) На основании своих знаний о смешанных стратегиях в рациональных играх предложите смешанную стратегию, которую третий фенотип мог бы использовать в данной игре.
b) Составьте для этой игры таблицу выигрышей три на три, когда третий фенотип использует смешанную стратегию, предложенную вами пункте а.
c) Определите, будет ли смешивающий фенотип эволюционно устойчивой стратегией в данной игре. (Подсказка: проверьте, может ли тип «высокая стоимость» или тип «низкая стоимость» захватить популяцию смешивающего типа.)
S6. Рассмотрите упрощенную модель, в которой все получают электричество либо из солнечной энергии, либо из ископаемого топлива, когда в обоих вариантах присутствует неэластичное предложение[235]. (В случае солнечной энергии будем считать, что это неэластичное предложение необходимого оборудования.) Использование солнечной энергии требует больших первоначальных затрат, поэтому при низкой цене на ископаемое топливо (то есть когда его мало кто использует и существует высокий спрос на оборудование для использования солнечной энергии) они могут оказаться непомерно высокими. Напротив, когда многие используют ископаемое топливо, на него формируется высокий спрос (а значит, и цена), тогда как спрос на солнечную энергию (и ее цена) находится на относительно низком уровне. Предположим, таблица выигрышей двух типов потребителей энергии выглядит следующим образом:
a) Опишите все возможные эволюционно устойчивые стратегии в этой игре относительно доли потребителей солнечной энергии s, а также объясните, почему каждый исход будет устойчивым или неустойчивым.
b) Допустим, в сфере производства оборудования для использования солнечной энергии существует значимая экономия от масштаба, благодаря чему экономия на затратах позволяет повысить выигрыши в ячейке таблицы («солнечная энергия», «солнечная энергия») до (y, y), где y > 2. Насколько большим должно быть значение y, чтобы в полиморфном равновесии s = 0,75?
S7. Существуют два типа участников забега (черепахи и зайцы), которые соревнуются друг с другом выбранными в случайном порядке парами. В этом мире зайцы неизменно побеждают черепах. Если в забеге участвуют два зайца, он заканчивается ничьей, но к концу забега оба зайца совершенно измучены. Когда в забеге участвуют две черепахи, соревнование также заканчивается ничьей, но в его ходе черепахи наслаждаются приятной беседой. Таблица выигрышей выглядит следующим образом (где с > 0):
a) Предположим, доля черепах t в популяции составляет 0,5. При каких значениях c уровень приспособленности черепах будет выше, чем у зайцев?
b) При каких значениях c уровень приспособленности черепах будет выше, чем у зайцев, если t = 0,1?
c) Если c = 1, сможет ли один заяц захватить популяцию, состоящую только из черепах? Объясните, почему да или почему нет.
d) Насколько большим относительно t должно быть значение c в случае черепах, чтобы черепахи были более приспособленными, чем зайцы?
e) Какой уровень t относительно c в полиморфном равновесии? При каких значениях c установится такое равновесие? Обоснуйте свой ответ.
S8. Рассмотрите популяцию с двумя типами X и Y со следующей таблицей выигрышей:
a) Определите уровень приспособленности X как функцию от x, где x — доля X в популяции, а также аналогично уровень приспособленности Y как функцию от y.
Предположим, динамика популяции от поколения к поколению подтверждает следующую модель:
где xt — доля X в популяции за период t; xt+1 — доля X в популяции за период t + 1; FXt — уровень приспособленности X за период t; FYt — уровень приспособленности Y за период t.
b) Предположим, x0, доля X в популяции за период 0, составляет 0,2. Чему равны FX0 и FY0?
c) Найдите значение x1 с помощью значений x0, FX0, FY0 в приведенной выше модели.
d) Чему равны значения FX1 и FY1?
e) Найдите значение x2 (округленное до пяти десятичных знаков).
f) Чему равны значения FX2 и FY2 (округленные до пяти десятичных знаков)?
S9. Рассмотрите эволюционную игру между игроками зеленого и пурпурного типов со следующей таблицей выигрышей:
Пусть g — доля зеленых в популяции.
a) Определите уровень приспособленности пурпурного типа через g.
b) Определите уровень приспособленности зеленого типа через g и a.
c) Постройте график приспособленности пурпурного типа относительно доли g пурпурного типа в популяции. Покажите на нем же три линии, отображающие уровень приспособленности зеленых при a = 2, 3 и 4. Какой вывод на основании этого графика вы можете сделать о диапазоне значений а, обеспечивающих устойчивое полиморфное равновесие?
d) Допустим, значение а попадает в диапазон, найденный в пункте с. Чему равна доля зеленых g относительно a в случае устойчивого полиморфного равновесия?
S10. Докажите следующее утверждение: «Если стратегия строго доминирующая согласно таблице выигрышей в игре с участием рациональных игроков, то в эволюционной версии той же игры она исчезнет, каким бы ни был исходный состав популяции. Если стратегия слабо доминируемая, она сможет сосуществовать с некоторыми другими типами, но не в случае смешения всех типов».
Упражнения без решений
U1. Рассмотрите игру в выживание, в которой представители большой популяции животных встречаются друг с другом и либо вступают в схватку, либо делят между собой источник пищи. В популяции есть два фенотипа: один всегда дерется, а другой всегда делится пищей. Будем исходить из того, что в популяции не могут появиться другие мутантные типы. Предположим, ценность источника пищи составляет 200 калорий и калорийность пищи определяет репродуктивную приспособленность каждого игрока. Если встречаются два типа, которые делятся пищей, каждый из них получает половину, но если игрок, который делится пищей, встречается с тем, кто всегда дерется, он сразу же уступает и задира получает всю пищу.
a) Допустим, издержки в случае драки (для каждого игрока) составляют 50 калорий, а когда встречаются два драчуна, каждый из них с равной вероятностью может либо победить в схватке и получить всю пищу, либо проиграть и вообще остаться без еды. Составьте таблицу выигрышей в игре с участием двух игроков, выбранных из популяции случайным образом. Найдите в этой популяции все эволюционно устойчивые стратегии. К какому типу можно отнести игру в данном случае?
b) Теперь предположим, что издержки в случае драки составляют 150 калорий. Составьте таблицу выигрышей и найдите все эволюционно устойчивые стратегии в популяции в этой ситуации. Какой тип игры будет в данном случае?
c) Воспользовавшись системой обозначений из игры «ястреб — голубь» раздела 6 данной главы, укажите значения V и C в пунктах a и b и покажите, что ваши ответы в этих пунктах согласуются с анализом, представленным в данной главе.
U2. Допустим, в однократной игре «дилемма заключенных» следующая таблица выигрышей:
В большой популяции, в которой поведение каждого члена генетически предопределено, каждый игрок будет либо всегда отказываться от сотрудничества в любой игре «дилемма заключенных», либо использовать стратегию «око за око». (В дилемме заключенных, состоящей из нескольких раундов, этот игрок выбирает сотрудничество в первом раунде, а в каждом последующем делает то, что сделал соперник в предыдущем раунде игры.) Пары случайным образом выбранных из популяции игроков сыграют серии из n отдельных раундов этой дилеммы (при n 2). Выигрыш каждого игрока в одной полной серии (состоящей из n раундов игры) равен сумме выигрышей в n раундах.
Пусть p — доля игроков, всегда отказывающихся от сотрудничества, а (1 — p) — доля игроков, всегда выбирающих стратегию «око за око». Каждый член популяции неоднократно играет в таких сериях дилемм, каждый раз против нового, выбранного случайным образом соперника. Игрок, использующий стратегию «око за око», всегда начинает новую серию с сотрудничества в первом раунде игры.
a) В таблице два на два покажите выигрыши игрока каждого типа в случае, если в ходе одной серии каждый игрок вступает в противостояние с соперником каждого из двух типов.
b) Определите уровень приспособленности (средний выигрыш в одной серии против случайно выбранного соперника) игрока, который всегда отказывается от сотрудничества.
c) Определите уровень приспособленности игрока, всегда выбирающего стратегию «око за око».
d) На основании ответов в пунктах b и c докажите, что при p > (n — 2) / (n — 1) тип, всегда отказывающийся от сотрудничества, имеет более высокий уровень приспособленности, а при p < (n — 2) / (n — 1) более высокий уровень приспособленности у типа, всегда выбирающего стратегию «око за око».
e) Если эволюция приводит к постепенному увеличению доли более приспособленного типа в популяции, каковы возможные равновесные исходы этого процесса для популяции, о которой идет речь в упражнении? (Другими словами, каковы возможные эволюционно устойчивые равновесия?) Проиллюстрируйте свой ответ с помощью графика уровней приспособленности.
f) В каком смысле большее количество повторений (более высокие значения n) способствует эволюции сотрудничества?
U3. Предположим, в дважды повторяющейся дилемме заключенных из упражнения S3 в популяции может существовать четвертый тип (тип С). Он не признает своей вины в первом раунде, но сознается во втором раунде каждого эпизода в двух подряд раундах игры против того же соперника.
a) Составьте таблицу уровней приспособленности четыре на четыре в этой игре.
b) Может ли новый тип С выступать в качестве эволюционно устойчивой стратегии данной игры?
c) В игре с тремя типами из упражнения S3 типы В и О были эволюционно устойчивыми стратегиями, но тип О был нейтрально устойчивым, поскольку с ним могла сосуществовать небольшая доля мутантов Н. Докажите, что тип О не может быть эволюционно устойчивой стратегией в игре с четырьмя типами.
U4. Придерживаясь схемы, описанной в упражнении S4, проанализируйте эволюционную версию игры в розыгрыш очка в теннисе (см. рис. 4.14). Рассматривая подающих и принимающих игроков как отдельные виды, постройте рисунок, аналогичный рис. 12.15. Что вы можете сказать об эволюционно устойчивой стратегии и ее динамике?
U5. Вспомните о популяции животных из упражнения U1, борющихся за источник пищи, ценность которого составляет 200 калорий. Предположим, что в пункте b этого упражнения издержки в случае драки (для каждого игрока) равны 150 калорий. Представим также, что в этой популяции есть третий фенотип, который всегда смешивает стратегии, то есть использует смешанную стратегию, порой вступая в драку, а порой делясь пищей с другими.
a) На основании своих знаний о смешанных стратегиях в рациональных играх предложите разумную смешанную стратегию, которую третий фенотип мог бы использовать в данной игре.
b) Составьте таблицу выигрышей три на три для этой игры, когда третий фенотип использует смешанную стратегию, предложенную вами в пункте а.
c) Определите, будет ли смешивающий фенотип эволюционно устойчивой стратегией в данной игре. (Подсказка: проверьте, может ли тип, который всегда вступает в драку, или тип, который всегда делится пищей, захватить популяцию смешивающего типа.)
U6. Рассмотрим эволюционную версию игры между Бейкером и Катлером из упражнения U1 в главе 10. В этот раз Бейкер и Катлер — не два человека, а два разных вида. Каждый раз при встрече они ведут следующую игру. Бейкер выбирает общий приз в размере 10 или 100 долларов. Катлер решает, как разделить приз, выбранный Бейкером; при этом Катлер может разделить приз либо в соотношении 50 на 50, либо в соотношении 90 на 10 в свою пользу. Катлер ходит первым, а Бейкер вторым.
В популяции есть два типа Катлеров: тип F выбирает справедливое разделение приза (50 на 50), тогда как тип G — корыстное разделение (90 на 10). Существует также два типа Бейкеров: тип S просто выбирает большой приз (100 долларов) независимо от действий Катлера, тогда как тип T выбирает большой приз (100 долларов), но при условии, что Катлер его разделит 50 на 50, и маленький приз (10 долларов), если Катлер выберет разделение 90 на 10.
Пусть f — доля типа F в популяции Катлеров, а значит, (1 — f) — доля в этой популяции типа G. Пусть s — доля типа S в популяции Бейкеров, а значит, (1 — s) — доля в этой популяции типа T.
a) Определите уровень приспособленности типов F и G относительно s.