Стратегические игры. Доступный учебник по теории игр Диксит Авинаш
Если Кеннеди располагает достаточно точной оценкой вероятности p того, что Советский Союз — сторонник жесткого курса, а также если он уверен в своей способности контролировать риск q того, что блокада приведет к ядерной войне, то у него есть возможность рассчитать и реализовать свою наилучшую стратегию. Как мы видели в разделе 3, если p < 0,27, серьезная угроза неизбежной войны приемлема для Кеннеди (даже если он решит использовать наименьшую эффективную угрозу, а именно при q = 0,6). Если значение p попадает в диапазон от 0,27 до 0,38, то Кеннеди должен прибегнуть к балансированию на грани. Такая угроза должна содержать в себе риск катастрофы 0,6 < q < 0,375(1 — p)/p; в этом случае Кеннеди тоже выберет наименьшее значение в данном диапазоне, то есть q = 0,6. При p > 0,38 Кеннеди следует уступить.
В действительности Кеннеди не знает точного значения p; у него есть только приблизительная оценка того, что оно находится в диапазоне от 1/3 до 1/2. К тому же он не может быть уверен в точном местоположении критического значения q по отношению к графику условия приемлемости Это зависит от чисел, используемых в качестве выигрышей Советского Союза при разных исходах (например, 8 в случае войны и 4 в случае выполнения требований США), Кеннеди может только приблизительно оценить эти значения. И наконец, он может даже не иметь возможности достаточно точно контролировать риск, возникший в связи с балансированием на грани. Все эти неопределенности говорят лишь об одном: нужна предельная осторожность.
Предположим, Кеннеди считает, что p = 0,35, и выдвигает угрозу, подкрепленную действием, которое несет в себе риск q = 0,65. Этот риск больше, чем необходимо, чтобы угроза была эффективной, а именно q = 0,6. Предел приемлемости составляет 0,375 (1–0,35)/0,35 = 0,7, а риск q = 0,65 меньше этого предела. То есть, по подсчетам Кеннеди, такой риск удовлетворяет как условию эффективности, так и условию приемлемости. Но представим, что Кеннеди ошибается. Скажем, если он не осознает, что Лемей действительно может не выполнить приказы и предпринять чрезмерно агрессивные действия, то значение q может оказаться выше, чем его оценивает Кеннеди, например равным 0,8, что Кеннеди посчитал бы слишком рискованным. Или, допустим, значение p на самом деле равно 0,4; тогда Кеннеди счел бы даже q = 0,65 рискованным. Кроме того, эксперты Кеннеди могли бы неправильно оценить выигрыши Советского Союза. Если бы они оценили его унижение вследствие вывода ракет в 5, а не 4, то предельное значение условия эффективности составляло бы q = 0,7, поэтому угроза Кеннеди при q = 0,65 не достигла бы требуемой цели.
Все, что известно Кеннеди, — это что общая форма графиков, отображающих условие эффективности и условие приемлемости, такая же, как на рис. 14.5. Он не знает точного значения p, а значит, не знает, какое именно значение q выбрать, чтобы выполнить оба условия. На самом деле Кеннеди даже не знает, существует ли такой диапазон для неизвестного истинного значения p: оно может быть больше или меньше граничного значения 0,38, разделяющего эти два случая. Кроме того, у Кеннеди нет возможности очень точно установить значение q; следовательно, если бы он даже знал значение p, то не мог бы действовать, не сомневаясь в своей готовности пойти на соответствующий риск.
Что же ему делать при столь расплывчатой информации, неадекватном контроле и больших рисках? Прежде всего проанализировать границы терпимости Советского Союза к риску, а также границы своей готовности пойти на риск. При этом было бы неправильно начинать с анализа значения q, которое может оказаться слишком высоким. Вместо этого Кеннеди должен изучить границы «снизу», то есть начать с достаточно безопасного значения и постепенно повышать уровень риска, чтобы увидеть, «кто моргнет первым». Именно так балансирование на грани применяется в реальной жизни.
Поясним это с помощью рис. 14.5. Обратите внимание на затененный сегмент; его правая и левая границы, p = 1/3 и p = 1/2, соответствуют пределам диапазона значений p по оценке Кеннеди. Нижняя граница выделенной зоны — это горизонтальная ось (q = 0). Верхняя граница состоит из двух сегментов. При p < 0,38 она соответствует условию приемлемости. Не забывайте, что Кеннеди не знает точного положения этих границ, но должен найти его методом проб и ошибок, продвигаясь снизу. Следовательно, этот процесс необходимо начать в зоне с цветным затенением.
Предположим, Кеннеди начнет с очень безопасного действия, скажем, когда q равно примерно 0,01 (1 %). В нашем примере с Карибским кризисом это может быть телевизионное обращение Кеннеди, в котором он объявил о предстоящем карантине. В этот момент точка с координатами (p, q) находится где-то у нижнего края выделенной области. Кеннеди не знает, где именно, поскольку ему неизвестно точное значение p. Однако существует очень большая вероятность того, что в этой точке угроза достаточно безопасна, но при этом неэффективна. Поэтому Кеннеди немного обостряет ситуацию. Иными словами, смещает точку с координатами (p, q) в вертикальном направлении вверх по отношению к исходному положению. Это может быть фактическое введение карантина. Если это действие также окажется безопасным, но неэффективным, Кеннеди еще немного повышает уровень риска. Это может быть утечка информации о планах бомбардировки.
Двигаясь таким образом, Кеннеди достигнет одной из границ затененной области на рис. 14.5, но какой именно, зависит от значения p. Есть два варианта развития событий. Первый — когда угроза станет достаточно серьезной, чтобы сдержать Советский Союз (это произойдет, если истинное значение p меньше его истинного критического значения, то есть 0,38). На графике мы это видим как переход из области с цветным затенением в область, в которой угроза и приемлема, и эффективна. В таком случае СССР уступит, а Кеннеди одержит победу. Второй вариант — когда угроза становится для США слишком рискованной; это происходит, если p > 0,38. Анализ, который выполняет при этом Кеннеди, продвигает его выше графика условия приемлемости. В итоге Кеннеди решает уступить, а Хрущев выигрывает. Опять же, подчеркиваем, что, поскольку Кеннеди неизвестно истинное значение p, он не знает заранее, какой из двух исходов имеет преимущество. Постепенно повышая степень риска и наблюдая за поведением Советов, Кеннеди может получить подсказки, которые помогут ему уточнить значение p. В итоге он достигнет уровня точности, позволяющего понять, к какой границе он движется и, соответственно, уступит ли Советский Союз или это придется сделать Соединенным Штатам.
На самом деле в игре есть два возможных исхода только при условии, что постоянный и неизменно растущий взаимный риск катастрофы не появится в тот период, пока Кеннеди методом проб и ошибок пытается определить диапазон все более рискованных военных решений. Следовательно, существует и третий исход — а именно, что буря разразится еще до того, как любая из сторон осознает, что достигла предела терпимости к риску, и отступит. Иначе говоря, именно постепенно возрастающий риск и делает балансирование на грани столь тонкой и опасной стратегией.
Таким образом, балансирование на грани — это практика постепенного повышения риска обоюдного ущерба, наглядным примером которой может служить игра в труса в реальном времени. В ходе анализа этой игры в главе 4 мы предоставили каждому игроку простой двоичный выбор: ехать прямо или свернуть. В действительности их выбор зависит от времени. Два автомобиля мчатся навстречу друг другу, и каждый игрок может свернуть в любой момент. Когда автомобили находятся очень далеко друг от друга, решение свернуть гарантирует безопасность. По мере приближения автомобилей риск столкновения увеличивается и сворачивание в сторону уже может его не предотвратить. Когда два игрока едут навстречу друг другу, каждый анализирует предел готовности соперника взять на себя этот риск и в то же время, возможно, пытается определить собственный предел. В сторону свернет тот, кто перейдет эту грань первым. Тем не менее всегда остается риск того, что оба игрока опоздают с решением настолько, что столкновение станет неизбежным.
Теперь мы видим, почему в случае Карибского кризиса те факторы, которые не позволяли рассматривать его как игру с двумя участниками, облегчают практическое применение балансирования на грани. Блокада была относительно мелким шагом, который вряд ли спровоцировал бы ядерную войну. Однако как только Кеннеди привел блокаду в действие, ее ход, обострение и прочие факторы перестали находиться под его полным контролем. Именно поэтому Кеннеди не говорил Хрущеву: «Если вы откажетесь выполнить мои требования (перейдете опасную черту), я хладнокровно и осознанно начну ядерную войну, которая уничтожит оба наших народа». Скорее всего, он говорил: «Маховик блокады начал вращаться и набирает обороты. Чем дольше вы удете медлить, тем выше вероятность того, что какой-то рабочий процесс пойдет не так, политическое давление на меня усилится до такой степени, что мне придется уступить, или какой-нибудь “ястреб” выйдет из-под контроля. И тогда я уже не смогу предотвратить ядерную войну, как бы этого ни хотел. Теперь только вы можете снизить напряженность, выполнив мои требования о выводе ракет».
Мы убеждены, что данный подход обеспечивает более глубокое понимание сути этого кризиса, чем многие методы анализа, основанные на простой угрозе. Этот подход объясняет, почему именно риск войны играл столь важную роль во всех дискуссиях. Более того, он делает убедительные аргументы Аллисона, касающиеся бюрократических процедур и внутренних противоречий с обеих сторон, неотъемлемой частью картины: эти факторы позволяют игрокам высшего уровня с обеих сторон гарантированно потерять часть контроля, другими словами, применить метод балансирования на грани.
Нам остается обсудить одно важное условие. Из главы 9 мы знаем, что каждая угроза содержит подразумеваемое обещание, то есть что неблагоприятные последствия не наступят, если ваш соперник удовлетворит ваши пожелания. То же самое требуется и для балансирования на грани. Если ваш оппонент выполнит ваши условия, когда вы повышаете уровень риска, вы должны иметь возможность «дать задний ход», то есть немедленно начать снижать риск и быстро исключить его из картины происходящего, иначе выполнение ваших требований не принесет сопернику никакой выгоды. Возможно, именно в этом и заключалась проблема в ходе Карибского кризиса. Если бы Советский Союз опасался того, что Кеннеди неспособен контролировать таких «ястребов», как Лемей («Мы должны были просто пойти и врезать им как следует»), он не получил бы ничего, если бы уступил.
Давайте подведем итоги. Балансирование на грани — это стратегия, посредством которой вы подвергаете соперника и себя постепенно возрастающему риску обоюдного ущерба. Фактическое наступление пагубного исхода не полностью контролируется тем, кто выдвигает угрозу.
В такой интерпретации балансирование на грани встречается повсюду. В большинстве противостояний (например, между компанией и профсоюзом, мужем и женой, родителем и ребенком, президентом и Конгрессом и т. д.) одна сторона не может быть уверена в целях и возможностях другой. Следовательно, большинство угроз сопряжены с риском ошибки, и каждая угроза должна содержать элемент балансирования на грани. Мы надеемся, что помогли вам составить определенное представление об этой стратегии и осознать риски, которые она несет. Неудачная попытка использовать балансирование на грани может привести к забастовке, расторжению брака или снижению доходности американских облигаций, как было обнаружено президентом Обамой и членами Конгресса в 2011 году, после дискуссий по поводу повышения верхнего предела государственного долга. Вам не раз придется столкнуться с балансированием на грани в течение жизни, поэтому настоятельно советуем: проявляйте осторожность и исходите из четкого понимания своих возможностей и целей.
Чтобы помочь вам в этом, подытожим важные уроки, извлеченные из опыта разрешения Карибского кризиса и по-новому интерпретированные в ситуации, когда лидеры профсоюза рассматривают возможность проведения забастовки с требованием о повышении заработной платы, не зная наверняка, не обернется ли это полным прекращением деятельности компании.
• Начинайте с небольших и безопасных шагов. Вашим первым шагом должна стать не немедленная организация акции протеста, а планирование провести собрание членов профсоюза через несколько дней или даже недель, а пока продолжайте переговоры.
• Постепенно повышайте риск. Ваши публичные заявления и высказывания в кулуарах, а также нагнетание эмоций среди членов профсоюза должно заставить руководство компании принять тот факт, что текущий уровень заработной платы неприемлем. По возможности устройте небольшие инциденты, скажем краткосрочную забастовку или локальные акции протеста.
• По мере продолжения процесса читайте и интерпретируйте сигналы, присутствующие в действиях руководства компании, для того чтобы понять, в состоянии ли она удовлетворить ваши требования о повышении заработной платы.
• Сохраняйте достаточный контроль над ситуацией, то есть постарайтесь убедить членов профсоюза в необходимости утвердить соглашение, которого вы достигнете с руководством компании, иначе оно будет считать, что обстановка не разрядится, даже если ваши требования будут выполнены.
Резюме
В некоторых игровых ситуациях риск ошибки при наличии угрозы может потребовать использования минимально возможной угрозы. Если большую угрозу нельзя снизить другими способами, ее масштаб можно уменьшить, поставив ее выполнение в зависимость от определенных условий. Стратегическое использование вероятностной угрозы, при котором вы подвергаете соперника и себя возрастающему риску ущерба, называется балансированием на грани.
Балансирование на грани требует ослабить контроль над исходом игры, но не терять его полностью. Необходимо создать угрозу с таким уровнем риска, который был бы достаточно высоким, чтобы вы могли принудить или удержать соперника, и достаточно низким, чтобы ситуация была для вас приемлемой. Для этого вы должны определить уровень терпимости обоих игроков к риску посредством постепенного повышения риска обоюдного ущерба.
Кубинский ракетный кризис 1962 года — яркий наглядный пример применения балансирования на грани со стороны президента Кеннеди. Анализ этого кризиса как примера простой угрозы с блокадой Кубы в качестве инструмента обеспечения достоверности этой угрозы не позволяет понять сути происходящего. Более эффективный анализ учитывает множество нюансов и неопределенностей, присущих этой ситуации, а также вероятность того, что простая угроза была слишком рискованной. Поскольку в реальный кризис были вовлечены многочисленные политические и военные игроки, Кеннеди удалось добиться «контролируемой потери контроля», приказав ввести блокаду и постепенно накаляя ситуацию и усиливая напряженность до тех пор, пока Хрущев не уступил перед лицом угрозы ядерной войны.
Ключевые термины
Вероятностная угроза
Игра в труса в реальном времени
Постепенное повышение риска обоюдного ущерба
Условие приемлемости
Условие эффективности
Упражнения с решениями
S1. Рассмотрите игру между компанией и членами профсоюза. Для того чтобы заставить компанию выполнить требования о повышении заработной платы и дополнительных льготах, профсоюз может пригрозить забастовкой (или не делать этого). Столкнувшись с такой угрозой, компания может удовлетворить требования профсоюза или проигнорировать угрозу забастовки. Однако в момент принятия решения о выдвижении угрозы профсоюз не знает, насколько прибыльна компания, а ее заявлениям по этому поводу верить нельзя. «Природа» определяет, рентабельна ли компания; вероятность того, что она нерентабельна, равна p.
Структура выигрышей в этой игре такова: 1. Когда профсоюз не выдвигает никаких угроз, он получает выигрыш 0 (независимо от рентабельности компании). Компания получает выигрыш 100, если она рентабельна, и выигрыш 10, если нерентабельна. Пассивный профсоюз оставит больше прибыли компании, если она вообще ее получит. 2. Когда профсоюз угрожает провести забастовку и компания выполняет его требования, выигрыш профсоюза равен 50 (независимо от рентабельности компании), а компания получает выигрыш 50, если она рентабельна, и выигрыш 40, если нерентабельна. 3. Когда профсоюз угрожает организовать забастовку, а компания игнорирует эту угрозу, профсоюз будет вынужден провести забастовку, и при этом его выигрыш составит 100 (независимо от рентабельности компании). Компания получает выигрыш 100, если она рентабельна, и выигрыш 10 в противном случае. Игнорировние угрозы обходится рентабельной компании очень дорого, а нерентабельной не очень дорого.
a) Что произойдет, если профсоюз использует чистую угрозу организовать забастовку, если компания не выполнит его требований?
b) Предположим, профсоюз создаст ситуацию, в которой существует определенный риск того, что с вероятностью q < 1 он устроит забастовку, после того как компания проигнорирует его угрозу. Такой риск может возникнуть в результате неспособности лидеров профсоюза добиваться желаемого от руководства компании. Постройте дерево этой игры, аналогичное дереву на рис. 14.4.
c) Что произойдет, если профсоюз использует балансирование на грани, угрожая провести забастовку с вероятностью q, если компания не выполнит его требований?
d) Сформулируйте для этой игры условие эффективности и условие приемлемости и определите значения p и q, при которых профсоюз может использовать чистую угрозу, балансирование на грани или вообще не выдвигать никакой угрозы.
S2. Концепцию балансирования на грани иллюстрируют сцены из многих кинофильмов. Проанализируйте следующие описания таких сцен с этой точки зрения. С какими рисками стакиваются обе стороны? Как эти риски повышаются в процессе выполнения угрозы с элементами балансирования на грани?
a) В фильме 1980 года The Gods Must Be Crazy («Боги, наверное, сошли с ума») единственного выжившего члена группы повстанцев, которая пыталась убить президента африканской страны, поймали и допрашивают. Он стоит с завязанными глазами в вертолете, спиной к открытой двери. Перекрикивая шум винтов вертолета, офицер спрашивает его: «Кто твой главарь? Где он скрывается?» Человек не отвечает, и офицер выталкивает его из вертолета. В следующей сцене мы видим, что, хотя двигатель работает, вертолет на самом деле стоит на земле и человек упал с совсем небольшой высоты. Офицер появляется в проеме двери и говорит со смехом: «В следующий раз мы поднимемся повыше».
b) В фильме 1998 года A Simple Plan («Простой план») два брата забирают сумку с 4,4 миллионами долларов, которую они находят в разбившемся самолете. После множества интригующих поворотов судьбы оставшийся в живых мародер Хэнк встречается с агентом ФБР. Последний, понимая, что ему не удастся доказать, что часть денег осталась у Хэнка, рассказывает ему историю происхождения этих денег и отмечает, что у ФБР есть серийные номера каждой десятой купюры в той сумме денег, которая в свое время была выплачена в качестве выкупа. В завершение агент говорит: «Теперь мы будем просто ждать, пока они не появятся. Нельзя разбрасываться стодолларовыми купюрами, чтобы на тебя не обратили внимания».
S3. В этом упражнении мы приводим пару примеров успешного применения метода балансирования на грани, где «успех» означает взаимоприемлемое соглашение сторон. В каждом примере выполните следующие задания: 1) определите интересы сторон; 2) опишите характер неопределенности, присутствующей в данной ситуации; 3) опишите стратегии, примененные сторонами для повышения риска катастрофы; 4) проанализируйте, были ли они эффективными; 5) (дополнительное задание) если сможете, разработайте небольшую математическую модель наподобие представленной в данной главе. В каждом случае мы приводим ссылки на источники информации, с которых вы можете начать выполнение данного упражнения. Вам следует найти больше таких источников, воспользовавшись ресурсами своей библиотеки, а также интернет-ресурсами, такими как LexisNexis.
a) Уругвайский раунд международных торговых переговоров, который начался в 1986 году и завершился в 1994 году созданием Всемирной торговой организации. Источник: John H. Jackson, The World Trading System, 2nd ed. (Cambridge, Mass.: MIT Press, 1997), pp. 44–49 and ch. 12 and 13.
b) Кэмп-Дэвидские соглашения между Израилем и Египтом в 1978 году. Источник: William B. Quandt, Camp David: Peacemaking and Politics (Washington, D.C.: Brookings Institution, 1986).
S4. Следующие примеры иллюстрируют использование балансирования на грани, когда оно считается «неудачным» в случае обоюдно неблагоприятного исхода (катастрофы). Ответьте на вопросы, приведенные в упражнении S3, в контексте таких ситуаций:
a) Конфронтация между властями и демократически настроенными демонстрантами из числа студентов в Пекине в июне 1989 года. Источники: Donald Morrison, ed., Massacre in Beijing: China’s Struggle for Democracy (New York: Time Magazine Publications, 1989); Suzanne Ogden, Kathleen Hartford, L. Sullivan, and D. Zweig, eds., China’s Search for Democracy: The Student and Mass Movement of 1989 (Armonk, N.Y.: M.E. Sharpe, 1992).
b) Забастовка в компании Caterpillar в период с 1991 по 1998 год. Источники: “The Caterpillar Strike: Not Over Till It’s Over,” Economist, February 28, 1998; “Caterpillar’s Comeback,” Economist, June 20, 1998; Aaron Bernstein, “Why Workers Still Hold a Weak Hand,” BusinessWeek, March 2, 1998.
S5. Ответьте на вопросы, перечисленные в упражнении S3, в контексте применения балансирования на грани в будущем в следующих возможных ситуациях:
a) Провозглашение Тайванем независимости от Китайской Народной Республики. Источник: Ian Williams, “Taiwan’s Independence,” Foreign Policy in Focus, December 20, 2006; http://fpif.org/taiwans_independence/.
b) Милитаризация космического пространства — например, размещение оружия в космосе или уничтожение спутников. Источник: “Disharmony in the Spheres,” Economist, January 17, 2008; www.economist.com/node/10533205.
Упражнения без решений
U1. В данной главе мы утверждаем, что выигрыш Соединенных Штатов составляет 10, если Советский Союз (любого типа) игнорирует угрозу США; выигрыши показаны на рис. 14.3. Предположим, что на самом деле этот выигрыш равен 12, а не 10.
a) Включите данное изменение выигрыша в дерево игры, аналогичное дереву на рис. 14.4.
b) С помощью дерева игры, полученного в пункте а, найдите условие эффективности для этой версии игры в балансирование на грани между США и СССР.
c) Воспользовавшись выигрышами из пункта а, найдите условие приемлемости для этой игры.
d) Постройте график, аналогичный графику на рис. 14.5, отобразив на нем условия эффективности и приемлемости, найденные в пунктах b и c.
e) При каких значениях p (вероятности того, что Советский Союз придерживается жесткого курса) чистая угроза (q = 1) приемлема? При каких значениях p чистая угроза неприемлема, но балансирование на грани все же возможно?
f) Если Кеннеди был прав, полагая, что значение p находится в диапазоне от 1/3 до 1/2, указывает ли ваш анализ этой версии игры на существование эффективной и приемлемой вероятностной угрозы? На основе этого примера объясните, почему исходные предположения специалиста по теории игр относительно выигрышей игроков могут существенно влиять на прогнозы, проистекающие из теоретической модели.
U2. Ответьте на вопросы из упражнения S2 в контексте следующих фильмов:
a) В классическом художественном фильме 1941 года The Maltese Falcon («Мальтийский сокол») герой Сэм Спейд (Хамфри Богарт) — единственный, кто знает, где находится невероятно ценная, инкрустированная бриллиантами статуэтка сокола, и злодей Каспер Гатмен (Сидни Гринстрит) угрожает ему пытками ради получения этой информации. Спейд указывает на то, что пытки бесполезны, если только за ними не последует смерть, но Гатмен не может убить Спейда, поскольку вместе с ним умрет и информация. Следовательно, он может не утруждаться угрозой пыток. Гатмен отвечает: «Вы равильно мыслите, сэр, и это справедливо и весьма продуманно для обеих сторон, потому что, как вы знаете, в пылу событий люди обычно забывают свои истинные цели и отдаются воле чувств».
b) Классический советский фильм 1925 года «Броненосец “Потемкин”» (посвященный событиям лета 1905 года) заканчивается сценой, в которой эскадра кораблей царского Черноморского флота преследует мятежный, взбунтовавшийся корабль «Потемкин». Напряженность нарастает по мере приближения кораблей друг к другу. Матросы с каждой стороны бегут на свои боевые посты, заряжают и наводят на цель большие пушки и взволнованно ждут приказа стрелять в своих соотечественников. Ни одна из сторон не хочет атаковать другую, но ни одна и не хочет сдаваться или умереть без боя. У царских кораблей есть приказ взять «Потемкин» любыми доступными способами, а члены экипажа корабля знают, что будут осуждены за измену, если сдадутся.
U3. Ответьте на вопросы, перечисленные в упражнении S3, в контексте следующих примеров успешного балансирования на грани:
a) Переговоры между режимом апартеида в Южной Африке и Африканским национальным Конгрессом о принятии новой конституции, предусматривающей проведение мажоритарных выборов, в период с 1989 по 1994 год. Источник: Allister Sparks, Tomorrow Is Another Country (New York: Hill and Wang, 1995).
b) Мир в Северной Ирландии: разоружение ИРА в июле 2005 года, соглашение Святого Эндрю в октябре 2006 года, выборы в марте 2007 года и правительство на основе разделения полномочий Иэна Пейсли и Мартина Макгиннесса. Источник: “The Thorny Path to Peace and Power Sharing,” CBC News, March 26, 2007; www.cbc.ca/news2/background/northernireland/timeline.html.
U4. Ответьте на вопросы, перечисленные в упражнении S3, в контексте следующих примеров неудачного балансирования на грани:
a) Противостояние по вопросам бюджета между президентом Клинтоном и Конгрессом, контролируемым республиканцами, в 1995 году. Источники: Sheldon Wolin, “Democracy and Counterrevolution,” Nation, April 22, 1996; David Bowermaster, “Meet the Mavericks,” U.S. News and World Report, December 25, 1995 — January 1, 1996; “A Flight that Never Seems to End,” Economist, December 16, 1995.
b) Забастовка сценаристов в 2007–2008 годах. Источники: “Writers Guild of America,” online archive of the New York Times on the Writers Guild and the strike; http://topics.nytimes.com/top/reference/timestopics/organizations/w/writers_guild_of_america/index.html; Writers Strike: A Punch from the Picket Line”; http://writers-strike.blogspot.com.
U5. Ответьте на вопросы, перечисленные в упражнении S3, в контексте возможных случаев применения балансирования на грани в будущем.
a) Размещение американских пусковых комплексов для запуска противобаллистических ракет в Польше, а также сопутствующего радара в Чешской Республике, предположительно предназначенных для перехвата ракет из Ирана, что вызвало гнев России. Источник: “Q&A: US Missile Defence,” BBC News, August 20, 2008. Доступно на http://news.bbc.co.uk/2/hi/europe/6720153.stm.
b) Сдерживание Ирана от разработки ядерного оружия. Источники: James Fallows, “The Nuclear Power Beside Iraq,” Atlantic, May 2006; www.theatlantic.com/doc/200605/fallows-iran; James Fallows, “Will Iran Be Next?” Atlantic, December 2004. Доступно на www.theatlantic.com/magazine/archive/2006/05/the-nuclear-power-beside-iraq/304819.
Глава 15. Стратегии и голосование
* * *
Когда речь заходит о голосовании, вы, наверное, в первую очередь вспоминаете о выборах президента, затем, возможно, о выборах мэра, а иногда даже о выборах старосты класса в школе. А кто-то вспоминает и об университетском футболисте, выигравшем в прошлом году кубок Хайсмана, или о фильме, получившем «Оскар», или о последнем решении Верховного суда. Все эти ситуации связаны с голосованием, хотя и отличаются по числу участников, длине списка кандидатов или количеству вариантов выбора, доступных голосующим, а также процедур подсчета голосов и определения победителя. В каждом случае стратегическое мышление может сыграть определенную роль в схеме заполнения бюллетеней для голосования. Кроме того, стратегические соображения могут иметь решающее значение при выборе метода проведения голосования и подсчета голосов.
Процедуры голосования существенно разнятся не потому, что одни подразумевают выбор лауреатов премии «Оскар», а другие — выбор президента, а потому, что конкретные процедуры обладают свойствами, которые делают их более (или менее) подходящими для тех или иных ситуаций, требующих голосования.
Например, в последнее десятилетие стали расти опасения, что выборы, которые проходят по мажоритарной системе (когда побеждает кандидат, набравший большее количество голосов), способствуют формированию двухпартийной системы, из-за чего в более чем десяти американских городах были изменены правила голосования[255]. Кое-где эти изменения привели к результатам, отличавшимся от тех, которые были бы получены при прежней системе голосования по принципу относительного большинства. Например, мэр Окленда Джин Куан заняла этот пост в ноябре 2010 года, несмотря на то что ей отдали первое место только 24 % избирателей, тогда как за кандидата, оказавшегося в итоге вторым, проголосовало 35 % избирателей. В последнем туре преференциального голосования, проходившем в этом городе, Куан получила 51 % голосов, а оставшиеся 49 % достались кандидату, занявшему второе место. Мы проанализируем столь парадоксальные результаты в разделе 2 данной главы.
С учетом того, что разные процедуры голосования способны обеспечить разные результаты, становится понятен диапазон возможностей стратегического поведения при выборе процедуры, которая может генерировать предпочтительный для вас результат. Нередки случаи, когда избиратели голосуют не за, а вопреки, то есть за того (или то), кто не является для них лучшим вариантом, но позволяет избежать худшего варианта. Данный тип стратегического поведения весьма распространен, когда это позволяют процедуры голосования. Как избиратель вы должны знать о преимуществах, обусловленных таким стратегическим искажением предпочтений, а также о том, что другие могут применить эту тактику против вас.
В следующих разделах главы мы сначала познакомим вас с диапазоном существующих процедур голосования, а также с некоторыми парадоксальными результатами, порой возникающими при использовании определенных процедур. Затем рассмотрим, как можно оценить эффективность этих процедур, прежде чем приступать к изучению стратегического поведения участников голосования и способов манипулирования его результатами. И наконец, представим два варианта результата, известного как теорема о медианном избирателе, в виде игры с нулевой суммой с двумя участниками, в которой используются дискретные и непрерывные стратегии.
1. Правила и процедуры голосования
Наличие многочисленных процедур голосования позволяет сделать выбор из списка альтернатив (кандидатов или вопросов). Но что примечательно, даже если таких альтернатив всего три, структура выборов существенно усложняется. В данном разделе мы опишем ряд процедур, используемых в трех широких классах методов голосования, или методов агрегирования голосов. Количество возможных процедур голосования огромно, и приведенную нами простую классификацию можно существенно расширить, включив в нее выборы, основанные на сочетании таких процедур. Этой теме посвящено немало работ как в области экономики, так и в области политологии. Мы не задавались целью представить их исчерпывающий обзор, а, скорее, хотели помочь вам составить о них общее представление. Если вас интересует эта тема, рекомендуем прочитать дополнительную литературу, в которой содержится более подробная информация[256].
Методы агрегирования голосов можно разделить на категории по числу вариантов, или кандидатов, рассматриваемых избирателями в любой момент времени. Бинарные методы подразумевают выбор одной из двух альтернатив за один раз. Во время выборов с участием ровно двух кандидатов голоса можно агрегировать посредством использования хорошо известного принципа простого большинства, согласно которому побеждает кандидат, получивший большинство голосов. При наличии более двух альтернатив можно применить парное голосование — метод, который сводится к повторению бинарного голосования. Парные процедуры голосования многоэтапны и подразумевают голосование по парам альтернатив в ходе нескольких туров по принципу относительного большинства для определения наиболее предпочтительной альтернативы.
Одна из процедур парного голосования, в соответствии с которой каждая альтернатива выставляется против каждой из оставшихся альтернатив в процессе парного сравнения по принципу большинства, обозначается термином «метод Кондорсе», по имени французского ученого XVIII столетия Мари Жана Антуана Николя де Карита, маркиза де Кондорсе. Он полагал, что выиграть выборы должен кандидат, который победит всех остальных кандидатов в серии состязаний один на один; такого кандидата (или альтернативу) в настоящее время называют победителем по Кондорсе. Другие парные процедуры голосования подразумевают вычисление таких показателей, как индекс Коупленда, который отражает количество побед и поражений альтернативы в процессе парного сравнения. В первом туре Чемпионата мира по футболу разновидность индекса Коупленда позволяет определить, какие команды из каждой группы перейдут во второй тур чемпионата[257].
Еще одна известная процедура парного сравнения, используемая при наличии трех возможных альтернатив, — это процедура внесения поправок, применения которой требует регламент Конгресса США в случае, когда законопроект ставится на голосование. Когда законопроект выносится на обсуждение Конгресса, его любой исправленный вариант сначала должен выиграть в голосовании против первоначального варианта. Вариант, победивший в первом туре голосования, выносится на голосование против действующего закона, и Конгрессмены голосуют за то, принимать ли ту версию закона, которая победила в первом туре; затем для определения победителя можно применить принцип простого большинства. Процедуру внесения поправок можно использовать для рассмотрения любых трех альтернатив: для этого сначала проводится первый тур голосования с участием двух альтернатив, а во время второго тура третья альтернатива выставляется против победившей альтернативы.
Множественные методы позволяют избирателям рассматривать три и более альтернативы одновременно. Одна группа множественных методов голосования подразумевает использование информации о позиции альтернатив в бюллетене для определения количества баллов, учитываемых при подсчете результатов голосования; такие методы голосования известны как позиционные методы. Уже знакомый вам принцип относительного большинства голосов — особый случай позиционного метода, когда каждый участник голосования отдает один голос за самую предпочтительную для него альтернативу. При подсчете голосов ей присваивается одно очко; победителем становится альтернатива, получившая наибольшее количество голосов (баллов). Обратите внимание, что победителю голосования, проведенного по принципу относительного большинства, не нужно набирать большинство (51 %) голосов. Например, во время президентских выборов 2012 года в Мексике Энрике Пенья Ньето стал президентом, набрав 38,21 % голосов; его оппоненты получили 31,6 %, 25,4 % и 2,3 % голосов. Столь незначительный отрыв от соперников вызвал вопросы о легитимности выборов президента в Мексике, особенно в 2006 году, когда разрыв составлял всего 0,58 %. Еще один особый случай позиционного метода — метод относительного антибольшинства, при котором избирателям предлагается голосовать против одного пункта в списке или, наоборот, за все пункты, кроме одного. В ходе подсчета голосов альтернативе, получившей голос против, присваивается 1 очко, или все альтернативы, кроме одной, получают по 1 баллу, а альтернатива, против которой подан голос, 0 баллов.
Один из самых известных позиционных методов голосования — подсчет Борда (рейтинговое голосование), названный так по имени соотечественника и современника Кондорсе Жана-Шарля де Борда. Борда описывал новую процедуру как усовершенствованный вариант принципа относительного большинства. Метод Борда подразумевает, что каждый голосующий располагает все возможные альтернативы в порядке предпочтения. Баллы присваиваются на основании позиции соответствующей альтернативы в бюллетене. Во время выборов из трех кандидатов кандидат, занимающий верхнюю позицию в бюллетене, получает 3 балла, второй кандидат 2 балла и последний — 1 балл. После сбора бюллетеней баллы каждого кандидата суммируются и выборы выигрывает тот, кто получил максимальное количество баллов. Подсчет Борда часто используется в некоторых видах спорта, например при определении кандидатов на получение приза Сая Янга в профессиональном бейсболе, а также во время проведения чемпионатов по американскому футболу среди университетских команд.
Многие другие позиционные методы можно разработать просто путем изменения правила, используемого для присвоения баллов альтернативам на основании их позиций в избирательном бюллетене. Одна система может подразумевать присвоение баллов таким образом, чтобы альтернатива с самым высоким рейтингом получила их сравнительно больше, чем другие, — например, 5 баллов наиболее предпочтительной альтернативе в выборах с участием трех кандидатов и только 2 и 1 балл второй и третьей альтернативам. В выборах с участием большего количества кандидатов (скажем, восьми) две первые альтернативы в избирательном бюллетене могут находиться в более выгодном положении, получая, соответственно, 10 и 9 баллов, тогда как остальные по 6 баллов и меньше.
Альтернативой позиционным множественным методам стал сравнительно недавно изобретенный метод одобрительного голосования, при котором его участники могут голосовать за каждую одобренную ими альтернативу[258]. В отличие от позиционных методов, одобрительное голосование не проводит различия между альтернативами на основе их позиции в бюллетене. Все голоса, отданные в случае одобрительного голосования, рассматриваются как равноценные, а побеждает кандидат, получивший одобрение большинства голосующих. На выборах, в которых может быть больше одного победителя (например, выборах школьного совета), пороговый уровень одобрения устанавливается заранее и побеждают альтернативы, получившие число голосов, превышающее минимальный уровень одобрения. Сторонники этого метода утверждают, что он отдает предпочтение относительно умеренным альтернативам по сравнению с альтернативами, находящимися у любого конца общего диапазона. В свою очередь, противники полагают, что невнимательные избиратели могут избрать неподходящего новичка из списка кандидатов, отдав за него слишком мого «поощрительных» голосов. Но, несмотря на эти разногласия, ряд профессиональных ассоциаций и Организация Объединенных Наций используют одобрительное голосование для избрания своих должностных лиц, а некоторые штаты уже применяют (или рассматривают такую возможность) этот метод во время выборов в органы власти.
Некоторые многоэтапные процедуры голосования совмещают множественный и бинарный методы в рамках смешанных методов. Например, двухэтапный метод голосования принцип простого большинства со вторым туром используется для уменьшения большой группы возможных вариантов до бинарного решения. Во время первого этапа выборов избиратели отмечают свои наиболее предпочтительные альтернативы, после чего подсчитываются голоса, отданные за каждую. Если один кандидат получает большинство голосов на первом этапе, он выигрывает выборы. Но если после первого тура большинства голосов не набирает ни один кандидат, между двумя наиболее предпочтительными альтернативами проводится второй тур выборов, победитель которого определяется по принципу простого большинства голосов. Такая процедура используется на президентских выборах во Франции. Но она может привести к неожиданным результатам, если в первом туре три или четыре сильных кандидата делят между собой голоса избирателей. Например, весной 2002 года кандидат от крайнего правого крыла Ле Пен в первом туре президентских выборов оказался вторым, опередив премьер-министра Франции, социалиста Жоспена. Это вызвало удивление и полное смятение среди французских граждан, 30 % которых даже не потрудились пойти на выборы, в то время как другие воспользовались первым туром, чтобы выразить свои симпатии к кандидатам крайне левого толка. Тот факт, что Ле Пен вышел во второй тур, вызвал серьезные политические волнения, хотя в итоге он проиграл действующему президенту Шираку.
Еще одна смешанная процедура голосования сводится к проведению нескольких последовательных туров. Голосующие выбирают одну из альтернатив в ходе каждого тура голосования, после завершения которого альтернатива с самым низким результатом исключается из списка. В следующем туре рассматриваются оставшиеся альтернативы. Исключение альтернатив продолжается до тех пор, пока их не останется всего две; на этом этапе используется бинарный метод голосования и победитель определяется по системе простого большинства со вторым туром. Процедура проведения голосования в несколько туров применяется при выборе места проведения Олимпийских игр.
Необходимость в нескольких последовательных турах голосования можно устранить, сделав так, чтобы избиратели указывали порядок своих предпочтений в первом избирательном бюллетене. Тогда для подсчета голосов в следующих турах можно использовать систему единого передаваемого голоса, в которой каждый голосующий ранжирует кандидатов, включенных в один первоначальный бюллетень, в порядке предпочтения. Если ни одна альтернатива не получает большинства голосов, отданных за первое место, кандидат с самым низким рейтингом исключается из списка, а голоса избирателей, отдавших ему первое место, передаются кандидату, указанному в списке вторым. Аналогичное перераспределение голосов происходит в последующих турах по мере исключения из списка очередных альтернатив. Побеждает альтернатива, получившая большинство голосов. Этот метод голосования, чаще называемый системой мгновенного второго тура, в настоящее время применяется в нескольких американских городах, в том числе в Окленде и Сан-Франциско. В некоторых городах его стали называть голосование методом ранжирования из-за ожидания избирателями «мгновенных» результатов, тогда как для полного подсчета бюллетеней требуется два-три дня.
Систему единого передаваемого голоса используют иногда в сочетании с пропорциональным представительством на выборах, которое подразумевает, что электорат штата, состоящий, например, из 55 % республиканцев, 25 % демократов и 20 % независимых избирателей, обеспечивает формирование представительского органа власти, отображающего партийную принадлежность данного контингента избирателей. Иными словами, 55 % членов палаты представителей США от такого штата будут республиканцами и т. д. Этот результат резко отличается от системы голосования, основанной на принципе относительного большинства, которая обеспечила бы избрание всех республиканцев (при условии, что состав избирателей в каждом избирательном округе такой же, как в штате в целом). Избираются кандидаты, получившие определенную долю голосов, а остальные, набравшие меньше оговоренной доли, исключаются из списка (конкретные показатели зависят от точных требований процедуры голосования). Голоса, отданные за кандидатов, исключенных из списка, передаются другим кандидатам в соответствии с порядком предпочтений избирателей. Процедура продолжается до тех пор, пока не будет набрано требуемое количество кандидатов от каждой партии. Разновидности этой процедуры голосования используются в ходе парламентских выборов в Австралии и Новой Зеландии.
Очевидно, что в процессе выбора метода агрегирования голосов есть место для стратегического мышления, к тому же стратегия играет важную роль и после выбора процедуры голосования. В разделе 2 мы рассмотрим ряд вопросов, связанных с выработкой правил проведения голосования и утверждением повестки дня. Кроме того, стратегическое поведение участников голосования, которое часто называют стратегическим голосованием или стратегическим искажением предпочтений, также способно изменить результаты выборов при любой системе правил, как мы увидим чуть ниже в данной главе.
2. Парадоксы голосования
Даже когда люди голосуют в соответствии со своими истинными предпочтениями, конкретные условия, касающиеся предпочтений избирателей и процедур голосования, могут обусловить любопытные результаты. Кроме того, порой итоги выборов в значительной степени зависят от типа процедуры, используемой для агрегирования голосов. В данном разделе описаны несколько самых известных результатов такого рода (так называемых парадоксов голосования), а также ряд примеров того, как итоги выборов могут меняться вследствие применения разных методов агрегирования голосов без каких-либо изменений предпочтений и без использования стратегического голосования.